Quantitative assessment of invasive mena isoforms (Menacalc) as an independent prognostic marker in breast cancer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-10

AUTHORS

Seema Agarwal, Frank B Gertler, Michele Balsamo, John S Condeelis, Robert L Camp, Xiaonan Xue, Juan Lin, Thomas E Rohan, David L Rimm

ABSTRACT

INTRODUCTION: Mena, an Ena/VASP protein family member, is a key actin regulatory protein. Mena is up-regulated in breast cancers and promotes invasion and motility of tumor cells. Mena has multiple splice variants, including Mena invasive (MenaINV) and Mena11a, which are expressed in invasive or non-invasive tumor cells, respectively. We developed a multiplex quantitative immunofluorescence (MQIF) approach to assess the fraction of Mena lacking 11a sequence as a method to infer the presence of invasive tumor cells represented as total Mena minus Mena11a (called Menacalc) and determined its association with metastasis in breast cancer. METHODS: The MQIF method was applied to two independent primary breast cancer cohorts (Cohort 1 with 501 and Cohort 2 with 296 patients) using antibodies against Mena and its isoform, Mena11a. Menacalc was determined for each patient and assessed for association with risk of disease-specific death. RESULTS: Total Mena or Mena11a isoform expression failed to show any statistically significant association with outcome in either cohort. However, assessment of Menacalc showed that relatively high levels of this biomarker is associated with poor outcome in two independent breast cancer cohorts (log rank P = 0.0004 for Cohort 1 and 0.0321 for Cohort 2). Multivariate analysis on combined cohorts revealed that high Menacalc is associated with poor outcome, independent of age, node status, receptor status and tumor size. CONCLUSIONS: High Menacalc levels identify a subgroup of breast cancer patients with poor disease-specific survival, suggesting that Menacalc may serve as a biomarker for metastasis. More... »

