Benefits of biomarker selection and clinico-pathological covariate inclusion in breast cancer prognostic models View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-10

AUTHORS

Fabio Parisi, Ana M González, Yasmine Nadler, Robert L Camp, David L Rimm, Harriet M Kluger, Yuval Kluger

ABSTRACT

INTRODUCTION: Multi-marker molecular assays have impacted management of early stage breast cancer, facilitating adjuvant chemotherapy decisions. We generated prognostic models that incorporate protein-based molecular markers and clinico-pathological variables to improve survival prediction. METHODS: We used a quantitative immunofluorescence method to study protein expression of 14 markers included in the Oncotype DX™ assay on a 638 breast cancer patient cohort with 15-year follow-up. We performed cross-validation analyses to assess performance of multivariate Cox models consisting of these markers and standard clinico-pathological covariates, using an average time-dependent Area Under the Receiver Operating Characteristic curve and compared it to nested Cox models obtained by robust backward selection procedures. RESULTS: A prognostic index derived from a multivariate Cox regression model incorporating molecular and clinico-pathological covariates (nodal status, tumor size, nuclear grade, and age) is superior to models based on molecular studies alone or clinico-pathological covariates alone. Performance of this composite model can be further improved using feature selection techniques to prune variables. When stratifying patients by Nottingham Prognostic Index (NPI), most prognostic markers in high and low NPI groups differed. Similarly, for the node-negative, hormone receptor-positive sub-population, we derived a compact model with three clinico-pathological variables and two protein markers that was superior to the full model. CONCLUSIONS: Prognostic models that include both molecular and clinico-pathological covariates can be more accurate than models based on either set of features alone. Furthermore, feature selection can decrease the number of molecular variables needed to predict outcome, potentially resulting in less expensive assays. More... »

