A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-12

AUTHORS

Ronald X Xu, Donn C Young, Jimmy J Mao, Stephen P Povoski

ABSTRACT

INTRODUCTION: Characterizing and differentiating between malignant tumors, benign tumors, and normal breast tissue is increasingly important in the patient presenting with breast problems. Near-infrared diffuse optical imaging and spectroscopy is capable of measuring multiple physiologic parameters of biological tissue systems and may have clinical applications for assessing the development and progression of neoplastic processes, including breast cancer. The currently available application of near-infrared imaging technology for the breast, however, is compromised by low spatial resolution, tissue heterogeneity, and interpatient variation. MATERIALS AND METHODS: We tested a dynamic near-infrared imaging schema for the characterization of suspicious breast lesions identified on diagnostic clinical ultrasound. A portable handheld near-infrared tissue imaging device (P-Scan; ViOptix Inc., Fremont, CA, USA) was utilized. An external mechanical compression force was applied to breast tissue. The tissue oxygen saturation and hemoglobin concentration were recorded simultaneously by the handheld near-infrared imaging device. Twelve categories of dynamic tissue parameters were derived based on real-time measurements of the tissue hemoglobin concentration and the oxygen saturation. RESULTS: Fifty suspicious breast lesions were evaluated in 48 patients. Statistical analyses were carried out on 36 out of 50 datasets that satisfied our inclusion criteria. Suspicious breast lesions identified on diagnostic clinical ultrasound had lower oxygenation and higher hemoglobin concentration than the surrounding normal breast tissue. Furthermore, histopathologic-proven malignant breast tumors had a lower differential hemoglobin contrast (that is, the difference of hemoglobin concentration variability between the suspicious breast lesion and the normal breast parenchyma located remotely elsewhere within the ipsilateral breast) as compared with histopathologic-proven benign breast lesions. CONCLUSION: The proposed dynamic near-infrared imaging schema has the potential to differentiate benign processes from those of malignant breast tumors. Further development and refinement of the dynamic imaging device and additional subsequent clinical testing are necessary for optimizing the accuracy of detection. More... »

