Quantitative assessment of invasive mena isoforms (Menacalc) as an independent prognostic marker in breast cancer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-10

AUTHORS

Seema Agarwal, Frank B Gertler, Michele Balsamo, John S Condeelis, Robert L Camp, Xiaonan Xue, Juan Lin, Thomas E Rohan, David L Rimm

ABSTRACT

INTRODUCTION: Mena, an Ena/VASP protein family member, is a key actin regulatory protein. Mena is up-regulated in breast cancers and promotes invasion and motility of tumor cells. Mena has multiple splice variants, including Mena invasive (MenaINV) and Mena11a, which are expressed in invasive or non-invasive tumor cells, respectively. We developed a multiplex quantitative immunofluorescence (MQIF) approach to assess the fraction of Mena lacking 11a sequence as a method to infer the presence of invasive tumor cells represented as total Mena minus Mena11a (called Menacalc) and determined its association with metastasis in breast cancer. METHODS: The MQIF method was applied to two independent primary breast cancer cohorts (Cohort 1 with 501 and Cohort 2 with 296 patients) using antibodies against Mena and its isoform, Mena11a. Menacalc was determined for each patient and assessed for association with risk of disease-specific death. RESULTS: Total Mena or Mena11a isoform expression failed to show any statistically significant association with outcome in either cohort. However, assessment of Menacalc showed that relatively high levels of this biomarker is associated with poor outcome in two independent breast cancer cohorts (log rank P = 0.0004 for Cohort 1 and 0.0321 for Cohort 2). Multivariate analysis on combined cohorts revealed that high Menacalc is associated with poor outcome, independent of age, node status, receptor status and tumor size. CONCLUSIONS: High Menacalc levels identify a subgroup of breast cancer patients with poor disease-specific survival, suggesting that Menacalc may serve as a biomarker for metastasis. More... »