PAGES

r66

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/bcr2633

DOI

http://dx.doi.org/10.1186/bcr2633

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000691010

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20809974


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proportional Hazards Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Cell Biology, New York University Center for Health Informatics and Bioinformatics, New York University School of Medicine and Cancer Institute, 550 First Avenue, 10016, New York, NY, USA", 
            "Department of Pathology, Yale University School of Medicine, 333 Cedar Street, 06520, New Haven, CT, USA", 
            "Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parisi", 
        "givenName": "Fabio", 
        "id": "sg:person.0641350013.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641350013.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Autonomous University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5515.4", 
          "name": [
            "Department of Cell Biology, New York University Center for Health Informatics and Bioinformatics, New York University School of Medicine and Cancer Institute, 550 First Avenue, 10016, New York, NY, USA", 
            "Computer Science Department of the Universidad Aut\u00f3noma of Madrid, Calle Francisco Tom\u00e1s y Valiente, 11, Cantoblanco, 28049, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gonz\u00e1lez", 
        "givenName": "Ana M", 
        "id": "sg:person.01103401233.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103401233.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Medicine, Yale University School of Medicine, 333 Cedar Street, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nadler", 
        "givenName": "Yasmine", 
        "id": "sg:person.01232076613.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232076613.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Pathology, Yale University School of Medicine, 333 Cedar Street, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Camp", 
        "givenName": "Robert L", 
        "id": "sg:person.012367147604.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012367147604.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Pathology, Yale University School of Medicine, 333 Cedar Street, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rimm", 
        "givenName": "David L", 
        "id": "sg:person.0754207153.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754207153.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, 06520, New Haven, CT, USA", 
            "Department of Medicine, Yale University School of Medicine, 333 Cedar Street, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kluger", 
        "givenName": "Harriet M", 
        "id": "sg:person.01336750727.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336750727.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Cell Biology, New York University Center for Health Informatics and Bioinformatics, New York University School of Medicine and Cancer Institute, 550 First Avenue, 10016, New York, NY, USA", 
            "Department of Pathology, Yale University School of Medicine, 333 Cedar Street, 06520, New Haven, CT, USA", 
            "Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kluger", 
        "givenName": "Yuval", 
        "id": "sg:person.0731526665.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731526665.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1200/jco.2007.14.4501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006599709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/07357900903095722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009755824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-09-0777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010672434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.stamet.2005.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010742958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/onc.2009.13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011536736", 
          "https://doi.org/10.1038/onc.2009.13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/onc.2009.13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011536736", 
          "https://doi.org/10.1038/onc.2009.13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.04.7985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011750427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-0699-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013751146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-07-5268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016270721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-008-0191-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018154376", 
          "https://doi.org/10.1007/s10549-008-0191-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa041588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022156409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9440(10)63093-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022404471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025397840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030132345", 
          "https://doi.org/10.1038/nm791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030132345", 
          "https://doi.org/10.1038/nm791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/onc.2009.158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030578013", 
          "https://doi.org/10.1038/onc.2009.158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/onc.2009.158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030578013", 
          "https://doi.org/10.1038/onc.2009.158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1634/theoncologist.2007-0248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031343567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-05-2296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032931453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1634/theoncologist.12-6-631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033250726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmedinf.2005.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035985574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmedinf.2005.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035985574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00280-008-0845-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036187627", 
          "https://doi.org/10.1007/s00280-008-0845-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00280-008-0845-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036187627", 
          "https://doi.org/10.1007/s00280-008-0845-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdp346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036929471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.23491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039826049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncponc0171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042753732", 
          "https://doi.org/10.1038/ncponc0171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncponc0171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042753732", 
          "https://doi.org/10.1038/ncponc0171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdp427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042797955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.2000.00337.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043727671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.2005.030814.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044144954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-06-0100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044575386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr1998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047379140", 
          "https://doi.org/10.1186/bcr1998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2353/ajpath.2009.080882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048203687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa065411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048874503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/djj329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051338771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.24277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053641027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.24277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053641027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075262311", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-10", 
    "datePublishedReg": "2010-10-01", 
    "description": "INTRODUCTION: Multi-marker molecular assays have impacted management of early stage breast cancer, facilitating adjuvant chemotherapy decisions. We generated prognostic models that incorporate protein-based molecular markers and clinico-pathological variables to improve survival prediction.\nMETHODS: We used a quantitative immunofluorescence method to study protein expression of 14 markers included in the Oncotype DX\u2122 assay on a 638 breast cancer patient cohort with 15-year follow-up. We performed cross-validation analyses to assess performance of multivariate Cox models consisting of these markers and standard clinico-pathological covariates, using an average time-dependent Area Under the Receiver Operating Characteristic curve and compared it to nested Cox models obtained by robust backward selection procedures.\nRESULTS: A prognostic index derived from a multivariate Cox regression model incorporating molecular and clinico-pathological covariates (nodal status, tumor size, nuclear grade, and age) is superior to models based on molecular studies alone or clinico-pathological covariates alone. Performance of this composite model can be further improved using feature selection techniques to prune variables. When stratifying patients by Nottingham Prognostic Index (NPI), most prognostic markers in high and low NPI groups differed. Similarly, for the node-negative, hormone receptor-positive sub-population, we derived a compact model with three clinico-pathological variables and two protein markers that was superior to the full model.\nCONCLUSIONS: Prognostic models that include both molecular and clinico-pathological covariates can be more accurate than models based on either set of features alone. Furthermore, feature selection can decrease the number of molecular variables needed to predict outcome, potentially resulting in less expensive assays.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/bcr2633", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1022375", 
        "issn": [
          "1465-5411", 
          "1465-542X"
        ], 
        "name": "Breast Cancer Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Benefits of biomarker selection and clinico-pathological covariate inclusion in breast cancer prognostic models", 
    "pagination": "r66", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "034a772f1b93656cd2bdb71108174f93ee5ceccabb99956bce867442cf1907da"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20809974"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100927353"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/bcr2633"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000691010"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/bcr2633", 
      "https://app.dimensions.ai/details/publication/pub.1000691010"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87119_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fbcr2633"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/bcr2633'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/bcr2633'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/bcr2633'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/bcr2633'


 

This table displays all metadata directly associated to this object as RDF triples.