PAGES

r88

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/bcr1837

DOI

http://dx.doi.org/10.1186/bcr1837

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015966113

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18088411


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evaluation Studies as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Feasibility Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hemoglobins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematical Computing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ohio", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxygen Consumption", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pilot Projects", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectroscopy, Near-Infrared", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The Ohio State University", 
          "id": "https://www.grid.ac/institutes/grid.261331.4", 
          "name": [
            "Biomedical Engineering Department, The Ohio State University, 43210, Columbus, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Ronald X", 
        "id": "sg:person.01172550153.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172550153.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Ohio State University", 
          "id": "https://www.grid.ac/institutes/grid.261331.4", 
          "name": [
            "Center for Biostatistics, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute and Comprehensive Cancer Center, The Ohio State University, 43210, Columbus, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Young", 
        "givenName": "Donn C", 
        "id": "sg:person.013122042747.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013122042747.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ViOptix (United States)", 
          "id": "https://www.grid.ac/institutes/grid.431066.6", 
          "name": [
            "ViOptix, Inc., 44061-B Warm Springs Boulevard, 94538, Fremont, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mao", 
        "givenName": "Jimmy J", 
        "id": "sg:person.0631011717.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631011717.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Ohio State University", 
          "id": "https://www.grid.ac/institutes/grid.261331.4", 
          "name": [
            "Section of Surgical Oncology of the Department of Surgery, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute and Comprehensive Cancer Center, The Ohio State University, 43210, Columbus, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Povoski", 
        "givenName": "Stephen P", 
        "id": "sg:person.01240351036.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240351036.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3322/canjclin.57.1.43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005586480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/sj.neo.7900082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007471718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.2032822100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007671801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/94.19.1445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007799703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.1691028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007841320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0360-3016(98)00324-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008617740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.652251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009056553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2005.04.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010018290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2005.04.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010018290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010179430", 
          "https://doi.org/10.1186/bcr269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010179430", 
          "https://doi.org/10.1186/bcr269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.356861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011309126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3322/canjclin.54.6.345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011392250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.429991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019193197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.071511098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020522084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1586/17434440.4.1.83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022772947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4065/79.6.810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023438234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.1997.0053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025441091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.1323984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027787137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1634/theoncologist.9-90005-10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029820189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.1695560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030630231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2004/460797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033515591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2005.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033534733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/annonc/mdh088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036494704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/93.4.266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038190717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acra.2005.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038390930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/sj.neo.7900244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038466566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-006-0505-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040054014", 
          "https://doi.org/10.1007/s00330-006-0505-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-006-0505-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040054014", 
          "https://doi.org/10.1007/s00330-006-0505-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.183988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048912271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.476783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050357253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/82.1.4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051237830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.1573791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053242625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0025-6196(11)62636-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054591972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/43/6/028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059023460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/50/11/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059025595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/50/11/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059025595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/52/14/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059026656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.42.002960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065118166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.42.006412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065118573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.44.002140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065119738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.46.007442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065122448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.28.001212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065221097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075125197", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2005.1615460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077367203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077377664", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078146842", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082958857", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12", 
    "datePublishedReg": "2007-12-01", 
    "description": "INTRODUCTION: Characterizing and differentiating between malignant tumors, benign tumors, and normal breast tissue is increasingly important in the patient presenting with breast problems. Near-infrared diffuse optical imaging and spectroscopy is capable of measuring multiple physiologic parameters of biological tissue systems and may have clinical applications for assessing the development and progression of neoplastic processes, including breast cancer. The currently available application of near-infrared imaging technology for the breast, however, is compromised by low spatial resolution, tissue heterogeneity, and interpatient variation.\nMATERIALS AND METHODS: We tested a dynamic near-infrared imaging schema for the characterization of suspicious breast lesions identified on diagnostic clinical ultrasound. A portable handheld near-infrared tissue imaging device (P-Scan; ViOptix Inc., Fremont, CA, USA) was utilized. An external mechanical compression force was applied to breast tissue. The tissue oxygen saturation and hemoglobin concentration were recorded simultaneously by the handheld near-infrared imaging device. Twelve categories of dynamic tissue parameters were derived based on real-time measurements of the tissue hemoglobin concentration and the oxygen saturation.\nRESULTS: Fifty suspicious breast lesions were evaluated in 48 patients. Statistical analyses were carried out on 36 out of 50 datasets that satisfied our inclusion criteria. Suspicious breast lesions identified on diagnostic clinical ultrasound had lower oxygenation and higher hemoglobin concentration than the surrounding normal breast tissue. Furthermore, histopathologic-proven malignant breast tumors had a lower differential hemoglobin contrast (that is, the difference of hemoglobin concentration variability between the suspicious breast lesion and the normal breast parenchyma located remotely elsewhere within the ipsilateral breast) as compared with histopathologic-proven benign breast lesions.\nCONCLUSION: The proposed dynamic near-infrared imaging schema has the potential to differentiate benign processes from those of malignant breast tumors. Further development and refinement of the dynamic imaging device and additional subsequent clinical testing are necessary for optimizing the accuracy of detection.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/bcr1837", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1022375", 
        "issn": [
          "1465-5411", 
          "1465-542X"
        ], 
        "name": "Breast Cancer Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions", 
    "pagination": "r88", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4c13b0ebd6a3d05c7f6440d35df1c50beec695096dbed15bb181292a274d0f6a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18088411"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "100927353"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/bcr1837"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015966113"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/bcr1837", 
      "https://app.dimensions.ai/details/publication/pub.1015966113"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87117_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2Fbcr1837"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/bcr1837'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/bcr1837'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/bcr1837'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/bcr1837'


 

This table displays all metadata directly associated to this object as RDF triples.