PAGES

r124

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/bcr3318

DOI

http://dx.doi.org/10.1186/bcr3318

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048001816

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22971274


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cohort Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Immunohistochemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microfilament Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Isoforms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Survival Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tumor Burden", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Pathology, Yale University School of Medicine, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Agarwal", 
        "givenName": "Seema", 
        "id": "sg:person.01073522325.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073522325.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Biology and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 02138, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gertler", 
        "givenName": "Frank B", 
        "id": "sg:person.0755724733.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755724733.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Biology and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 02138, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balsamo", 
        "givenName": "Michele", 
        "id": "sg:person.01065574377.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065574377.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Albert Einstein College of Medicine", 
          "id": "https://www.grid.ac/institutes/grid.251993.5", 
          "name": [
            "Department of Anatomy and Structural Biology, Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, 10461, Bronx, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Condeelis", 
        "givenName": "John S", 
        "id": "sg:person.01054601762.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054601762.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Pathology, Yale University School of Medicine, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Camp", 
        "givenName": "Robert L", 
        "id": "sg:person.012367147604.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012367147604.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Albert Einstein College of Medicine", 
          "id": "https://www.grid.ac/institutes/grid.251993.5", 
          "name": [
            "Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 10461, Bronx, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xue", 
        "givenName": "Xiaonan", 
        "id": "sg:person.015121664537.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015121664537.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Albert Einstein College of Medicine", 
          "id": "https://www.grid.ac/institutes/grid.251993.5", 
          "name": [
            "Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 10461, Bronx, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Juan", 
        "id": "sg:person.0600327571.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600327571.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Albert Einstein College of Medicine", 
          "id": "https://www.grid.ac/institutes/grid.251993.5", 
          "name": [
            "Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 10461, Bronx, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rohan", 
        "givenName": "Thomas E", 
        "id": "sg:person.012603353577.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012603353577.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Pathology, Yale University School of Medicine, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rimm", 
        "givenName": "David L", 
        "id": "sg:person.0754207153.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754207153.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.devcel.2008.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003143948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-04-1136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003849052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-08-2179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006243400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1002218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008760534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10585-011-9388-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016283469", 
          "https://doi.org/10.1007/s10585-011-9388-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(00)81341-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018539855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr2784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021123983", 
          "https://doi.org/10.1186/bcr2784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-60327-811-9_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026754818", 
          "https://doi.org/10.1007/978-1-60327-811-9_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1203543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027317432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.devcel.2008.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027518913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2010.32.9706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029175884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030132345", 
          "https://doi.org/10.1038/nm791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030132345", 
          "https://doi.org/10.1038/nm791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncb0208-118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030405879", 
          "https://doi.org/10.1038/ncb0208-118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc2148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031584740", 
          "https://doi.org/10.1038/nrc2148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10585-008-9225-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032751094", 
          "https://doi.org/10.1007/s10585-008-9225-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2011.09.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039482183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1242/jcs.038125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039765586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1242/jcs.086231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040814049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/labinvest.3780204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045657100", 
          "https://doi.org/10.1038/labinvest.3780204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/labinvest.3780204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045657100", 
          "https://doi.org/10.1038/labinvest.3780204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-08-0436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045768997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tcb.2010.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050667548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.24277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053641027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.24277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053641027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1043/1543-2165-134.4.613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078141336"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-10", 
    "datePublishedReg": "2012-10-01", 
    "description": "INTRODUCTION: Mena, an Ena/VASP protein family member, is a key actin regulatory protein. Mena is up-regulated in breast cancers and promotes invasion and motility of tumor cells. Mena has multiple splice variants, including Mena invasive (MenaINV) and Mena11a, which are expressed in invasive or non-invasive tumor cells, respectively. We developed a multiplex quantitative immunofluorescence (MQIF) approach to assess the fraction of Mena lacking 11a sequence as a method to infer the presence of invasive tumor cells represented as total Mena minus Mena11a (called Menacalc) and determined its association with metastasis in breast cancer.\nMETHODS: The MQIF method was applied to two independent primary breast cancer cohorts (Cohort 1 with 501 and Cohort 2 with 296 patients) using antibodies against Mena and its isoform, Mena11a. Menacalc was determined for each patient and assessed for association with risk of disease-specific death.\nRESULTS: Total Mena or Mena11a isoform expression failed to show any statistically significant association with outcome in either cohort. However, assessment of Menacalc showed that relatively high levels of this biomarker is associated with poor outcome in two independent breast cancer cohorts (log rank P = 0.0004 for Cohort 1 and 0.0321 for Cohort 2). Multivariate analysis on combined cohorts revealed that high Menacalc is associated with poor outcome, independent of age, node status, receptor status and tumor size.\nCONCLUSIONS: High Menacalc levels identify a subgroup of breast cancer patients with poor disease-specific survival, suggesting that Menacalc may serve as a biomarker for metastasis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/bcr3318", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2699024", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2435795", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1022375", 
        "issn": [
          "1465-5411", 
          "1465-542X"
        ], 
        "name": "Breast Cancer Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Quantitative assessment of invasive mena isoforms (Menacalc) as an independent prognostic marker in breast cancer", 
    "pagination": "r124", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e4abc7ec3cbfda9fa805c0830f0ae956f47defca6218af14d37c2be4febc2855"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22971274"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100927353"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/bcr3318"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048001816"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/bcr3318", 
      "https://app.dimensions.ai/details/publication/pub.1048001816"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fbcr3318"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/bcr3318'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/bcr3318'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/bcr3318'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/bcr3318'


 

This table displays all metadata directly associated to this object as RDF triples.

