Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-08

AUTHORS

Pratyaksha Wirapati, Christos Sotiriou, Susanne Kunkel, Pierre Farmer, Sylvain Pradervand, Benjamin Haibe-Kains, Christine Desmedt, Michail Ignatiadis, Thierry Sengstag, Frédéric Schütz, Darlene R Goldstein, Martine Piccart, Mauro Delorenzi

ABSTRACT

INTRODUCTION: Breast cancer subtyping and prognosis have been studied extensively by gene expression profiling, resulting in disparate signatures with little overlap in their constituent genes. Although a previous study demonstrated a prognostic concordance among gene expression signatures, it was limited to only one dataset and did not fully elucidate how the different genes were related to one another nor did it examine the contribution of well-known biological processes of breast cancer tumorigenesis to their prognostic performance. METHOD: To address the above issues and to further validate these initial findings, we performed the largest meta-analysis of publicly available breast cancer gene expression and clinical data, which are comprised of 2,833 breast tumors. Gene coexpression modules of three key biological processes in breast cancer (namely, proliferation, estrogen receptor [ER], and HER2 signaling) were used to dissect the role of constituent genes of nine prognostic signatures. RESULTS: Using a meta-analytical approach, we consolidated the signatures associated with ER signaling, ERBB2 amplification, and proliferation. Previously published expression-based nomenclature of breast cancer 'intrinsic' subtypes can be mapped to the three modules, namely, the ER-/HER2- (basal-like), the HER2+ (HER2-like), and the low- and high-proliferation ER+/HER2- subtypes (luminal A and B). We showed that all nine prognostic signatures exhibited a similar prognostic performance in the entire dataset. Their prognostic abilities are due mostly to the detection of proliferation activity. Although ER- status (basal-like) and ERBB2+ expression status correspond to bad outcome, they seem to act through elevated expression of proliferation genes and thus contain only indirect information about prognosis. Clinical variables measuring the extent of tumor progression, such as tumor size and nodal status, still add independent prognostic information to proliferation genes. CONCLUSION: This meta-analysis unifies various results of previous gene expression studies in breast cancer. It reveals connections between traditional prognostic factors, expression-based subtyping, and prognostic signatures, highlighting the important role of proliferation in breast cancer prognosis. More... »