PAGES

r124

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/bcr3318

DOI

http://dx.doi.org/10.1186/bcr3318

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048001816

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22971274


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cohort Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Immunohistochemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microfilament Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Isoforms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Survival Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tumor Burden", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Pathology, Yale University School of Medicine, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Agarwal", 
        "givenName": "Seema", 
        "id": "sg:person.01073522325.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073522325.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Biology and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 02138, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gertler", 
        "givenName": "Frank B", 
        "id": "sg:person.0755724733.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755724733.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Biology and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 02138, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balsamo", 
        "givenName": "Michele", 
        "id": "sg:person.01065574377.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065574377.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Albert Einstein College of Medicine", 
          "id": "https://www.grid.ac/institutes/grid.251993.5", 
          "name": [
            "Department of Anatomy and Structural Biology, Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, 10461, Bronx, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Condeelis", 
        "givenName": "John S", 
        "id": "sg:person.01054601762.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054601762.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Pathology, Yale University School of Medicine, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Camp", 
        "givenName": "Robert L", 
        "id": "sg:person.012367147604.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012367147604.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Albert Einstein College of Medicine", 
          "id": "https://www.grid.ac/institutes/grid.251993.5", 
          "name": [
            "Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 10461, Bronx, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xue", 
        "givenName": "Xiaonan", 
        "id": "sg:person.015121664537.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015121664537.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Albert Einstein College of Medicine", 
          "id": "https://www.grid.ac/institutes/grid.251993.5", 
          "name": [
            "Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 10461, Bronx, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Juan", 
        "id": "sg:person.0600327571.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600327571.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Albert Einstein College of Medicine", 
          "id": "https://www.grid.ac/institutes/grid.251993.5", 
          "name": [
            "Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 10461, Bronx, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rohan", 
        "givenName": "Thomas E", 
        "id": "sg:person.012603353577.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012603353577.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Pathology, Yale University School of Medicine, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rimm", 
        "givenName": "David L", 
        "id": "sg:person.0754207153.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754207153.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.devcel.2008.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003143948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-04-1136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003849052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-08-2179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006243400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1002218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008760534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10585-011-9388-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016283469", 
          "https://doi.org/10.1007/s10585-011-9388-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(00)81341-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018539855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr2784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021123983", 
          "https://doi.org/10.1186/bcr2784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-60327-811-9_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026754818", 
          "https://doi.org/10.1007/978-1-60327-811-9_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1203543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027317432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.devcel.2008.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027518913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2010.32.9706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029175884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030132345", 
          "https://doi.org/10.1038/nm791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030132345", 
          "https://doi.org/10.1038/nm791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncb0208-118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030405879", 
          "https://doi.org/10.1038/ncb0208-118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc2148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031584740", 
          "https://doi.org/10.1038/nrc2148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10585-008-9225-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032751094", 
          "https://doi.org/10.1007/s10585-008-9225-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2011.09.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039482183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1242/jcs.038125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039765586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1242/jcs.086231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040814049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/labinvest.3780204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045657100", 
          "https://doi.org/10.1038/labinvest.3780204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/labinvest.3780204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045657100", 
          "https://doi.org/10.1038/labinvest.3780204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-08-0436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045768997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tcb.2010.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050667548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.24277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053641027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.24277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053641027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1043/1543-2165-134.4.613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078141336"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-10", 
    "datePublishedReg": "2012-10-01", 
    "description": "INTRODUCTION: Mena, an Ena/VASP protein family member, is a key actin regulatory protein. Mena is up-regulated in breast cancers and promotes invasion and motility of tumor cells. Mena has multiple splice variants, including Mena invasive (MenaINV) and Mena11a, which are expressed in invasive or non-invasive tumor cells, respectively. We developed a multiplex quantitative immunofluorescence (MQIF) approach to assess the fraction of Mena lacking 11a sequence as a method to infer the presence of invasive tumor cells represented as total Mena minus Mena11a (called Menacalc) and determined its association with metastasis in breast cancer.\nMETHODS: The MQIF method was applied to two independent primary breast cancer cohorts (Cohort 1 with 501 and Cohort 2 with 296 patients) using antibodies against Mena and its isoform, Mena11a. Menacalc was determined for each patient and assessed for association with risk of disease-specific death.\nRESULTS: Total Mena or Mena11a isoform expression failed to show any statistically significant association with outcome in either cohort. However, assessment of Menacalc showed that relatively high levels of this biomarker is associated with poor outcome in two independent breast cancer cohorts (log rank P = 0.0004 for Cohort 1 and 0.0321 for Cohort 2). Multivariate analysis on combined cohorts revealed that high Menacalc is associated with poor outcome, independent of age, node status, receptor status and tumor size.\nCONCLUSIONS: High Menacalc levels identify a subgroup of breast cancer patients with poor disease-specific survival, suggesting that Menacalc may serve as a biomarker for metastasis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/bcr3318", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2699024", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2435795", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1022375", 
        "issn": [
          "1465-5411", 
          "1465-542X"
        ], 
        "name": "Breast Cancer Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Quantitative assessment of invasive mena isoforms (Menacalc) as an independent prognostic marker in breast cancer", 
    "pagination": "r124", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e4abc7ec3cbfda9fa805c0830f0ae956f47defca6218af14d37c2be4febc2855"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22971274"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100927353"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/bcr3318"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048001816"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/bcr3318", 
      "https://app.dimensions.ai/details/publication/pub.1048001816"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fbcr3318"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/bcr3318'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/bcr3318'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/bcr3318'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/bcr3318'


 

This table displays all metadata directly associated to this object as RDF triples.