252 TRIPLES      21 PREDICATES      69 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/bcr2633 schema:about N2af37c0c09a04ffe8ccc88533d3a8182
2 N3b6ea112bb77412fb3aae6659beb7782
3 N684651b35b4042519f06c625e9121f70
4 N6a36cc98c1cc4e09a2c85b99b3c71c20
5 N81ae982d3a164077922d20253a8388d2
6 N8f4c266043a9478ba97fd770ee2c9c26
7 Nc96a713b5bcb473cb8c64ec626514083
8 Ne34dc71c1dfe4acd9a4eff4c6ff4a045
9 anzsrc-for:11
10 anzsrc-for:1112
11 schema:author N97fdc554bd94424091dc351b318c7a2e
12 schema:citation sg:pub.10.1007/s00280-008-0845-0
13 sg:pub.10.1007/s10549-008-0191-2
14 sg:pub.10.1038/ncponc0171
15 sg:pub.10.1038/nm791
16 sg:pub.10.1038/onc.2009.13
17 sg:pub.10.1038/onc.2009.158
18 sg:pub.10.1186/bcr1998
19 https://app.dimensions.ai/details/publication/pub.1075262311
20 https://doi.org/10.1002/cncr.23491
21 https://doi.org/10.1002/cncr.24277
22 https://doi.org/10.1016/j.ijmedinf.2005.05.002
23 https://doi.org/10.1016/j.stamet.2005.02.003
24 https://doi.org/10.1016/s0002-9440(10)63093-3
25 https://doi.org/10.1056/nejmoa041588
26 https://doi.org/10.1056/nejmoa065411
27 https://doi.org/10.1093/annonc/mdp346
28 https://doi.org/10.1093/annonc/mdp427
29 https://doi.org/10.1093/bioinformatics/btn374
30 https://doi.org/10.1093/jnci/djj329
31 https://doi.org/10.1111/j.0006-341x.2000.00337.x
32 https://doi.org/10.1111/j.0006-341x.2005.030814.x
33 https://doi.org/10.1158/0008-5472.can-06-0100
34 https://doi.org/10.1158/0008-5472.can-09-0777
35 https://doi.org/10.1158/1078-0432.ccr-05-2296
36 https://doi.org/10.1158/1078-0432.ccr-0699-3
37 https://doi.org/10.1158/1078-0432.ccr-07-5268
38 https://doi.org/10.1200/jco.2005.04.7985
39 https://doi.org/10.1200/jco.2007.14.4501
40 https://doi.org/10.1634/theoncologist.12-6-631
41 https://doi.org/10.1634/theoncologist.2007-0248
42 https://doi.org/10.2353/ajpath.2009.080882
43 https://doi.org/10.3109/07357900903095722
44 schema:datePublished 2010-10
45 schema:datePublishedReg 2010-10-01
46 schema:description INTRODUCTION: Multi-marker molecular assays have impacted management of early stage breast cancer, facilitating adjuvant chemotherapy decisions. We generated prognostic models that incorporate protein-based molecular markers and clinico-pathological variables to improve survival prediction. METHODS: We used a quantitative immunofluorescence method to study protein expression of 14 markers included in the Oncotype DX™ assay on a 638 breast cancer patient cohort with 15-year follow-up. We performed cross-validation analyses to assess performance of multivariate Cox models consisting of these markers and standard clinico-pathological covariates, using an average time-dependent Area Under the Receiver Operating Characteristic curve and compared it to nested Cox models obtained by robust backward selection procedures. RESULTS: A prognostic index derived from a multivariate Cox regression model incorporating molecular and clinico-pathological covariates (nodal status, tumor size, nuclear grade, and age) is superior to models based on molecular studies alone or clinico-pathological covariates alone. Performance of this composite model can be further improved using feature selection techniques to prune variables. When stratifying patients by Nottingham Prognostic Index (NPI), most prognostic markers in high and low NPI groups differed. Similarly, for the node-negative, hormone receptor-positive sub-population, we derived a compact model with three clinico-pathological variables and two protein markers that was superior to the full model. CONCLUSIONS: Prognostic models that include both molecular and clinico-pathological covariates can be more accurate than models based on either set of features alone. Furthermore, feature selection can decrease the number of molecular variables needed to predict outcome, potentially resulting in less expensive assays.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf N81ea90f7d0bd40bbbfe4990652f9e28c
51 N8ab2c9a9b89040d1b599d6e7b96043a6
52 sg:journal.1022375
53 schema:name Benefits of biomarker selection and clinico-pathological covariate inclusion in breast cancer prognostic models
54 schema:pagination r66
55 schema:productId N6442db303e3f43c6922a609776cec3eb
56 N7b3cd7d546944dc6acde522ea4ebe199
57 N811d24a3eec34db5aacc34c7e21cd8db
58 Nc4df69ec2d864b1ab9208bcbaf37818b
59 Nceaf6907d46a45e09c93b76e1fd76f5b
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000691010
61 https://doi.org/10.1186/bcr2633
62 schema:sdDatePublished 2019-04-11T12:27
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N09f66c5583104496b27ad0c73612e6da
65 schema:url https://link.springer.com/10.1186%2Fbcr2633
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N09f66c5583104496b27ad0c73612e6da schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N2af37c0c09a04ffe8ccc88533d3a8182 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Biomarkers, Tumor
73 rdf:type schema:DefinedTerm
74 N3b6ea112bb77412fb3aae6659beb7782 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name ROC Curve
76 rdf:type schema:DefinedTerm