293 TRIPLES      21 PREDICATES      90 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/bcr1837 schema:about N017ea24608ef4aa7b997806431063eff
2 N047a7d005ada4cff9657bc89b1290b18
3 N0d7099311a2f496c85c4de54bc4ad515
4 N218882e54f774608b5cd3d5d8260c34d
5 N2bf9c94f3cd1463ea86a8f7ddf67196c
6 N34718a40532c41f6bf55f47de0f86dc8
7 N3ad09ea8ec4946ad930b275f886007b9
8 N560c69c9840e4ceabc65d131ed599de2
9 N759cf31459c447589594a3fcf55b8e85
10 N769a822421c74819942ae5a6a39303a2
11 N7d6c6fa3d6b540bbb0bd6ce809d7fdeb
12 N7f453bac157a4aa48f27ca389f3846eb
13 N9afd567978874d4895676753e76b167e
14 N9df8624253534608b7e89cc78981522a
15 Nc7ca36e9ad07467988c484ffe1edd8bf
16 Ndcadd02cebac473e9f9a1424adf29ce7
17 Nf314a0ce21f94b2b8224c75d86a109d0
18 anzsrc-for:11
19 anzsrc-for:1112
20 schema:author Ndd5780c6fba64c6a9266acdc45316e44
21 schema:citation sg:pub.10.1007/s00330-006-0505-x
22 sg:pub.10.1186/bcr269
23 https://app.dimensions.ai/details/publication/pub.1075125197
24 https://app.dimensions.ai/details/publication/pub.1077377664
25 https://app.dimensions.ai/details/publication/pub.1078146842
26 https://app.dimensions.ai/details/publication/pub.1082958857
27 https://doi.org/10.1016/j.acra.2005.04.016
28 https://doi.org/10.1016/j.acra.2005.05.006
29 https://doi.org/10.1016/j.acra.2005.10.002
30 https://doi.org/10.1016/s0025-6196(11)62636-0
31 https://doi.org/10.1016/s0360-3016(98)00324-1
32 https://doi.org/10.1038/sj.neo.7900082
33 https://doi.org/10.1038/sj.neo.7900244
34 https://doi.org/10.1073/pnas.071511098
35 https://doi.org/10.1073/pnas.2032822100
36 https://doi.org/10.1088/0031-9155/43/6/028
37 https://doi.org/10.1088/0031-9155/50/11/008
38 https://doi.org/10.1088/0031-9155/52/14/007
39 https://doi.org/10.1093/annonc/mdh088
40 https://doi.org/10.1093/jnci/82.1.4
41 https://doi.org/10.1093/jnci/93.4.266
42 https://doi.org/10.1093/jnci/94.19.1445
43 https://doi.org/10.1098/rstb.1997.0053
44 https://doi.org/10.1109/iembs.2005.1615460
45 https://doi.org/10.1117/1.1691028
46 https://doi.org/10.1117/1.1695560
47 https://doi.org/10.1117/1.429991
48 https://doi.org/10.1117/12.183988
49 https://doi.org/10.1117/12.356861
50 https://doi.org/10.1117/12.476783
51 https://doi.org/10.1117/12.652251
52 https://doi.org/10.1118/1.1323984
53 https://doi.org/10.1118/1.1573791
54 https://doi.org/10.1155/2004/460797
55 https://doi.org/10.1364/ao.42.002960
56 https://doi.org/10.1364/ao.42.006412
57 https://doi.org/10.1364/ao.44.002140
58 https://doi.org/10.1364/ao.46.007442
59 https://doi.org/10.1364/ol.28.001212
60 https://doi.org/10.1586/17434440.4.1.83
61 https://doi.org/10.1634/theoncologist.9-90005-10
62 https://doi.org/10.3322/canjclin.54.6.345
63 https://doi.org/10.3322/canjclin.57.1.43
64 https://doi.org/10.4065/79.6.810
65 schema:datePublished 2007-12
66 schema:datePublishedReg 2007-12-01
67 schema:description INTRODUCTION: Characterizing and differentiating between malignant tumors, benign tumors, and normal breast tissue is increasingly important in the patient presenting with breast problems. Near-infrared diffuse optical imaging and spectroscopy is capable of measuring multiple physiologic parameters of biological tissue systems and may have clinical applications for assessing the development and progression of neoplastic processes, including breast cancer. The currently available application of near-infrared imaging technology for the breast, however, is compromised by low spatial resolution, tissue heterogeneity, and interpatient variation. MATERIALS AND METHODS: We tested a dynamic near-infrared imaging schema for the characterization of suspicious breast lesions identified on diagnostic clinical ultrasound. A portable handheld near-infrared tissue imaging device (P-Scan; ViOptix Inc., Fremont, CA, USA) was utilized. An external mechanical compression force was applied to breast tissue. The tissue oxygen saturation and hemoglobin concentration were recorded simultaneously by the handheld near-infrared imaging device. Twelve categories of dynamic tissue parameters were derived based on real-time measurements of the tissue hemoglobin concentration and the oxygen saturation. RESULTS: Fifty suspicious breast lesions were evaluated in 48 patients. Statistical analyses were carried out on 36 out of 50 datasets that satisfied our inclusion criteria. Suspicious breast lesions identified on diagnostic clinical ultrasound had lower oxygenation and higher hemoglobin concentration than the surrounding