Nondense mammographic area and risk of breast cancer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-10

AUTHORS

Andreas Pettersson, Susan E Hankinson, Walter C Willett, Pagona Lagiou, Dimitrios Trichopoulos, Rulla M Tamimi

ABSTRACT

INTRODUCTION: The mechanisms underlying the strong association between percentage dense area on a mammogram and the risk of breast cancer are unknown. We investigated separately the absolute dense area and the absolute nondense area on mammograms in relation to breast cancer risk. METHODS: We conducted a nested case-control study on prediagnostic mammographic density measurements and risk of breast cancer in the Nurses' Health Study and the Nurses' Health Study II. Premenopausal mammograms were available from 464 cases and 998 controls, and postmenopausal mammograms were available from 960 cases and 1,662 controls. We used a computer-assisted thresholding technique to measure mammographic density, and we used unconditional logistic regression to calculate OR and 95% CI data. RESULTS: Higher absolute dense area was associated with a greater risk of breast cancer among premenopausal women (OR(tertile 3 vs 1) = 2.01, 95% CI = 1.45 to 2.77) and among postmenopausal women (OR(quintile 5 vs 1) = 2.19, 95% CI = 1.65 to 2.89). However, increasing absolute nondense area was associated with a decreased risk of breast cancer among premenopausal women (OR(tertile 3 vs 1) = 0.51, 95% CI = 0.36 to 0.72) and among postmenopausal women (OR(quintile 5 vs 1) = 0.46, 95% CI = 0.34 to 0.62). These associations changed minimally when we included both absolute dense area and absolute nondense area in the same statistical model. As expected, the percentage dense area was the strongest risk factor for breast cancer in both groups. CONCLUSIONS: Our results indicate that absolute dense area is independently and positively associated with breast cancer risk, whereas absolute nondense area is independently and inversely associated with breast cancer risk. Since adipose tissue is radiographically nondense, these results suggest that adipose breast tissue may have a protective role in breast carcinogenesis. More... »