PAGES

r65

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/bcr2124

DOI

http://dx.doi.org/10.1186/bcr2124

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042187964

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18662380


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antineoplastic Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Proliferation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cluster Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Neoplastic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes, erbB-2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptor, ErbB-2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptors, Estrogen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Transduction", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Lausanne", 
          "id": "https://www.grid.ac/institutes/grid.9851.5", 
          "name": [
            "Swiss Institute of Bioinformatics, 'Batiment Genopode', University of Lausanne, 1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wirapati", 
        "givenName": "Pratyaksha", 
        "id": "sg:person.01006270647.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006270647.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Translational Research and Medical Oncology Unit, Universit\u00e9 Libre de Bruxelles, Institut Jules Bordet, 121 Boulevard de Waterloo, 1000, Brussels, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sotiriou", 
        "givenName": "Christos", 
        "id": "sg:person.01352311331.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352311331.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Lausanne", 
          "id": "https://www.grid.ac/institutes/grid.9851.5", 
          "name": [
            "Swiss Institute of Bioinformatics, 'Batiment Genopode', University of Lausanne, 1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kunkel", 
        "givenName": "Susanne", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne", 
          "id": "https://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "Swiss Institute of Bioinformatics, 'Batiment Genopode', University of Lausanne, 1015, Lausanne, Switzerland", 
            "National Centers for Competence in Research, Molecular Oncology, Swiss Institute for Experimental Cancer Research, Ch. des Boveresses 155, 1066, Epalinges, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Farmer", 
        "givenName": "Pierre", 
        "id": "sg:person.01306472735.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306472735.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Lausanne", 
          "id": "https://www.grid.ac/institutes/grid.9851.5", 
          "name": [
            "DNA Array Facility, Center for Integrative Genomics, 'Batiment Genopode', University of Lausanne, 1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pradervand", 
        "givenName": "Sylvain", 
        "id": "sg:person.01347333147.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347333147.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 Libre de Bruxelles", 
          "id": "https://www.grid.ac/institutes/grid.4989.c", 
          "name": [
            "Translational Research and Medical Oncology Unit, Universit\u00e9 Libre de Bruxelles, Institut Jules Bordet, 121 Boulevard de Waterloo, 1000, Brussels, Belgium", 
            "Machine Learning Group, Universit\u00e9 Libre de Bruxelles, boulevard du Triomphe, CP212, 1050, Bruxelles, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haibe-Kains", 
        "givenName": "Benjamin", 
        "id": "sg:person.01061405556.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061405556.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Translational Research and Medical Oncology Unit, Universit\u00e9 Libre de Bruxelles, Institut Jules Bordet, 121 Boulevard de Waterloo, 1000, Brussels, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Desmedt", 
        "givenName": "Christine", 
        "id": "sg:person.0645753007.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645753007.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Translational Research and Medical Oncology Unit, Universit\u00e9 Libre de Bruxelles, Institut Jules Bordet, 121 Boulevard de Waterloo, 1000, Brussels, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ignatiadis", 
        "givenName": "Michail", 
        "id": "sg:person.0752040573.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752040573.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne", 
          "id": "https://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "Swiss Institute of Bioinformatics, 'Batiment Genopode', University of Lausanne, 1015, Lausanne, Switzerland", 
            "National Centers for Competence in Research, Molecular Oncology, Swiss Institute for Experimental Cancer Research, Ch. des Boveresses 155, 1066, Epalinges, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sengstag", 
        "givenName": "Thierry", 
        "id": "sg:person.0776465151.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776465151.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Lausanne", 
          "id": "https://www.grid.ac/institutes/grid.9851.5", 
          "name": [
            "Swiss Institute of Bioinformatics, 'Batiment Genopode', University of Lausanne, 1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sch\u00fctz", 
        "givenName": "Fr\u00e9d\u00e9ric", 
        "id": "sg:person.0657003407.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657003407.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne", 
          "id": "https://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "Swiss Institute of Bioinformatics, 'Batiment Genopode', University of Lausanne, 1015, Lausanne, Switzerland", 
            "DNA Array Facility, Center for Integrative Genomics, 'Batiment Genopode', University of Lausanne, 1015, Lausanne, Switzerland", 
            "Institut de Math\u00e9matiques, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, 1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goldstein", 
        "givenName": "Darlene R", 
        "id": "sg:person.01116572501.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116572501.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Translational Research and Medical Oncology Unit, Universit\u00e9 Libre de Bruxelles, Institut Jules Bordet, 121 Boulevard de Waterloo, 1000, Brussels, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Piccart", 
        "givenName": "Martine", 
        "id": "sg:person.01236062731.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236062731.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne", 
          "id": "https://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "Swiss Institute of Bioinformatics, 'Batiment Genopode', University of Lausanne, 1015, Lausanne, Switzerland", 
            "National Centers for Competence in Research, Molecular Oncology, Swiss Institute for Experimental Cancer Research, Ch. des Boveresses 155, 1066, Epalinges, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delorenzi", 
        "givenName": "Mauro", 
        "id": "sg:person.01206643051.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206643051.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ccr.2006.01.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000216868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1732912100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000610606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0020007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000858813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0506230102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002515049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr1517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004340956", 
          "https://doi.org/10.1186/bcr1517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0409462102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004658815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0932692100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007535956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-05-4414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008978686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-07-0539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009812323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3816/cbc.2006.n.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010376765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.04.7985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011750427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-7-96", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015725266", 