77 N49e5ccabf61e481c9ff4468eda8f92e2 rdf:first sg:person.0754207153.13
78 rdf:rest Nf0d27ce5169d46d1a9955ea71a3d4a80
79 N4ffa03f4712341edbbc68561afd1a728 rdf:first sg:person.01232076613.04
80 rdf:rest Ne0acc374fa0f4879bed3de50a91c6014
81 N6442db303e3f43c6922a609776cec3eb schema:name dimensions_id
82 schema:value pub.1000691010
83 rdf:type schema:PropertyValue
84 N684651b35b4042519f06c625e9121f70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Prognosis
86 rdf:type schema:DefinedTerm
87 N6a36cc98c1cc4e09a2c85b99b3c71c20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Proportional Hazards Models
89 rdf:type schema:DefinedTerm
90 N7b3cd7d546944dc6acde522ea4ebe199 schema:name nlm_unique_id
91 schema:value 100927353
92 rdf:type schema:PropertyValue
93 N811d24a3eec34db5aacc34c7e21cd8db schema:name doi
94 schema:value 10.1186/bcr2633
95 rdf:type schema:PropertyValue
96 N81ae982d3a164077922d20253a8388d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Humans
98 rdf:type schema:DefinedTerm
99 N81ea90f7d0bd40bbbfe4990652f9e28c schema:volumeNumber 12
100 rdf:type schema:PublicationVolume
101 N8ab2c9a9b89040d1b599d6e7b96043a6 schema:issueNumber 5
102 rdf:type schema:PublicationIssue
103 N8f4c266043a9478ba97fd770ee2c9c26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Female
105 rdf:type schema:DefinedTerm
106 N97fdc554bd94424091dc351b318c7a2e rdf:first sg:person.0641350013.65
107 rdf:rest Nb74c805250e04ccda57236d775a73811
108 Nb74c805250e04ccda57236d775a73811 rdf:first sg:person.01103401233.81
109 rdf:rest N4ffa03f4712341edbbc68561afd1a728
110 Nc4df69ec2d864b1ab9208bcbaf37818b schema:name readcube_id
111 schema:value 034a772f1b93656cd2bdb71108174f93ee5ceccabb99956bce867442cf1907da
112 rdf:type schema:PropertyValue
113 Nc96a713b5bcb473cb8c64ec626514083 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Breast Neoplasms
115 rdf:type schema:DefinedTerm
116 Nceaf6907d46a45e09c93b76e1fd76f5b schema:name pubmed_id
117 schema:value 20809974
118 rdf:type schema:PropertyValue
119 Ne0acc374fa0f4879bed3de50a91c6014 rdf:first sg:person.012367147604.10
120 rdf:rest N49e5ccabf61e481c9ff4468eda8f92e2
121 Ne34dc71c1dfe4acd9a4eff4c6ff4a045 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Gene Expression
123 rdf:type schema:DefinedTerm
124 Nf0d27ce5169d46d1a9955ea71a3d4a80 rdf:first sg:person.01336750727.45
125 rdf:rest Nf90f2b292cb7403b88c33ad2d1757dea
126 Nf90f2b292cb7403b88c33ad2d1757dea rdf:first sg:person.0731526665.51
127 rdf:rest rdf:nil
128 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
129 schema:name Medical and Health Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
132 schema:name Oncology and Carcinogenesis
133 rdf:type schema:DefinedTerm
134 sg:journal.1022375 schema:issn 1465-5411
135 1465-542X
136 schema:name Breast Cancer Research
137 rdf:type schema:Periodical
138 sg:person.01103401233.81 schema:affiliation https://www.grid.ac/institutes/grid.5515.4
139 schema:familyName González
140 schema:givenName Ana M
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103401233.81
142 rdf:type schema:Person
143 sg:person.01232076613.04 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
144 schema:familyName Nadler
145 schema:givenName Yasmine
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232076613.04
147 rdf:type schema:Person
148 sg:person.012367147604.10 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
149 schema:familyName Camp
150 schema:givenName Robert L
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012367147604.10
152 rdf:type schema:Person
153 sg:person.01336750727.45 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
154 schema:familyName Kluger
155 schema:givenName Harriet M
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336750727.45
157 rdf:type schema:Person
158 sg:person.0641350013.65 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
159 schema:familyName Parisi
160 schema:givenName Fabio
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641350013.65
162 rdf:type schema:Person
163 sg:person.0731526665.51 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
164 schema:familyName Kluger
165 schema:givenName Yuval
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731526665.51
167 rdf:type schema:Person
168 sg:person.0754207153.13 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
169 schema:familyName Rimm
170 schema:givenName David L
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754207153.13
172 rdf:type schema:Person
173 sg:pub.10.1007/s00280-008-0845-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036187627
174 https://doi.org/10.1007/s00280-008-0845-0
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/s10549-008-0191-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018154376
177 https://doi.org/10.1007/s10549-008-0191-2
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/ncponc0171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042753732
180 https://doi.org/10.1038/ncponc0171
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nm791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030132345