PAGES

r100

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/bcr3041

DOI

http://dx.doi.org/10.1186/bcr3041

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028231393

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22017857


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adipose Tissue", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Case-Control Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Logistic Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mammography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Postmenopause", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Premenopause", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, 02115, Boston, MA, USA", 
            "Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pettersson", 
        "givenName": "Andreas", 
        "id": "sg:person.01340551247.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340551247.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, 02115, Boston, MA, USA", 
            "Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hankinson", 
        "givenName": "Susan E", 
        "id": "sg:person.012525753462.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012525753462.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, 02115, Boston, MA, USA", 
            "Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, 02115, Boston, MA, USA", 
            "Department of Nutrition, Harvard School of Public Health, 677 Huntington Avenue, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Willett", 
        "givenName": "Walter C", 
        "id": "sg:person.0607477203.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607477203.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National and Kapodistrian University of Athens", 
          "id": "https://www.grid.ac/institutes/grid.5216.0", 
          "name": [
            "Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, 02115, Boston, MA, USA", 
            "Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, 75 Mikras Asias Street, 115 27, Goudi Athens, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lagiou", 
        "givenName": "Pagona", 
        "id": "sg:person.01115516776.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115516776.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trichopoulos", 
        "givenName": "Dimitrios", 
        "id": "sg:person.014407025537.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014407025537.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, 02115, Boston, MA, USA", 
            "Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tamimi", 
        "givenName": "Rulla M", 
        "id": "sg:person.01117365224.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117365224.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00052183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000929600", 
          "https://doi.org/10.1007/bf00052183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00052183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000929600", 
          "https://doi.org/10.1007/bf00052183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-07-2554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018016840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-04-0717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022172758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-09-0372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022277191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00001648-199211000-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022414456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00001648-199211000-00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022414456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(78)91694-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024818151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(78)91694-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024818151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-010-0976-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027948817", 
          "https://doi.org/10.1007/s10549-010-0976-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-010-0976-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027948817", 
          "https://doi.org/10.1007/s10549-010-0976-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2009.23.4120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031837626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr1831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032059594", 
          "https://doi.org/10.1186/bcr1831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr1831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032059594", 
          "https://doi.org/10.1186/bcr1831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-09-0107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033629005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr2778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034802250", 
          "https://doi.org/10.1186/bcr2778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034860402", 
          "https://doi.org/10.1038/nrc1608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034860402", 
          "https://doi.org/10.1038/nrc1608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/djm062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035665633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-09-1059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040449857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kwi270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042063248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-06-0034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049006559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-06-0738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049941697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(05)70390-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052464959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/87.21.1622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059819590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075268722", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-10", 
    "datePublishedReg": "2011-10-01", 
    "description": "INTRODUCTION: The mechanisms underlying the strong association between percentage dense area on a mammogram and the risk of breast cancer are unknown. We investigated separately the absolute dense area and the absolute nondense area on mammograms in relation to breast cancer risk.\nMETHODS: We conducted a nested case-control study on prediagnostic mammographic density measurements and risk of breast cancer in the Nurses' Health Study and the Nurses' Health Study II. Premenopausal mammograms were available from 464 cases and 998 controls, and postmenopausal mammograms were available from 960 cases and 1,662 controls. We used a computer-assisted thresholding technique to measure mammographic density, and we used unconditional logistic regression to calculate OR and 95% CI data.\nRESULTS: Higher absolute dense area was associated with a greater risk of breast cancer among premenopausal women (OR(tertile 3 vs 1) = 2.01, 95% CI = 1.45 to 2.77) and among postmenopausal women (OR(quintile 5 vs 1) = 2.19, 95% CI = 1.65 to 2.89). However, increasing absolute nondense area was associated with a decreased risk of breast cancer among premenopausal women (OR(tertile 3 vs 1) = 0.51, 95% CI = 0.36 to 0.72) and among postmenopausal women (OR(quintile 5 vs 1) = 0.46, 95% CI = 0.34 to 0.62). These associations changed minimally when we included both absolute dense area and absolute nondense area in the same statistical model. As expected, the percentage dense area was the strongest risk factor for breast cancer in both groups.\nCONCLUSIONS: Our results indicate that absolute dense area is independently and positively associated with breast cancer risk, whereas absolute nondense area is independently and inversely associated with breast cancer risk. Since adipose tissue is radiographically nondense, these results suggest that adipose breast tissue may have a protective role in breast carcinogenesis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/bcr3041", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2479079", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2470259", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2479676", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2435752", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1022375", 
        "issn": [
          "1465-5411", 
          "1465-542X"
        ], 
        "name": "Breast Cancer Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Nondense mammographic area and risk of breast cancer", 
    "pagination": "r100", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "867cf1143014b554a1c41378ebb5d616169ec25f39bb6ea220d8348bfaeaa7f0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22017857"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100927353"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/bcr3041"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028231393"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/bcr3041", 
      "https://app.dimensions.ai/details/publication/pub.1028231393"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fbcr3041"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/bcr3041'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/bcr3041'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/bcr3041'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/bcr3041'


 

This table displays all metadata directly associated to this object as RDF triples.