281 TRIPLES      21 PREDICATES      69 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/bcr3318 schema:about N03bebfcf1cd441139e72d8d3bf3622a0
2 N0c159ff7cb754f61ae81a2743c4dd1d9
3 N1bc4a1869d4349d28fdc1d8ac43d3280
4 N1bdbe3361329455b9085580bb3e90f88
5 N288a118c668548799c88aa0c9b981065
6 N33bf2d02858c45e780a517b36fa2e02d
7 N3715f84ac8cf4691a67134529d3971f0
8 N5955ca19f822422081167f01bc384b70
9 N62c799313b85473eb76f8892ccfdff1f
10 N7f794d93efe748399d8ace3b1ed76231
11 N81357fec28884977a8b4ac910bf90cc1
12 Nbb35abd03ee6480d98b9667e50308b3d
13 Nc93f3d2e31e143549caf97b4e4dfb4c3
14 Nd5b33df820404e30b9e1ea286d6843b8
15 Nd688de0f04044af697da05f49cacc01b
16 Neec13bcaa02d4ff2897b6e8b96bcd156
17 Nf246072445584449a466ec8b5ca93215
18 anzsrc-for:11
19 anzsrc-for:1112
20 schema:author N8c4dbc2a9d16441e80a35cef803e7d9a
21 schema:citation sg:pub.10.1007/978-1-60327-811-9_12
22 sg:pub.10.1007/s10585-008-9225-8
23 sg:pub.10.1007/s10585-011-9388-6
24 sg:pub.10.1038/labinvest.3780204
25 sg:pub.10.1038/ncb0208-118
26 sg:pub.10.1038/nm791
27 sg:pub.10.1038/nrc2148
28 sg:pub.10.1186/bcr2784
29 https://doi.org/10.1002/cncr.24277
30 https://doi.org/10.1016/j.cell.2011.09.024
31 https://doi.org/10.1016/j.devcel.2008.05.013
32 https://doi.org/10.1016/j.devcel.2008.09.003
33 https://doi.org/10.1016/j.tcb.2010.10.001
34 https://doi.org/10.1016/s0092-8674(00)81341-0
35 https://doi.org/10.1043/1543-2165-134.4.613
36 https://doi.org/10.1126/science.1203543
37 https://doi.org/10.1158/0008-5472.can-04-1136
38 https://doi.org/10.1158/1078-0432.ccr-08-0436
39 https://doi.org/10.1158/1078-0432.ccr-08-2179
40 https://doi.org/10.1200/jco.2010.32.9706
41 https://doi.org/10.1242/jcs.038125
42 https://doi.org/10.1242/jcs.086231
43 https://doi.org/10.1371/journal.pgen.1002218
44 schema:datePublished 2012-10
45 schema:datePublishedReg 2012-10-01
46 schema:description INTRODUCTION: Mena, an Ena/VASP protein family member, is a key actin regulatory protein. Mena is up-regulated in breast cancers and promotes invasion and motility of tumor cells. Mena has multiple splice variants, including Mena invasive (MenaINV) and Mena11a, which are expressed in invasive or non-invasive tumor cells, respectively. We developed a multiplex quantitative immunofluorescence (MQIF) approach to assess the fraction of Mena lacking 11a sequence as a method to infer the presence of invasive tumor cells represented as total Mena minus Mena11a (called Menacalc) and determined its association with metastasis in breast cancer. METHODS: The MQIF method was applied to two independent primary breast cancer cohorts (Cohort 1 with 501 and Cohort 2 with 296 patients) using antibodies against Mena and its isoform, Mena11a. Menacalc was determined for each patient and assessed for association with risk of disease-specific death. RESULTS: Total Mena or Mena11a isoform expression failed to show any statistically significant association with outcome in either cohort. However, assessment of Menacalc showed that relatively high levels of this biomarker is associated with poor outcome in two independent breast cancer cohorts (log rank P = 0.0004 for Cohort 1 and 0.0321 for Cohort 2). Multivariate analysis on combined cohorts revealed that high Menacalc is associated with poor outcome, independent of age, node status, receptor status and tumor size. CONCLUSIONS: High Menacalc levels identify a subgroup of breast cancer patients with poor disease-specific survival, suggesting that Menacalc may serve as a biomarker for metastasis.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf N18ebafc69ec04c46bfa02db995aaba94
51 Ne2af3373d9264ca687473f44353dcd25
52 sg:journal.1022375
53 schema:name Quantitative assessment of invasive mena isoforms (Menacalc) as an independent prognostic marker in breast cancer
54 schema:pagination r124
55 schema:productId N0b0eb64ced0c41d9bee3e119b849db81
56 N49a884b3b77c4a48a10da87dbb815a57
57 N95a407cd5c3344a1b66501ea7738e2f4
58 Na005e44efe9641e4abba52ede9c46a47
59 Nc5ff72a0da634aa9af55e5758a4410d1
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048001816
61 https://doi.org/10.1186/bcr3318
62 schema:sdDatePublished 2019-04-10T14:11
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N7debd4108c2c4421b313595ac42c7c77
65 schema:url http://link.springer.com/10.1186%2Fbcr3318
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N018dc8f5787944f19157be7cfa6a1f7a rdf:first sg:person.0755724733.10
70 rdf:rest N0e0816551743460da609ee95aff66d7c
71 N03bebfcf1cd441139e72d8d3bf3622a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Aged
73 rdf:type schema:DefinedTerm
74 N06fd613d86884a099aadd08d3046d73a rdf:first sg:person.012367147604.10
75 rdf:rest Nc83a6d7604c94fc9b560a925b78e1828
76 N0b0eb64ced0c41d9bee3e119b849db81 schema:name doi
77 schema:value 10.1186/bcr3318
78 rdf:type schema:PropertyValue
79 N0c159ff7cb754f61ae81a2743c4dd1d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Prognosis
81 rdf:type schema:DefinedTerm
82 N0e0816551743460da609ee95aff66d7c rdf:first sg:person.01065574377.64
83 rdf:rest N6b9cccd78cbc4631a67eb2b158642fb0
84 N18ebafc69ec04c46bfa02db995aaba94 schema:issueNumber 5
85 rdf:type schema:PublicationIssue