183 https://doi.org/10.1038/nm791
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/onc.2009.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011536736
186 https://doi.org/10.1038/onc.2009.13
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/onc.2009.158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030578013
189 https://doi.org/10.1038/onc.2009.158
190 rdf:type schema:CreativeWork
191 sg:pub.10.1186/bcr1998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047379140
192 https://doi.org/10.1186/bcr1998
193 rdf:type schema:CreativeWork
194 https://app.dimensions.ai/details/publication/pub.1075262311 schema:CreativeWork
195 https://doi.org/10.1002/cncr.23491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039826049
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1002/cncr.24277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053641027
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.ijmedinf.2005.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035985574
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.stamet.2005.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010742958
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/s0002-9440(10)63093-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022404471
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1056/nejmoa041588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022156409
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1056/nejmoa065411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048874503
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1093/annonc/mdp346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036929471
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1093/annonc/mdp427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042797955
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1093/bioinformatics/btn374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025397840
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1093/jnci/djj329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051338771
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1111/j.0006-341x.2000.00337.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043727671
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1111/j.0006-341x.2005.030814.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044144954
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1158/0008-5472.can-06-0100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044575386
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1158/0008-5472.can-09-0777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010672434
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1158/1078-0432.ccr-05-2296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032931453
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1158/1078-0432.ccr-0699-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013751146
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1158/1078-0432.ccr-07-5268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016270721
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1200/jco.2005.04.7985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011750427
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1200/jco.2007.14.4501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006599709
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1634/theoncologist.12-6-631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033250726
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1634/theoncologist.2007-0248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031343567
238 rdf:type schema:CreativeWork
239 https://doi.org/10.2353/ajpath.2009.080882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048203687
240 rdf:type schema:CreativeWork
241 https://doi.org/10.3109/07357900903095722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009755824
242 rdf:type schema:CreativeWork
243 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
244 schema:name Department of Cell Biology, New York University Center for Health Informatics and Bioinformatics, New York University School of Medicine and Cancer Institute, 550 First Avenue, 10016, New York, NY, USA
245 Department of Medicine, Yale University School of Medicine, 333 Cedar Street, 06520, New Haven, CT, USA
246 Department of Pathology, Yale University School of Medicine, 333 Cedar Street, 06520, New Haven, CT, USA
247 Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, 06520, New Haven, CT, USA
248 rdf:type schema:Organization
249 https://www.grid.ac/institutes/grid.5515.4 schema:alternateName Autonomous University of Madrid
250 schema:name Computer Science Department of the Universidad Autónoma of Madrid, Calle Francisco Tomás y Valiente, 11, Cantoblanco, 28049, Madrid, Spain
251 Department of Cell Biology, New York University Center for Health Informatics and Bioinformatics, New York University School of Medicine and Cancer Institute, 550 First Avenue, 10016, New York, NY, USA
252 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...