281 TRIPLES      21 PREDICATES      69 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/bcr3318 schema:about N16e148a5182247c184594b178c8d8c07
2 N2fcfb1525ef8414a9656ec2543fef0a6
3 N49fb5d2576994b4fa12c9baf17e11dee
4 N63d6550d510a4f90bb91fd603108400e
5 N718a93e8cba240ae98787e391a288032
6 N7afba52a36d142f4b82dba0058338643
7 N7cd3a721b8284459b62bc0f3a50cd1d7
8 N7d04e4000e834933a9986a714dc35ed6
9 N843ecd8a159a403f941df40a1af85a7a
10 N8cc646eeb889426b824162a4d999127d
11 N9266f587622f491cb3d3c7076c8e8c8e
12 Nb076bf40566a414f92daed84854af8d5
13 Nb45940dab4154666be8ab09c34ab9726
14 Ncd6dca696100493c83c412011212e571
15 Ndfe381645d114e1299270eaf00d6f8d0
16 Ne3f1d20002564e379962d47156c6372f
17 Nfe9e3c12aea243fc9612f1e631bd23b3
18 anzsrc-for:11
19 anzsrc-for:1112
20 schema:author N98d74b4a8af149bfbf0a48ad742e73bf
21 schema:citation sg:pub.10.1007/978-1-60327-811-9_12
22 sg:pub.10.1007/s10585-008-9225-8
23 sg:pub.10.1007/s10585-011-9388-6
24 sg:pub.10.1038/labinvest.3780204
25 sg:pub.10.1038/ncb0208-118
26 sg:pub.10.1038/nm791
27 sg:pub.10.1038/nrc2148
28 sg:pub.10.1186/bcr2784
29 https://doi.org/10.1002/cncr.24277
30 https://doi.org/10.1016/j.cell.2011.09.024
31 https://doi.org/10.1016/j.devcel.2008.05.013
32 https://doi.org/10.1016/j.devcel.2008.09.003
33 https://doi.org/10.1016/j.tcb.2010.10.001
34 https://doi.org/10.1016/s0092-8674(00)81341-0
35 https://doi.org/10.1043/1543-2165-134.4.613
36 https://doi.org/10.1126/science.1203543
37 https://doi.org/10.1158/0008-5472.can-04-1136
38 https://doi.org/10.1158/1078-0432.ccr-08-0436
39 https://doi.org/10.1158/1078-0432.ccr-08-2179
40 https://doi.org/10.1200/jco.2010.32.9706
41 https://doi.org/10.1242/jcs.038125
42 https://doi.org/10.1242/jcs.086231
43 https://doi.org/10.1371/journal.pgen.1002218
44 schema:datePublished 2012-10
45 schema:datePublishedReg 2012-10-01
46 schema:description INTRODUCTION: Mena, an Ena/VASP protein family member, is a key actin regulatory protein. Mena is up-regulated in breast cancers and promotes invasion and motility of tumor cells. Mena has multiple splice variants, including Mena invasive (MenaINV) and Mena11a, which are expressed in invasive or non-invasive tumor cells, respectively. We developed a multiplex quantitative immunofluorescence (MQIF) approach to assess the fraction of Mena lacking 11a sequence as a method to infer the presence of invasive tumor cells represented as total Mena minus Mena11a (called Menacalc) and determined its association with metastasis in breast cancer. METHODS: The MQIF method was applied to two independent primary breast cancer cohorts (Cohort 1 with 501 and Cohort 2 with 296 patients) using antibodies against Mena and its isoform, Mena11a. Menacalc was determined for each patient and assessed for association with risk of disease-specific death. RESULTS: Total Mena or Mena11a isoform expression failed to show any statistically significant association with outcome in either cohort. However, assessment of Menacalc showed that relatively high levels of this biomarker is associated with poor outcome in two independent breast cancer cohorts (log rank P = 0.0004 for Cohort 1 and 0.0321 for Cohort 2). Multivariate analysis on combined cohorts revealed that high Menacalc is associated with poor outcome, independent of age, node status, receptor status and tumor size. CONCLUSIONS: High Menacalc levels identify a subgroup of breast cancer patients with poor disease-specific survival, suggesting that Menacalc may serve as a biomarker for metastasis.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf N53b5962d91fd4bfd911f75002d0530fe
51 Na6e4b8d341374311a749da90caaac2a3
52 sg:journal.1022375
53 schema:name Quantitative assessment of invasive mena isoforms (Menacalc) as an independent prognostic marker in breast cancer
54 schema:pagination r124
55 schema:productId N0d3b2619575148c1a8a2ead52b12b4c0
56 N76703bd4099e427886b3d5d3557a1b41
57 N88e5e07569224690a302c734e2f21fc6
58 N9f24aa6547cf4e6ebc95dc19c1758e1a
59 Nf52ced535c13445e8f98b5c91cee5a84
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048001816
61 https://doi.org/10.1186/bcr3318
62 schema:sdDatePublished 2019-04-10T14:11
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N48f06a39f8a84a948890a6e390cda714
65 schema:url http://link.springer.com/10.1186%2Fbcr3318
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N05208697670a481e9db6468b2e931885 rdf:first sg:person.0755724733.10
70 rdf:rest N95f4bcf762c947cf93e6ad3ba4fde6a5
71 N0d3b2619575148c1a8a2ead52b12b4c0 schema:name dimensions_id
72 schema:value pub.1048001816
73 rdf:type schema:PropertyValue
74 N16e148a5182247c184594b178c8d8c07 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Humans
76 rdf:type schema:DefinedTerm
77 N2956e1dc471543a98eaf09ee468e9695 rdf:first sg:person.0754207153.13
78 rdf:rest rdf:nil
79 N2fcfb1525ef8414a9656ec2543fef0a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Female
81 rdf:type schema:DefinedTerm
82 N436d6c27bf03453695e574e75cdc6b9c rdf:first sg:person.012367147604.10
83 rdf:rest Nc81dc53c0abd49169f5083443c6c2559
84 N48f06a39f8a84a948890a6e390cda714 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N49fb5d2576994b4fa12c9baf17e11dee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Reproducibility of Results