86 N1bc4a1869d4349d28fdc1d8ac43d3280 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Cohort Studies
88 rdf:type schema:DefinedTerm
89 N1bdbe3361329455b9085580bb3e90f88 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Biomarkers, Tumor
91 rdf:type schema:DefinedTerm
92 N288a118c668548799c88aa0c9b981065 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Survival Analysis
94 rdf:type schema:DefinedTerm
95 N33bf2d02858c45e780a517b36fa2e02d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Microfilament Proteins
97 rdf:type schema:DefinedTerm
98 N3715f84ac8cf4691a67134529d3971f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Protein Isoforms
100 rdf:type schema:DefinedTerm
101 N3de5e29163ca44919e13090ea1622f74 rdf:first sg:person.012603353577.80
102 rdf:rest Nba43ecb92e7a4c3b9065cda2d648607e
103 N49a884b3b77c4a48a10da87dbb815a57 schema:name nlm_unique_id
104 schema:value 100927353
105 rdf:type schema:PropertyValue
106 N5955ca19f822422081167f01bc384b70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Gene Expression
108 rdf:type schema:DefinedTerm
109 N62c799313b85473eb76f8892ccfdff1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Middle Aged
111 rdf:type schema:DefinedTerm
112 N6b9cccd78cbc4631a67eb2b158642fb0 rdf:first sg:person.01054601762.73
113 rdf:rest N06fd613d86884a099aadd08d3046d73a
114 N7debd4108c2c4421b313595ac42c7c77 schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 N7f794d93efe748399d8ace3b1ed76231 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Tumor Burden
118 rdf:type schema:DefinedTerm
119 N81357fec28884977a8b4ac910bf90cc1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Adult
121 rdf:type schema:DefinedTerm
122 N8b8e9b3383b54f3d815e90ca0be2c32a rdf:first sg:person.0600327571.48
123 rdf:rest N3de5e29163ca44919e13090ea1622f74
124 N8c4dbc2a9d16441e80a35cef803e7d9a rdf:first sg:person.01073522325.43
125 rdf:rest N018dc8f5787944f19157be7cfa6a1f7a
126 N95a407cd5c3344a1b66501ea7738e2f4 schema:name dimensions_id
127 schema:value pub.1048001816
128 rdf:type schema:PropertyValue
129 Na005e44efe9641e4abba52ede9c46a47 schema:name readcube_id
130 schema:value e4abc7ec3cbfda9fa805c0830f0ae956f47defca6218af14d37c2be4febc2855
131 rdf:type schema:PropertyValue
132 Nba43ecb92e7a4c3b9065cda2d648607e rdf:first sg:person.0754207153.13
133 rdf:rest rdf:nil
134 Nbb35abd03ee6480d98b9667e50308b3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Risk Factors
136 rdf:type schema:DefinedTerm
137 Nc5ff72a0da634aa9af55e5758a4410d1 schema:name pubmed_id
138 schema:value 22971274
139 rdf:type schema:PropertyValue
140 Nc83a6d7604c94fc9b560a925b78e1828 rdf:first sg:person.015121664537.31
141 rdf:rest N8b8e9b3383b54f3d815e90ca0be2c32a
142 Nc93f3d2e31e143549caf97b4e4dfb4c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Humans
144 rdf:type schema:DefinedTerm
145 Nd5b33df820404e30b9e1ea286d6843b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Reproducibility of Results
147 rdf:type schema:DefinedTerm
148 Nd688de0f04044af697da05f49cacc01b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Immunohistochemistry
150 rdf:type schema:DefinedTerm
151 Ne2af3373d9264ca687473f44353dcd25 schema:volumeNumber 14
152 rdf:type schema:PublicationVolume
153 Neec13bcaa02d4ff2897b6e8b96bcd156 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Female
155 rdf:type schema:DefinedTerm
156 Nf246072445584449a466ec8b5ca93215 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Breast Neoplasms
158 rdf:type schema:DefinedTerm
159 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
160 schema:name Medical and Health Sciences
161 rdf:type schema:DefinedTerm
162 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
163 schema:name Oncology and Carcinogenesis
164 rdf:type schema:DefinedTerm
165 sg:grant.2435795 http://pending.schema.org/fundedItem sg:pub.10.1186/bcr3318
166 rdf:type schema:MonetaryGrant
167 sg:grant.2699024 http://pending.schema.org/fundedItem sg:pub.10.1186/bcr3318
168 rdf:type schema:MonetaryGrant
169 sg:journal.1022375 schema:issn 1465-5411
170 1465-542X
171 schema:name Breast Cancer Research
172 rdf:type schema:Periodical
173 sg:person.01054601762.73 schema:affiliation https://www.grid.ac/institutes/grid.251993.5
174 schema:familyName Condeelis
175 schema:givenName John S
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054601762.73
177 rdf:type schema:Person
178 sg:person.01065574377.64 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
179 schema:familyName Balsamo
180 schema:givenName Michele
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065574377.64
182 rdf:type schema:Person
183 sg:person.01073522325.43 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
184 schema:familyName Agarwal
185 schema:givenName Seema
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073522325.43
187 rdf:type schema:Person
188 sg:person.012367147604.10 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
189 schema:familyName Camp
190 schema:givenName Robert L
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012367147604.10
192 rdf:type schema:Person
193 sg:person.012603353577.80 schema:affiliation https://www.grid.ac/institutes/grid.251993.5
194 schema:familyName Rohan
195 schema:givenName Thomas E