normal breast tissue. Furthermore, histopathologic-proven malignant breast tumors had a lower differential hemoglobin contrast (that is, the difference of hemoglobin concentration variability between the suspicious breast lesion and the normal breast parenchyma located remotely elsewhere within the ipsilateral breast) as compared with histopathologic-proven benign breast lesions. CONCLUSION: The proposed dynamic near-infrared imaging schema has the potential to differentiate benign processes from those of malignant breast tumors. Further development and refinement of the dynamic imaging device and additional subsequent clinical testing are necessary for optimizing the accuracy of detection.
68 schema:genre research_article
69 schema:inLanguage en
70 schema:isAccessibleForFree true
71 schema:isPartOf N148393788282430396cbdb0cfdbaecfa
72 N53730a4a351c42e0b38c345e8bc62e74
73 sg:journal.1022375
74 schema:name A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions
75 schema:pagination r88
76 schema:productId N29cf508833884dfd8939ee2e0dd08692
77 N783a088d83464f5ea4780d4c0e55bd3e
78 N7ec2801fe78c43aa83d1197b7c16017b
79 Nbc6cdb84ed514f11b5316d45d5111007
80 Nc040f6132aa04f1e99ea0c214af36da2
81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015966113
82 https://doi.org/10.1186/bcr1837
83 schema:sdDatePublished 2019-04-11T12:27
84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
85 schema:sdPublisher N0893d5918695401bba74e6d13f4247bb
86 schema:url https://link.springer.com/10.1186%2Fbcr1837
87 sgo:license sg:explorer/license/
88 sgo:sdDataset articles
89 rdf:type schema:ScholarlyArticle
90 N017ea24608ef4aa7b997806431063eff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Spectroscopy, Near-Infrared
92 rdf:type schema:DefinedTerm
93 N047a7d005ada4cff9657bc89b1290b18 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Evaluation Studies as Topic
95 rdf:type schema:DefinedTerm
96 N05999bc5791e4b53aabf780a86e40aa7 rdf:first sg:person.013122042747.72
97 rdf:rest N0e81054478f24d4cafa5e6a41d5cf976
98 N0893d5918695401bba74e6d13f4247bb schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 N0d7099311a2f496c85c4de54bc4ad515 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Hemoglobins
102 rdf:type schema:DefinedTerm
103 N0e81054478f24d4cafa5e6a41d5cf976 rdf:first sg:person.0631011717.10
104 rdf:rest N95a3cb80cbea4ed799498fd4c5966261
105 N148393788282430396cbdb0cfdbaecfa schema:issueNumber 6
106 rdf:type schema:PublicationIssue
107 N218882e54f774608b5cd3d5d8260c34d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Prospective Studies
109 rdf:type schema:DefinedTerm
110 N29cf508833884dfd8939ee2e0dd08692 schema:name doi
111 schema:value 10.1186/bcr1837
112 rdf:type schema:PropertyValue
113 N2bf9c94f3cd1463ea86a8f7ddf67196c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Humans
115 rdf:type schema:DefinedTerm
116 N34718a40532c41f6bf55f47de0f86dc8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Female
118 rdf:type schema:DefinedTerm
119 N3ad09ea8ec4946ad930b275f886007b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Middle Aged
121 rdf:type schema:DefinedTerm
122 N53730a4a351c42e0b38c345e8bc62e74 schema:volumeNumber 9
123 rdf:type schema:PublicationVolume
124 N560c69c9840e4ceabc65d131ed599de2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Feasibility Studies
126 rdf:type schema:DefinedTerm
127 N759cf31459c447589594a3fcf55b8e85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Adult
129 rdf:type schema:DefinedTerm
130 N769a822421c74819942ae5a6a39303a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Breast Neoplasms
132 rdf:type schema:DefinedTerm
133 N783a088d83464f5ea4780d4c0e55bd3e schema:name dimensions_id
134 schema:value pub.1015966113
135 rdf:type schema:PropertyValue
136 N7d6c6fa3d6b540bbb0bd6ce809d7fdeb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Aged
138 rdf:type schema:DefinedTerm
139 N7ec2801fe78c43aa83d1197b7c16017b schema:name readcube_id
140 schema:value 4c13b0ebd6a3d05c7f6440d35df1c50beec695096dbed15bb181292a274d0f6a
141 rdf:type schema:PropertyValue
142 N7f453bac157a4aa48f27ca389f3846eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Pilot Projects
144 rdf:type schema:DefinedTerm
145 N95a3cb80cbea4ed799498fd4c5966261 rdf:first sg:person.01240351036.37
146 rdf:rest rdf:nil
147 N9afd567978874d4895676753e76b167e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Mathematical Computing
149 rdf:type schema:DefinedTerm