234 TRIPLES      21 PREDICATES      62 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/bcr3041 schema:about N09484e2cf3ed4a95b143e4c2c6198958
2 N107d4b20057d4ec5a2b96fb51efd6f41
3 N15e9d81655ec488196fd7f2d12526cae
4 N2aaeaa428c204ed1a5bdad2e45a95b3d
5 N3b6b25c2bd6d4d2bbda421764dd05815
6 N3edb20a2c2364e2b8a92b6d0d08106e2
7 N56d720cfc686451491fc46bb0b020dbd
8 N57808b023e174935970b90836ed29be9
9 N62ae4a5d093140dd9c135b8ecbc12fd3
10 N77f5430aeb854cbaa0ec781b194f2f36
11 Nc766f07033604548b7d23ee7655d9d9d
12 Ncf2c5ffece4f4faab097c32f225470a1
13 Nd7998ce367ce4f43b04e8c2b34e9b8d1
14 anzsrc-for:11
15 anzsrc-for:1117
16 schema:author N195df6c6e68f44ccbc943c0e084e05cd
17 schema:citation sg:pub.10.1007/bf00052183
18 sg:pub.10.1007/s10549-010-0976-y
19 sg:pub.10.1038/nrc1608
20 sg:pub.10.1186/bcr1831
21 sg:pub.10.1186/bcr2778
22 https://app.dimensions.ai/details/publication/pub.1075268722
23 https://doi.org/10.1016/s0140-6736(78)91694-x
24 https://doi.org/10.1016/s1470-2045(05)70390-9
25 https://doi.org/10.1093/aje/kwi270
26 https://doi.org/10.1093/jnci/87.21.1622
27 https://doi.org/10.1093/jnci/djm062
28 https://doi.org/10.1097/00001648-199211000-00011
29 https://doi.org/10.1158/1055-9965.epi-04-0717
30 https://doi.org/10.1158/1055-9965.epi-06-0034
31 https://doi.org/10.1158/1055-9965.epi-06-0738
32 https://doi.org/10.1158/1055-9965.epi-07-2554
33 https://doi.org/10.1158/1055-9965.epi-09-0107
34 https://doi.org/10.1158/1055-9965.epi-09-0372
35 https://doi.org/10.1158/1055-9965.epi-09-1059
36 https://doi.org/10.1200/jco.2009.23.4120
37 schema:datePublished 2011-10
38 schema:datePublishedReg 2011-10-01
39 schema:description INTRODUCTION: The mechanisms underlying the strong association between percentage dense area on a mammogram and the risk of breast cancer are unknown. We investigated separately the absolute dense area and the absolute nondense area on mammograms in relation to breast cancer risk. METHODS: We conducted a nested case-control study on prediagnostic mammographic density measurements and risk of breast cancer in the Nurses' Health Study and the Nurses' Health Study II. Premenopausal mammograms were available from 464 cases and 998 controls, and postmenopausal mammograms were available from 960 cases and 1,662 controls. We used a computer-assisted thresholding technique to measure mammographic density, and we used unconditional logistic regression to calculate OR and 95% CI data. RESULTS: Higher absolute dense area was associated with a greater risk of breast cancer among premenopausal women (OR(tertile 3 vs 1) = 2.01, 95% CI = 1.45 to 2.77) and among postmenopausal women (OR(quintile 5 vs 1) = 2.19, 95% CI = 1.65 to 2.89). However, increasing absolute nondense area was associated with a decreased risk of breast cancer among premenopausal women (OR(tertile 3 vs 1) = 0.51, 95% CI = 0.36 to 0.72) and among postmenopausal women (OR(quintile 5 vs 1) = 0.46, 95% CI = 0.34 to 0.62). These associations changed minimally when we included both absolute dense area and absolute nondense area in the same statistical model. As expected, the percentage dense area was the strongest risk factor for breast cancer in both groups. CONCLUSIONS: Our results indicate that absolute dense area is independently and positively associated with breast cancer risk, whereas absolute nondense area is independently and inversely associated with breast cancer risk. Since adipose tissue is radiographically nondense, these results suggest that adipose breast tissue may have a protective role in breast carcinogenesis.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf Nb1c91961bef14dc3a2004f216e946645
44 Nc36b71ab97df4906b5a31e0afa210e15
45 sg:journal.1022375
46 schema:name Nondense mammographic area and risk of breast cancer
47 schema:pagination r100
48 schema:productId N4e32bacd060f46e7befbed7be1dc797f
49 N68de6b1b9bb742499ce8e6f5c634bc7b
50 Nba6893c86dee4ce4b33a023e2528c8c5
51 Nc2eb640f32cd431eb5243a410b6969f3
52 Nc49a2aa51951495dae3a99836618b7e5
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028231393
54 https://doi.org/10.1186/bcr3041
55 schema:sdDatePublished 2019-04-10T15:01
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N45427a0b1672453ba6bf8c8f7805888f
58 schema:url http://link.springer.com/10.1186%2Fbcr3041
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N09484e2cf3ed4a95b143e4c2c6198958 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Logistic Models
64 rdf:type schema:DefinedTerm
65 N0c3948558c834d1a91e4d2f9ac2dba1b rdf:first sg:person.01117365224.55