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012603353577.80
197 rdf:type schema:Person
198 sg:person.015121664537.31 schema:affiliation https://www.grid.ac/institutes/grid.251993.5
199 schema:familyName Xue
200 schema:givenName Xiaonan
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015121664537.31
202 rdf:type schema:Person
203 sg:person.0600327571.48 schema:affiliation https://www.grid.ac/institutes/grid.251993.5
204 schema:familyName Lin
205 schema:givenName Juan
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600327571.48
207 rdf:type schema:Person
208 sg:person.0754207153.13 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
209 schema:familyName Rimm
210 schema:givenName David L
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754207153.13
212 rdf:type schema:Person
213 sg:person.0755724733.10 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
214 schema:familyName Gertler
215 schema:givenName Frank B
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755724733.10
217 rdf:type schema:Person
218 sg:pub.10.1007/978-1-60327-811-9_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026754818
219 https://doi.org/10.1007/978-1-60327-811-9_12
220 rdf:type schema:CreativeWork
221 sg:pub.10.1007/s10585-008-9225-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032751094
222 https://doi.org/10.1007/s10585-008-9225-8
223 rdf:type schema:CreativeWork
224 sg:pub.10.1007/s10585-011-9388-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016283469
225 https://doi.org/10.1007/s10585-011-9388-6
226 rdf:type schema:CreativeWork
227 sg:pub.10.1038/labinvest.3780204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045657100
228 https://doi.org/10.1038/labinvest.3780204
229 rdf:type schema:CreativeWork
230 sg:pub.10.1038/ncb0208-118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030405879
231 https://doi.org/10.1038/ncb0208-118
232 rdf:type schema:CreativeWork
233 sg:pub.10.1038/nm791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030132345
234 https://doi.org/10.1038/nm791
235 rdf:type schema:CreativeWork
236 sg:pub.10.1038/nrc2148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031584740
237 https://doi.org/10.1038/nrc2148
238 rdf:type schema:CreativeWork
239 sg:pub.10.1186/bcr2784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021123983
240 https://doi.org/10.1186/bcr2784
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1002/cncr.24277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053641027
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/j.cell.2011.09.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039482183
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/j.devcel.2008.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027518913
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/j.devcel.2008.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003143948
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/j.tcb.2010.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050667548
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/s0092-8674(00)81341-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018539855
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1043/1543-2165-134.4.613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078141336
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1126/science.1203543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027317432
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1158/0008-5472.can-04-1136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003849052
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1158/1078-0432.ccr-08-0436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045768997
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1158/1078-0432.ccr-08-2179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006243400
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1200/jco.2010.32.9706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029175884
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1242/jcs.038125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039765586
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1242/jcs.086231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040814049
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1371/journal.pgen.1002218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008760534
271 rdf:type schema:CreativeWork
272 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
273 schema:name Department of Biology and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 02138, Cambridge, MA, USA
274 rdf:type schema:Organization
275 https://www.grid.ac/institutes/grid.251993.5 schema:alternateName Albert Einstein College of Medicine
276 schema:name Department of Anatomy and Structural Biology, Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, 10461, Bronx, NY, USA
277 Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 10461, Bronx, NY, USA
278 rdf:type schema:Organization
279 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
280 schema:name Department of Pathology, Yale University School of Medicine, 06520, New Haven, CT, USA
281 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...