          "https://doi.org/10.1186/1471-2164-7-96"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m110603200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019410901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020836260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa041588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022156409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr1325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023450491", 
          "https://doi.org/10.1186/bcr1325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr1325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023450491", 
          "https://doi.org/10.1186/bcr1325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa052933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024869935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1209920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024977029", 
          "https://doi.org/10.1038/sj.onc.1209920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1209920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024977029", 
          "https://doi.org/10.1038/sj.onc.1209920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028145633", 
          "https://doi.org/10.1038/nature04296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028145633", 
          "https://doi.org/10.1038/nature04296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028145633", 
          "https://doi.org/10.1038/nature04296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/djj052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030644591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(97)11423-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033560955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.03.9115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033715812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35021093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033846543", 
          "https://doi.org/10.1038/35021093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncponc0591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033935585", 
          "https://doi.org/10.1038/ncponc0591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncponc0591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033935585", 
          "https://doi.org/10.1038/ncponc0591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.191367098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034333528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa052122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035589584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa052122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035589584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1208561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036436999", 
          "https://doi.org/10.1038/sj.onc.1208561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1208561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036436999", 
          "https://doi.org/10.1038/sj.onc.1208561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1208561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036436999", 
          "https://doi.org/10.1038/sj.onc.1208561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037875102", 
          "https://doi.org/10.1038/nbt1239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037875102", 
          "https://doi.org/10.1038/nbt1239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa021967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038600096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-9776(96)90064-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042473427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415530a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043001094", 
          "https://doi.org/10.1038/415530a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415530a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043001094", 
          "https://doi.org/10.1038/415530a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.01.4746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044184952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046303336", 
          "https://doi.org/10.1038/nrc1802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046303336", 
          "https://doi.org/10.1038/nrc1802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047743086", 
          "https://doi.org/10.1038/ng1167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047743086", 
          "https://doi.org/10.1038/ng1167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(05)17947-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047788005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ccr.2004.05.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048372678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2006-7-10-r101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049083057", 
          "https://doi.org/10.1186/gb-2006-7-10-r101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/djj329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051338771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2007-8-8-r157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052735338", 
          "https://doi.org/10.1186/gb-2007-8-8-r157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076595628", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109491899", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109491899", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-08", 
    "datePublishedReg": "2008-08-01", 
    "description": "INTRODUCTION: Breast cancer subtyping and prognosis have been studied extensively by gene expression profiling, resulting in disparate signatures with little overlap in their constituent genes. Although a previous study demonstrated a prognostic concordance among gene expression signatures, it was limited to only one dataset and did not fully elucidate how the different genes were related to one another nor did it examine the contribution of well-known biological processes of breast cancer tumorigenesis to their prognostic performance.\nMETHOD: To address the above issues and to further validate these initial findings, we performed the largest meta-analysis of publicly available breast cancer gene expression and clinical data, which are comprised of 2,833 breast tumors. Gene coexpression modules of three key biological processes in breast cancer (namely, proliferation, estrogen receptor [ER], and HER2 signaling) were used to dissect the role of constituent genes of nine prognostic signatures.\nRESULTS: Using a meta-analytical approach, we consolidated the signatures associated with ER signaling, ERBB2 amplification, and proliferation. Previously published expression-based nomenclature of breast cancer 'intrinsic' subtypes can be mapped to the three modules, namely, the ER-/HER2- (basal-like), the HER2+ (HER2-like), and the low- and high-proliferation ER+/HER2- subtypes (luminal A and B). We showed that all nine prognostic signatures exhibited a similar prognostic performance in the entire dataset. Their prognostic abilities are due mostly to the detection of proliferation activity. Although ER- status (basal-like) and ERBB2+ expression status correspond to bad outcome, they seem to act through elevated expression of proliferation genes and thus contain only indirect information about prognosis. Clinical variables measuring the extent of tumor progression, such as tumor size and nodal status, still add independent prognostic information to proliferation genes.\nCONCLUSION: This meta-analysis unifies various results of previous gene expression studies in breast cancer. It reveals connections between traditional prognostic factors, expression-based subtyping, and prognostic signatures, highlighting the important role of proliferation in breast cancer prognosis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/bcr2124", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1022375", 
        "issn": [
          "1465-5411", 
          "1465-542X"
        ], 
        "name": "Breast Cancer Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures", 
    "pagination": "r65", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c8f67b0b2fe38a969fbe6a344c0dce15d69a2cd8710f9d7fb821d9b6ef5e8808"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18662380"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100927353"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/bcr2124"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042187964"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/bcr2124", 
      "https://app.dimensions.ai/details/publication/pub.1042187964"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000592.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2Fbcr2124"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/bcr2124'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/bcr2124'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/bcr2124'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/bcr2124'