88 rdf:type schema:DefinedTerm
89 N53b5962d91fd4bfd911f75002d0530fe schema:volumeNumber 14
90 rdf:type schema:PublicationVolume
91 N57490ace5ea64db28a1044a407b56012 rdf:first sg:person.01054601762.73
92 rdf:rest N436d6c27bf03453695e574e75cdc6b9c
93 N63d6550d510a4f90bb91fd603108400e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Immunohistochemistry
95 rdf:type schema:DefinedTerm
96 N718a93e8cba240ae98787e391a288032 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Breast Neoplasms
98 rdf:type schema:DefinedTerm
99 N76703bd4099e427886b3d5d3557a1b41 schema:name readcube_id
100 schema:value e4abc7ec3cbfda9fa805c0830f0ae956f47defca6218af14d37c2be4febc2855
101 rdf:type schema:PropertyValue
102 N7afba52a36d142f4b82dba0058338643 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Risk Factors
104 rdf:type schema:DefinedTerm
105 N7cd3a721b8284459b62bc0f3a50cd1d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Protein Isoforms
107 rdf:type schema:DefinedTerm
108 N7d04e4000e834933a9986a714dc35ed6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Aged
110 rdf:type schema:DefinedTerm
111 N843ecd8a159a403f941df40a1af85a7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Gene Expression
113 rdf:type schema:DefinedTerm
114 N88e5e07569224690a302c734e2f21fc6 schema:name doi
115 schema:value 10.1186/bcr3318
116 rdf:type schema:PropertyValue
117 N8cc646eeb889426b824162a4d999127d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Microfilament Proteins
119 rdf:type schema:DefinedTerm
120 N9266f587622f491cb3d3c7076c8e8c8e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Adult
122 rdf:type schema:DefinedTerm
123 N9546bc7c9c1f42719a8739aaa187bc14 rdf:first sg:person.0600327571.48
124 rdf:rest Nfc1faee0f21345cd81bcc855497009ba
125 N95f4bcf762c947cf93e6ad3ba4fde6a5 rdf:first sg:person.01065574377.64
126 rdf:rest N57490ace5ea64db28a1044a407b56012
127 N98d74b4a8af149bfbf0a48ad742e73bf rdf:first sg:person.01073522325.43
128 rdf:rest N05208697670a481e9db6468b2e931885
129 N9f24aa6547cf4e6ebc95dc19c1758e1a schema:name pubmed_id
130 schema:value 22971274
131 rdf:type schema:PropertyValue
132 Na6e4b8d341374311a749da90caaac2a3 schema:issueNumber 5
133 rdf:type schema:PublicationIssue
134 Nb076bf40566a414f92daed84854af8d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Prognosis
136 rdf:type schema:DefinedTerm
137 Nb45940dab4154666be8ab09c34ab9726 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Tumor Burden
139 rdf:type schema:DefinedTerm
140 Nc81dc53c0abd49169f5083443c6c2559 rdf:first sg:person.015121664537.31
141 rdf:rest N9546bc7c9c1f42719a8739aaa187bc14
142 Ncd6dca696100493c83c412011212e571 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Cohort Studies
144 rdf:type schema:DefinedTerm
145 Ndfe381645d114e1299270eaf00d6f8d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Survival Analysis
147 rdf:type schema:DefinedTerm
148 Ne3f1d20002564e379962d47156c6372f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Middle Aged
150 rdf:type schema:DefinedTerm
151 Nf52ced535c13445e8f98b5c91cee5a84 schema:name nlm_unique_id
152 schema:value 100927353
153 rdf:type schema:PropertyValue
154 Nfc1faee0f21345cd81bcc855497009ba rdf:first sg:person.012603353577.80
155 rdf:rest N2956e1dc471543a98eaf09ee468e9695
156 Nfe9e3c12aea243fc9612f1e631bd23b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Biomarkers, Tumor
158 rdf:type schema:DefinedTerm
159 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
160 schema:name Medical and Health Sciences
161 rdf:type schema:DefinedTerm
162 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
163 schema:name Oncology and Carcinogenesis
164 rdf:type schema:DefinedTerm
165 sg:grant.2435795 http://pending.schema.org/fundedItem sg:pub.10.1186/bcr3318
166 rdf:type schema:MonetaryGrant
167 sg:grant.2699024 http://pending.schema.org/fundedItem sg:pub.10.1186/bcr3318
168 rdf:type schema:MonetaryGrant
169 sg:journal.1022375 schema:issn 1465-5411
170 1465-542X
171 schema:name Breast Cancer Research
172 rdf:type schema:Periodical
173 sg:person.01054601762.73 schema:affiliation https://www.grid.ac/institutes/grid.251993.5
174 schema:familyName Condeelis
175 schema:givenName John S
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054601762.73
177 rdf:type schema:Person
178 sg:person.01065574377.64 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
179 schema:familyName Balsamo
180 schema:givenName Michele
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065574377.64
182 rdf:type schema:Person
183 sg:person.01073522325.43 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
184 schema:familyName Agarwal
185 schema:givenName Seema
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073522325.43
187 rdf:type schema:Person
188 sg:person.012367147604.10 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
189 schema:familyName Camp
190 schema:givenName Robert L
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012367147604.10
192 rdf:type schema:Person
193 sg:person.012603353577.80 schema:affiliation https://www.grid.ac/institutes/grid.251993.5
194 schema:familyName Rohan
195 schema:givenName Thomas E