66 rdf:rest rdf:nil
67 N107d4b20057d4ec5a2b96fb51efd6f41 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Adipose Tissue
69 rdf:type schema:DefinedTerm
70 N15e9d81655ec488196fd7f2d12526cae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Aged
72 rdf:type schema:DefinedTerm
73 N195df6c6e68f44ccbc943c0e084e05cd rdf:first sg:person.01340551247.77
74 rdf:rest N9457dd7220db45dca6a15f4bf5006050
75 N2aaeaa428c204ed1a5bdad2e45a95b3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Middle Aged
77 rdf:type schema:DefinedTerm
78 N3b6b25c2bd6d4d2bbda421764dd05815 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Premenopause
80 rdf:type schema:DefinedTerm
81 N3edb20a2c2364e2b8a92b6d0d08106e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Mammography
83 rdf:type schema:DefinedTerm
84 N45427a0b1672453ba6bf8c8f7805888f schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N4e32bacd060f46e7befbed7be1dc797f schema:name doi
87 schema:value 10.1186/bcr3041
88 rdf:type schema:PropertyValue
89 N56d720cfc686451491fc46bb0b020dbd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Case-Control Studies
91 rdf:type schema:DefinedTerm
92 N57808b023e174935970b90836ed29be9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Female
94 rdf:type schema:DefinedTerm
95 N62ae4a5d093140dd9c135b8ecbc12fd3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Humans
97 rdf:type schema:DefinedTerm
98 N684c13b52c58425581bbd863b5fe5182 rdf:first sg:person.0607477203.05
99 rdf:rest Nafd305612bb74494976ef6863d7a2f75
100 N68de6b1b9bb742499ce8e6f5c634bc7b schema:name readcube_id
101 schema:value 867cf1143014b554a1c41378ebb5d616169ec25f39bb6ea220d8348bfaeaa7f0
102 rdf:type schema:PropertyValue
103 N77f5430aeb854cbaa0ec781b194f2f36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Adult
105 rdf:type schema:DefinedTerm
106 N9457dd7220db45dca6a15f4bf5006050 rdf:first sg:person.012525753462.54
107 rdf:rest N684c13b52c58425581bbd863b5fe5182
108 Nafd305612bb74494976ef6863d7a2f75 rdf:first sg:person.01115516776.27
109 rdf:rest Nc5e5e860890b4124b4f5021c3e244274
110 Nb1c91961bef14dc3a2004f216e946645 schema:volumeNumber 13
111 rdf:type schema:PublicationVolume
112 Nba6893c86dee4ce4b33a023e2528c8c5 schema:name pubmed_id
113 schema:value 22017857
114 rdf:type schema:PropertyValue
115 Nc2eb640f32cd431eb5243a410b6969f3 schema:name dimensions_id
116 schema:value pub.1028231393
117 rdf:type schema:PropertyValue
118 Nc36b71ab97df4906b5a31e0afa210e15 schema:issueNumber 5
119 rdf:type schema:PublicationIssue
120 Nc49a2aa51951495dae3a99836618b7e5 schema:name nlm_unique_id
121 schema:value 100927353
122 rdf:type schema:PropertyValue
123 Nc5e5e860890b4124b4f5021c3e244274 rdf:first sg:person.014407025537.51
124 rdf:rest N0c3948558c834d1a91e4d2f9ac2dba1b
125 Nc766f07033604548b7d23ee7655d9d9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Postmenopause
127 rdf:type schema:DefinedTerm
128 Ncf2c5ffece4f4faab097c32f225470a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Breast Neoplasms
130 rdf:type schema:DefinedTerm
131 Nd7998ce367ce4f43b04e8c2b34e9b8d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Risk Factors
133 rdf:type schema:DefinedTerm
134 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
135 schema:name Medical and Health Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
138 schema:name Public Health and Health Services
139 rdf:type schema:DefinedTerm
140 sg:grant.2435752 http://pending.schema.org/fundedItem sg:pub.10.1186/bcr3041
141 rdf:type schema:MonetaryGrant
142 sg:grant.2470259 http://pending.schema.org/fundedItem sg:pub.10.1186/bcr3041
143 rdf:type schema:MonetaryGrant
144 sg:grant.2479079 http://pending.schema.org/fundedItem sg:pub.10.1186/bcr3041
145 rdf:type schema:MonetaryGrant
146 sg:grant.2479676 http://pending.schema.org/fundedItem sg:pub.10.1186/bcr3041
147 rdf:type schema:MonetaryGrant
148 sg:journal.1022375 schema:issn 1465-5411
149 1465-542X
150 schema:name Breast Cancer Research
151 rdf:type schema:Periodical
152 sg:person.01115516776.27 schema:affiliation https://www.grid.ac/institutes/grid.5216.0
153 schema:familyName Lagiou
154 schema:givenName Pagona
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115516776.27
156 rdf:type schema:Person
157 sg:person.01117365224.55 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
158 schema:familyName Tamimi
159 schema:givenName Rulla M
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117365224.55
161 rdf:type schema:Person