 

This table displays all metadata directly associated to this object as RDF triples.

358 TRIPLES      21 PREDICATES      83 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/bcr2124 schema:about N0a8a9e7886e74604aca55f4a45e8be61
2 N13d4a05e0fa14f78ba0aa8dc8cc5b8b4
3 N33195737fa5d4ff1b14a75048543540f
4 N5a1e412186554337899e9ed59d31e88c
5 N5a8b83780c7f404a94e4e2434d590a57
6 N91a97664eeac4f84980c468d200de3a8
7 Na6f12f81ecb34d938ae826a9b9c0a8c1
8 Nac517cc8faec4505a6d2ec6aae035cf8
9 Nb169ddbe6a3c41328b6d1d73187cbe19
10 Nb64f068b2cc245229bbd3b1d28cd9247
11 Nc10079231e57463e9044dcde06c68ed4
12 Nda2ec06df9fc4e69879a31dec3fbbb3c
13 Ndb051e6a3c7e485aa3d1b88cfbaa6b25
14 anzsrc-for:11
15 anzsrc-for:1112
16 schema:author Nfe96c83f31d0485d94b6138b965db40b
17 schema:citation sg:pub.10.1038/35021093
18 sg:pub.10.1038/415530a
19 sg:pub.10.1038/nature04296
20 sg:pub.10.1038/nbt1239
21 sg:pub.10.1038/ncponc0591
22 sg:pub.10.1038/ng1167
23 sg:pub.10.1038/nrc1802
24 sg:pub.10.1038/sj.onc.1208561
25 sg:pub.10.1038/sj.onc.1209920
26 sg:pub.10.1186/1471-2164-7-96
27 sg:pub.10.1186/bcr1325
28 sg:pub.10.1186/bcr1517
29 sg:pub.10.1186/gb-2006-7-10-r101
30 sg:pub.10.1186/gb-2007-8-8-r157
31 https://app.dimensions.ai/details/publication/pub.1076595628
32 https://app.dimensions.ai/details/publication/pub.1109491899
33 https://doi.org/10.1016/j.ccr.2004.05.015
34 https://doi.org/10.1016/j.ccr.2006.01.013
35 https://doi.org/10.1016/s0140-6736(05)17947-1
36 https://doi.org/10.1016/s0140-6736(97)11423-4
37 https://doi.org/10.1016/s0960-9776(96)90064-8
38 https://doi.org/10.1056/nejmoa021967
39 https://doi.org/10.1056/nejmoa041588
40 https://doi.org/10.1056/nejmoa052122
41 https://doi.org/10.1056/nejmoa052933
42 https://doi.org/10.1073/pnas.0409462102
43 https://doi.org/10.1073/pnas.0506230102
44 https://doi.org/10.1073/pnas.0932692100
45 https://doi.org/10.1073/pnas.1732912100
46 https://doi.org/10.1073/pnas.191367098
47 https://doi.org/10.1074/jbc.m110603200
48 https://doi.org/10.1093/jnci/djj052
49 https://doi.org/10.1093/jnci/djj329
50 https://doi.org/10.1093/nar/gkl993
51 https://doi.org/10.1158/0008-5472.can-05-4414
52 https://doi.org/10.1158/0008-5472.can-07-0539
53 https://doi.org/10.1200/jco.2005.01.4746
54 https://doi.org/10.1200/jco.2005.03.9115
55 https://doi.org/10.1200/jco.2005.04.7985
56 https://doi.org/10.1371/journal.pbio.0020007
57 https://doi.org/10.3816/cbc.2006.n.051
58 schema:datePublished 2008-08
59 schema:datePublishedReg 2008-08-01
60 schema:description INTRODUCTION: Breast cancer subtyping and prognosis have been studied extensively by gene expression profiling, resulting in disparate signatures with little overlap in their constituent genes. Although a previous study demonstrated a prognostic concordance among gene expression signatures, it was limited to only one dataset and did not fully elucidate how the different genes were related to one another nor did it examine the contribution of well-known biological processes of breast cancer tumorigenesis to their prognostic performance. METHOD: To address the above issues and to further validate these initial findings, we performed the largest meta-analysis of publicly available breast cancer gene expression and clinical data, which are comprised of 2,833 breast tumors. Gene coexpression modules of three key biological processes in breast cancer (namely, proliferation, estrogen receptor [ER], and HER2 signaling) were used to dissect the role of constituent genes of nine prognostic signatures. RESULTS: Using a meta-analytical approach, we consolidated the signatures associated with ER signaling, ERBB2 amplification, and proliferation. Previously published expression-based nomenclature of breast cancer 'intrinsic' subtypes can be mapped to the three modules, namely, the ER-/HER2- (basal-like), the HER2+ (HER2-like), and the low- and high-proliferation ER+/HER2- subtypes (luminal A and B). We showed that all nine prognostic signatures exhibited a similar prognostic performance in the entire dataset. Their prognostic abilities are due mostly to the detection of proliferation activity. Although ER- status (basal-like) and ERBB2+ expression status correspond to bad outcome, they seem to act through elevated expression of proliferation genes and thus contain only indirect information about prognosis. Clinical variables measuring the extent of tumor progression, such as tumor size and nodal status, still add independent prognostic information to proliferation genes. CONCLUSION: This meta-analysis unifies various results of previous gene expression studies in breast cancer. It reveals connections between traditional prognostic factors, expression-based subtyping, and prognostic signatures, highlighting the important role of proliferation in breast cancer prognosis.