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012603353577.80
197 rdf:type schema:Person
198 sg:person.015121664537.31 schema:affiliation https://www.grid.ac/institutes/grid.251993.5
199 schema:familyName Xue
200 schema:givenName Xiaonan
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015121664537.31
202 rdf:type schema:Person
203 sg:person.0600327571.48 schema:affiliation https://www.grid.ac/institutes/grid.251993.5
204 schema:familyName Lin
205 schema:givenName Juan
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600327571.48
207 rdf:type schema:Person
208 sg:person.0754207153.13 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
209 schema:familyName Rimm
210 schema:givenName David L
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754207153.13
212 rdf:type schema:Person
213 sg:person.0755724733.10 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
214 schema:familyName Gertler
215 schema:givenName Frank B
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755724733.10
217 rdf:type schema:Person
218 sg:pub.10.1007/978-1-60327-811-9_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026754818
219 https://doi.org/10.1007/978-1-60327-811-9_12
220 rdf:type schema:CreativeWork
221 sg:pub.10.1007/s10585-008-9225-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032751094
222 https://doi.org/10.1007/s10585-008-9225-8
223 rdf:type schema:CreativeWork
224 sg:pub.10.1007/s10585-011-9388-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016283469
225 https://doi.org/10.1007/s10585-011-9388-6
226 rdf:type schema:CreativeWork
227 sg:pub.10.1038/labinvest.3780204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045657100
228 https://doi.org/10.1038/labinvest.3780204
229 rdf:type schema:CreativeWork
230 sg:pub.10.1038/ncb0208-118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030405879
231 https://doi.org/10.1038/ncb0208-118
232 rdf:type schema:CreativeWork
233 sg:pub.10.1038/nm791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030132345
234 https://doi.org/10.1038/nm791
235 rdf:type schema:CreativeWork
236 sg:pub.10.1038/nrc2148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031584740
237 https://doi.org/10.1038/nrc2148
238 rdf:type schema:CreativeWork
239 sg:pub.10.1186/bcr2784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021123983
240 https://doi.org/10.1186/bcr2784
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1002/cncr.24277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053641027
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/j.cell.2011.09.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039482183
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/j.devcel.2008.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027518913
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/j.devcel.2008.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003143948
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/j.tcb.2010.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050667548
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/s0092-8674(00)81341-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018539855
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1043/1543-2165-134.4.613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078141336
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1126/science.1203543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027317432
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1158/0008-5472.can-04-1136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003849052
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1158/1078-0432.ccr-08-0436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045768997
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1158/1078-0432.ccr-08-2179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006243400
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1200/jco.2010.32.9706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029175884
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1242/jcs.038125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039765586
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1242/jcs.086231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040814049
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1371/journal.pgen.1002218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008760534
271 rdf:type schema:CreativeWork
272 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
273 schema:name Department of Biology and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 02138, Cambridge, MA, USA
274 rdf:type schema:Organization
275 https://www.grid.ac/institutes/grid.251993.5 schema:alternateName Albert Einstein College of Medicine
276 schema:name Department of Anatomy and Structural Biology, Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, 10461, Bronx, NY, USA
277 Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 10461, Bronx, NY, USA
278 rdf:type schema:Organization
279 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
280 schema:name Department of Pathology, Yale University School of Medicine, 06520, New Haven, CT, USA
281 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...