150 N9df8624253534608b7e89cc78981522a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Ohio
152 rdf:type schema:DefinedTerm
153 Nbc6cdb84ed514f11b5316d45d5111007 schema:name pubmed_id
154 schema:value 18088411
155 rdf:type schema:PropertyValue
156 Nc040f6132aa04f1e99ea0c214af36da2 schema:name nlm_unique_id
157 schema:value 100927353
158 rdf:type schema:PropertyValue
159 Nc7ca36e9ad07467988c484ffe1edd8bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Breast Diseases
161 rdf:type schema:DefinedTerm
162 Ndcadd02cebac473e9f9a1424adf29ce7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Predictive Value of Tests
164 rdf:type schema:DefinedTerm
165 Ndd5780c6fba64c6a9266acdc45316e44 rdf:first sg:person.01172550153.34
166 rdf:rest N05999bc5791e4b53aabf780a86e40aa7
167 Nf314a0ce21f94b2b8224c75d86a109d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Oxygen Consumption
169 rdf:type schema:DefinedTerm
170 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
171 schema:name Medical and Health Sciences
172 rdf:type schema:DefinedTerm
173 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
174 schema:name Oncology and Carcinogenesis
175 rdf:type schema:DefinedTerm
176 sg:journal.1022375 schema:issn 1465-5411
177 1465-542X
178 schema:name Breast Cancer Research
179 rdf:type schema:Periodical
180 sg:person.01172550153.34 schema:affiliation https://www.grid.ac/institutes/grid.261331.4
181 schema:familyName Xu
182 schema:givenName Ronald X
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172550153.34
184 rdf:type schema:Person
185 sg:person.01240351036.37 schema:affiliation https://www.grid.ac/institutes/grid.261331.4
186 schema:familyName Povoski
187 schema:givenName Stephen P
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240351036.37
189 rdf:type schema:Person
190 sg:person.013122042747.72 schema:affiliation https://www.grid.ac/institutes/grid.261331.4
191 schema:familyName Young
192 schema:givenName Donn C
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013122042747.72
194 rdf:type schema:Person
195 sg:person.0631011717.10 schema:affiliation https://www.grid.ac/institutes/grid.431066.6
196 schema:familyName Mao
197 schema:givenName Jimmy J
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631011717.10
199 rdf:type schema:Person
200 sg:pub.10.1007/s00330-006-0505-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040054014
201 https://doi.org/10.1007/s00330-006-0505-x
202 rdf:type schema:CreativeWork
203 sg:pub.10.1186/bcr269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010179430
204 https://doi.org/10.1186/bcr269
205 rdf:type schema:CreativeWork
206 https://app.dimensions.ai/details/publication/pub.1075125197 schema:CreativeWork
207 https://app.dimensions.ai/details/publication/pub.1077377664 schema:CreativeWork
208 https://app.dimensions.ai/details/publication/pub.1078146842 schema:CreativeWork
209 https://app.dimensions.ai/details/publication/pub.1082958857 schema:CreativeWork
210 https://doi.org/10.1016/j.acra.2005.04.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010018290
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.acra.2005.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038390930
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.acra.2005.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033534733
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/s0025-6196(11)62636-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054591972
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/s0360-3016(98)00324-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008617740
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1038/sj.neo.7900082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007471718
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1038/sj.neo.7900244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038466566
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1073/pnas.071511098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020522084
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1073/pnas.2032822100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007671801
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1088/0031-9155/43/6/028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059023460
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1088/0031-9155/50/11/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059025595