61 schema:genre research_article
62 schema:inLanguage en
63 schema:isAccessibleForFree true
64 schema:isPartOf N681ef13049bf48b4940c7da2e692c45c
65 Ne9e7309a2cb449049c7e9754d796cadf
66 sg:journal.1022375
67 schema:name Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures
68 schema:pagination r65
69 schema:productId N98ce961f703844e9a3b0b2c33c93df27
70 Na70aa0ab553b4443975c77558dc50880
71 Na86108ec2e4741b8862f81d3c346bb8e
72 Nbf81d563c0684283a4298f41f541e45c
73 Nfb09f0f2de2b4076ae1bbb9367b0b6ff
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042187964
75 https://doi.org/10.1186/bcr2124
76 schema:sdDatePublished 2019-04-10T23:38
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N2cbcbfef444a4bfaa4762bdd7432dc08
79 schema:url http://link.springer.com/10.1186%2Fbcr2124
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N03ed100f2f0f46b18b99134854cfa67d rdf:first sg:person.01306472735.09
84 rdf:rest Neb15e65cf4c348f6b662bd855766bfb1
85 N0a8a9e7886e74604aca55f4a45e8be61 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Gene Expression Profiling
87 rdf:type schema:DefinedTerm
88 N13d4a05e0fa14f78ba0aa8dc8cc5b8b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Humans
90 rdf:type schema:DefinedTerm
91 N214a57a59717481f9fb7878ff59e771e rdf:first sg:person.0657003407.83
92 rdf:rest Na320495d9fb74d35834846921cdae7de
93 N265fbd20ecf64023bf6ee646660e8b7e rdf:first sg:person.0645753007.53
94 rdf:rest N97f61f912eee45698fca3d52b243dca2
95 N2cbcbfef444a4bfaa4762bdd7432dc08 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N33195737fa5d4ff1b14a75048543540f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Breast Neoplasms
99 rdf:type schema:DefinedTerm
100 N504fd8d96482452687a6bf1890ee5ac2 rdf:first sg:person.01236062731.84
101 rdf:rest Ncc7d3907c7274048a9a25c1626b967bc
102 N59f7377ebac04259894820d2aca81f37 rdf:first sg:person.01352311331.95
103 rdf:rest Ne091befa811145ed968910e8150b65eb
104 N5a1e412186554337899e9ed59d31e88c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Cluster Analysis
106 rdf:type schema:DefinedTerm
107 N5a8b83780c7f404a94e4e2434d590a57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Gene Expression Regulation, Neoplastic
109 rdf:type schema:DefinedTerm
110 N681ef13049bf48b4940c7da2e692c45c schema:volumeNumber 10
111 rdf:type schema:PublicationVolume
112 N69e2960e88e34c26ab1e4d92120b47e4 schema:affiliation https://www.grid.ac/institutes/grid.9851.5
113 schema:familyName Kunkel
114 schema:givenName Susanne
115 rdf:type schema:Person
116 N7ff4cf43997c45559ed054f5ee0e308e schema:name Translational Research and Medical Oncology Unit, Université Libre de Bruxelles, Institut Jules Bordet, 121 Boulevard de Waterloo, 1000, Brussels, Belgium
117 rdf:type schema:Organization
118 N801eb12bc9ae4895b0f9e791d40db0a7 schema:name Translational Research and Medical Oncology Unit, Université Libre de Bruxelles, Institut Jules Bordet, 121 Boulevard de Waterloo, 1000, Brussels, Belgium
119 rdf:type schema:Organization
120 N8544109846fc4e31bb647f383fa2874a schema:name Translational Research and Medical Oncology Unit, Université Libre de Bruxelles, Institut Jules Bordet, 121 Boulevard de Waterloo, 1000, Brussels, Belgium
121 rdf:type schema:Organization
122 N91a97664eeac4f84980c468d200de3a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Genes, erbB-2
124 rdf:type schema:DefinedTerm
125 N97f61f912eee45698fca3d52b243dca2 rdf:first sg:person.0752040573.90
126 rdf:rest Nb567639b0cef464897a87c447188332d
127 N98ce961f703844e9a3b0b2c33c93df27 schema:name doi
128 schema:value 10.1186/bcr2124
129 rdf:type schema:PropertyValue
130 Na320495d9fb74d35834846921cdae7de rdf:first sg:person.01116572501.16
131 rdf:rest N504fd8d96482452687a6bf1890ee5ac2
132 Na6f12f81ecb34d938ae826a9b9c0a8c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Receptors, Estrogen
134 rdf:type schema:DefinedTerm
135 Na70aa0ab553b4443975c77558dc50880 schema:name nlm_unique_id