162 sg:person.012525753462.54 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
163 schema:familyName Hankinson
164 schema:givenName Susan E
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012525753462.54
166 rdf:type schema:Person
167 sg:person.01340551247.77 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
168 schema:familyName Pettersson
169 schema:givenName Andreas
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340551247.77
171 rdf:type schema:Person
172 sg:person.014407025537.51 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
173 schema:familyName Trichopoulos
174 schema:givenName Dimitrios
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014407025537.51
176 rdf:type schema:Person
177 sg:person.0607477203.05 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
178 schema:familyName Willett
179 schema:givenName Walter C
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607477203.05
181 rdf:type schema:Person
182 sg:pub.10.1007/bf00052183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000929600
183 https://doi.org/10.1007/bf00052183
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/s10549-010-0976-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1027948817
186 https://doi.org/10.1007/s10549-010-0976-y
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nrc1608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034860402
189 https://doi.org/10.1038/nrc1608
190 rdf:type schema:CreativeWork
191 sg:pub.10.1186/bcr1831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032059594
192 https://doi.org/10.1186/bcr1831
193 rdf:type schema:CreativeWork
194 sg:pub.10.1186/bcr2778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034802250
195 https://doi.org/10.1186/bcr2778
196 rdf:type schema:CreativeWork
197 https://app.dimensions.ai/details/publication/pub.1075268722 schema:CreativeWork
198 https://doi.org/10.1016/s0140-6736(78)91694-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024818151
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/s1470-2045(05)70390-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052464959
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1093/aje/kwi270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042063248
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1093/jnci/87.21.1622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059819590
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1093/jnci/djm062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035665633
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1097/00001648-199211000-00011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022414456
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1158/1055-9965.epi-04-0717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022172758
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1158/1055-9965.epi-06-0034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049006559
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1158/1055-9965.epi-06-0738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049941697
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1158/1055-9965.epi-07-2554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018016840
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1158/1055-9965.epi-09-0107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033629005
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1158/1055-9965.epi-09-0372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022277191
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1158/1055-9965.epi-09-1059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040449857
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1200/jco.2009.23.4120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031837626
225 rdf:type schema:CreativeWork
226 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
227 schema:name Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, 02115, Boston, MA, USA
228 Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, 02115, Boston, MA, USA
229 Department of Nutrition, Harvard School of Public Health, 677 Huntington Avenue, 02115, Boston, MA, USA
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.5216.0 schema:alternateName National and Kapodistrian University of Athens
232 schema:name Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, 02115, Boston, MA, USA
233 Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, 75 Mikras Asias Street, 115 27, Goudi Athens, Greece
234 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...