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1088/0031-9155/52/14/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059026656
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1093/annonc/mdh088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036494704
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1093/jnci/82.1.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051237830
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1093/jnci/93.4.266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038190717
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1093/jnci/94.19.1445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007799703
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1098/rstb.1997.0053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025441091
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1109/iembs.2005.1615460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077367203
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1117/1.1691028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007841320
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1117/1.1695560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030630231
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1117/1.429991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019193197
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1117/12.183988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048912271
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1117/12.356861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011309126
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1117/12.476783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050357253
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1117/12.652251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009056553
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1118/1.1323984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027787137
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1118/1.1573791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053242625
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1155/2004/460797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033515591
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1364/ao.42.002960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065118166
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1364/ao.42.006412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065118573
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1364/ao.44.002140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065119738
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1364/ao.46.007442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065122448
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1364/ol.28.001212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065221097
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1586/17434440.4.1.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022772947
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1634/theoncologist.9-90005-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029820189
279 rdf:type schema:CreativeWork
280 https://doi.org/10.3322/canjclin.54.6.345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011392250
281 rdf:type schema:CreativeWork
282 https://doi.org/10.3322/canjclin.57.1.43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005586480
283 rdf:type schema:CreativeWork
284 https://doi.org/10.4065/79.6.810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023438234
285 rdf:type schema:CreativeWork
286 https://www.grid.ac/institutes/grid.261331.4 schema:alternateName The Ohio State University
287 schema:name Biomedical Engineering Department, The Ohio State University, 43210, Columbus, OH, USA
288 Center for Biostatistics, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute and Comprehensive Cancer Center, The Ohio State University, 43210, Columbus, OH, USA
289 Section of Surgical Oncology of the Department of Surgery, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute and Comprehensive Cancer Center, The Ohio State University, 43210, Columbus, OH, USA
290 rdf:type schema:Organization
291 https://www.grid.ac/institutes/grid.431066.6 schema:alternateName ViOptix (United States)
292 schema:name ViOptix, Inc., 44061-B Warm Springs Boulevard, 94538, Fremont, CA, USA
293 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...