136 schema:value 100927353
137 rdf:type schema:PropertyValue
138 Na86108ec2e4741b8862f81d3c346bb8e schema:name pubmed_id
139 schema:value 18662380
140 rdf:type schema:PropertyValue
141 Nac517cc8faec4505a6d2ec6aae035cf8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Prognosis
143 rdf:type schema:DefinedTerm
144 Nb169ddbe6a3c41328b6d1d73187cbe19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Antineoplastic Agents
146 rdf:type schema:DefinedTerm
147 Nb21d92e3c3d441839193bb00a0efba64 schema:name Translational Research and Medical Oncology Unit, Université Libre de Bruxelles, Institut Jules Bordet, 121 Boulevard de Waterloo, 1000, Brussels, Belgium
148 rdf:type schema:Organization
149 Nb567639b0cef464897a87c447188332d rdf:first sg:person.0776465151.82
150 rdf:rest N214a57a59717481f9fb7878ff59e771e
151 Nb64f068b2cc245229bbd3b1d28cd9247 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Cell Proliferation
153 rdf:type schema:DefinedTerm
154 Nb85b26c203184fd6b4ccd6b91525c2b0 rdf:first sg:person.01061405556.84
155 rdf:rest N265fbd20ecf64023bf6ee646660e8b7e
156 Nbf81d563c0684283a4298f41f541e45c schema:name readcube_id
157 schema:value c8f67b0b2fe38a969fbe6a344c0dce15d69a2cd8710f9d7fb821d9b6ef5e8808
158 rdf:type schema:PropertyValue
159 Nc10079231e57463e9044dcde06c68ed4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Female
161 rdf:type schema:DefinedTerm
162 Ncc7d3907c7274048a9a25c1626b967bc rdf:first sg:person.01206643051.26
163 rdf:rest rdf:nil
164 Nda2ec06df9fc4e69879a31dec3fbbb3c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Receptor, ErbB-2
166 rdf:type schema:DefinedTerm
167 Ndb051e6a3c7e485aa3d1b88cfbaa6b25 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Signal Transduction
169 rdf:type schema:DefinedTerm
170 Ne091befa811145ed968910e8150b65eb rdf:first N69e2960e88e34c26ab1e4d92120b47e4
171 rdf:rest N03ed100f2f0f46b18b99134854cfa67d
172 Ne9e7309a2cb449049c7e9754d796cadf schema:issueNumber 4
173 rdf:type schema:PublicationIssue
174 Neb15e65cf4c348f6b662bd855766bfb1 rdf:first sg:person.01347333147.28
175 rdf:rest Nb85b26c203184fd6b4ccd6b91525c2b0
176 Nfb09f0f2de2b4076ae1bbb9367b0b6ff schema:name dimensions_id
177 schema:value pub.1042187964
178 rdf:type schema:PropertyValue
179 Nfe96c83f31d0485d94b6138b965db40b rdf:first sg:person.01006270647.25
180 rdf:rest N59f7377ebac04259894820d2aca81f37
181 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
182 schema:name Medical and Health Sciences
183 rdf:type schema:DefinedTerm
184 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
185 schema:name Oncology and Carcinogenesis
186 rdf:type schema:DefinedTerm
187 sg:journal.1022375 schema:issn 1465-5411
188 1465-542X
189 schema:name Breast Cancer Research
190 rdf:type schema:Periodical
191 sg:person.01006270647.25 schema:affiliation https://www.grid.ac/institutes/grid.9851.5
192 schema:familyName Wirapati
193 schema:givenName Pratyaksha
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006270647.25
195 rdf:type schema:Person
196 sg:person.01061405556.84 schema:affiliation https://www.grid.ac/institutes/grid.4989.c
197 schema:familyName Haibe-Kains
198 schema:givenName Benjamin
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061405556.84
200 rdf:type schema:Person
201 sg:person.01116572501.16 schema:affiliation https://www.grid.ac/institutes/grid.5333.6
202 schema:familyName Goldstein
203 schema:givenName Darlene R
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116572501.16
205 rdf:type schema:Person
206 sg:person.01206643051.26 schema:affiliation https://www.grid.ac/institutes/grid.5333.6
207 schema:familyName Delorenzi
208 schema:givenName Mauro
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206643051.26
210 rdf:type schema:Person
211 sg:person.01236062731.84 schema:affiliation N7ff4cf43997c45559ed054f5ee0e308e
212 schema:familyName Piccart
213 schema:givenName Martine
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236062731.84
215 rdf:type schema:Person
216 sg:person.01306472735.09 schema:affiliation https://www.grid.ac/institutes/grid.5333.6
217 schema:familyName Farmer
218 schema:givenName Pierre
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306472735.09
220 rdf:type schema:Person
221 sg:person.01347333147.28 schema:affiliation https://www.grid.ac/institutes/grid.9851.5
222 schema:familyName Pradervand
223 schema:givenName Sylvain
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347333147.28
225 rdf:type schema:Person
226 sg:person.01352311331.95 schema:affiliation N801eb12bc9ae4895b0f9e791d40db0a7
227 schema:familyName Sotiriou
228 schema:givenName Christos
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352311331.95
230 rdf:type schema:Person
231 sg:person.0645753007.53 schema:affiliation Nb21d92e3c3d441839193bb00a0efba64
232 schema:familyName Desmedt
233 schema:givenName Christine
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645753007.53
235 rdf:type schema:Person
236 sg:person.0657003407.83 schema:affiliation https://www.grid.ac/institutes/grid.9851.5
237 schema:familyName Schütz
238 schema:givenName Frédéric
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657003407.83
240 rdf:type schema:Person
241 sg:person.0752040573.90 schema:affiliation N8544109846fc4e31bb647f383fa2874a
242 schema:familyName Ignatiadis
243 schema:givenName Michail
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752040573.90
245 rdf:type schema:Person
246 sg:person.0776465151.82 schema:affiliation https://www.grid.ac/institutes/grid.5333.6
247 schema:familyName Sengstag
248 schema:givenName Thierry
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776465151.82
250 rdf:type schema:Person
251 sg:pub.10.1038/35021093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033846543
252 https://doi.org/10.1038/35021093
253 rdf:type schema:CreativeWork
254 sg:pub.10.1038/415530a schema:sameAs https://app.dimensions.ai/details/publication/pub.1043001094
255 https://doi.org/10.1038/415530a
256 rdf:type schema:CreativeWork
257 sg:pub.10.1038/nature04296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028145633
258 https://doi.org/10.1038/nature04296
259 rdf:type schema:CreativeWork
260 sg:pub.10.1038/nbt1239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037875102
261 https://doi.org/10.1038/nbt1239
262 rdf:type schema:CreativeWork
263 sg:pub.10.1038/ncponc0591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033935585
264 https://doi.org/10.1038/ncponc0591
265 rdf:type schema:CreativeWork
266 sg:pub.10.1038/ng1167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047743086
267 https://doi.org/10.1038/ng1167
268 rdf:type schema:CreativeWork
269 sg:pub.10.1038/nrc1802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046303336
270 https://doi.org/10.1038/nrc1802
271 rdf:type schema:CreativeWork
272 sg:pub.10.1038/sj.onc.1208561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036436999
273 https://doi.org/10.1038/sj.onc.1208561
274 rdf:type schema:CreativeWork
275 sg:pub.10.1038/sj.onc.1209920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024977029
276 https://doi.org/10.1038/sj.onc.1209920
277 rdf:type schema:CreativeWork
278 sg:pub.10.1186/1471-2164-7-96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015725266
279 https://doi.org/10.1186/1471-2164-7-96
280 rdf:type schema:CreativeWork
281 sg:pub.10.1186/bcr1325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023450491
282 https://doi.org/10.1186/bcr1325
283 rdf:type schema:CreativeWork
284 sg:pub.10.1186/bcr1517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004340956
285 https://doi.org/10.1186/bcr1517
286 rdf:type schema:CreativeWork
287 sg:pub.10.1186/gb-2006-7-10-r101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049083057
288 https://doi.org/10.1186/gb-2006-7-10-r101
289 rdf:type schema:CreativeWork
290 sg:pub.10.1186/gb-2007-8-8-r157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052735338
291 https://doi.org/10.1186/gb-2007-8-8-r157
292 rdf:type schema:CreativeWork
293 https://app.dimensions.ai/details/publication/pub.1076595628 schema:CreativeWork
294 https://app.dimensions.ai/details/publication/pub.1109491899 schema:CreativeWork
295 https://doi.org/10.1016/j.ccr.2004.05.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048372678
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1016/j.ccr.2006.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000216868
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1016/s0140-6736(05)17947-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047788005
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1016/s0140-6736(97)11423-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033560955
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1016/s0960-9776(96)90064-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042473427
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1056/nejmoa021967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038600096
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1056/nejmoa041588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022156409
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1056/nejmoa052122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035589584
310 rdf:type schema:CreativeWork
311 https://doi.org/10.1056/nejmoa052933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024869935
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1073/pnas.0409462102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004658815
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1073/pnas.0506230102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002515049
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1073/pnas.0932692100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007535956
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1073/pnas.1732912100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000610606
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1073/pnas.191367098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034333528
322 rdf:type schema:CreativeWork
323 https://doi.org/10.1074/jbc.m110603200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019410901
324 rdf:type schema:CreativeWork
325 https://doi.org/10.1093/jnci/djj052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030644591
326 rdf:type schema:CreativeWork
327 https://doi.org/10.1093/jnci/djj329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051338771
328 rdf:type schema:CreativeWork
329 https://doi.org/10.1093/nar/gkl993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020836260
330 rdf:type schema:CreativeWork
331 https://doi.org/10.1158/0008-5472.can-05-4414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008978686
332 rdf:type schema:CreativeWork
333 https://doi.org/10.1158/0008-5472.can-07-0539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009812323
334 rdf:type schema:CreativeWork
335 https://doi.org/10.1200/jco.2005.01.4746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044184952
336 rdf:type schema:CreativeWork
337 https://doi.org/10.1200/jco.2005.03.9115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033715812
338 rdf:type schema:CreativeWork
339 https://doi.org/10.1200/jco.2005.04.7985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011750427
340 rdf:type schema:CreativeWork
341 https://doi.org/10.1371/journal.pbio.0020007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000858813
342 rdf:type schema:CreativeWork
343 https://doi.org/10.3816/cbc.2006.n.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010376765
344 rdf:type schema:CreativeWork
345 https://www.grid.ac/institutes/grid.4989.c schema:alternateName Université Libre de Bruxelles
346 schema:name Machine Learning Group, Université Libre de Bruxelles, boulevard du Triomphe, CP212, 1050, Bruxelles, Belgium
347 Translational Research and Medical Oncology Unit, Université Libre de Bruxelles, Institut Jules Bordet, 121 Boulevard de Waterloo, 1000, Brussels, Belgium
348 rdf:type schema:Organization
349 https://www.grid.ac/institutes/grid.5333.6 schema:alternateName École Polytechnique Fédérale de Lausanne
350 schema:name DNA Array Facility, Center for Integrative Genomics, 'Batiment Genopode', University of Lausanne, 1015, Lausanne, Switzerland
351 Institut de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
352 National Centers for Competence in Research, Molecular Oncology, Swiss Institute for Experimental Cancer Research, Ch. des Boveresses 155, 1066, Epalinges, Switzerland
353 Swiss Institute of Bioinformatics, 'Batiment Genopode', University of Lausanne, 1015, Lausanne, Switzerland
354 rdf:type schema:Organization
355 https://www.grid.ac/institutes/grid.9851.5 schema:alternateName University of Lausanne
356 schema:name DNA Array Facility, Center for Integrative Genomics, 'Batiment Genopode', University of Lausanne, 1015, Lausanne, Switzerland
357 Swiss Institute of Bioinformatics, 'Batiment Genopode', University of Lausanne, 1015, Lausanne, Switzerland
358 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...