Using improved climate forecasting in cash crop planning View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Ramya Rachmawati, Melih Ozlen, John W Hearne, Yuriy Kuleshov

ABSTRACT

ABSTRACT: Developments in meteorology over the last couple of decades have enabled significant improvements to be made in the accuracy of seasonal forecasts. This paper focuses on developing a model for cash crop planning that utilises these forecasts. It does this by determining the rate of growth of each crop as a function of heat units accumulated. This enables time to maturity to be determined and used in planning, particularly for planting new crops, removing unprofitable immature crops, and harvesting mature crops for profits. The proposed model is solved on a rolling horizon basis. To illustrate the advantage to be gained from improved seasonal forecasts the model is first applied to a problem using long-term temperature averages (climatology). Solutions to the same problem utilising improved seasonal forecasts for temperature are then obtained. This forecast proves to be a valuable input to the model and makes the second approach outperform the first consistently in our simulations. More... »

PAGES

422

References to SciGraph publications

  • 1991-12. A theory of rolling horizon decision making in ANNALS OF OPERATIONS RESEARCH
  • 2000-01. A two-stage stochastic programming with recourse model for determining robust planting plans in horticulture in JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY
  • 2011-10. Crop rotation scheduling with adjacency constraints in ANNALS OF OPERATIONS RESEARCH
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/2193-1801-3-422

    DOI

    http://dx.doi.org/10.1186/2193-1801-3-422

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1012329278

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/25184105


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0703", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Crop and Pasture Production", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Agricultural and Veterinary Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Bengkulu", 
              "id": "https://www.grid.ac/institutes/grid.443165.1", 
              "name": [
                "School of Mathematical and Geospatial Sciences RMIT University, Melbourne, Australia", 
                "Mathematics Department Faculty of Mathematics and Natural Sciences, University of Bengkulu, Bengkulu, Indonesia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rachmawati", 
            "givenName": "Ramya", 
            "id": "sg:person.01103376054.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103376054.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "RMIT University", 
              "id": "https://www.grid.ac/institutes/grid.1017.7", 
              "name": [
                "School of Mathematical and Geospatial Sciences RMIT University, Melbourne, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ozlen", 
            "givenName": "Melih", 
            "id": "sg:person.01151511254.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151511254.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "RMIT University", 
              "id": "https://www.grid.ac/institutes/grid.1017.7", 
              "name": [
                "School of Mathematical and Geospatial Sciences RMIT University, Melbourne, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hearne", 
            "givenName": "John W", 
            "id": "sg:person.01217624454.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217624454.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bureau of Meteorology", 
              "id": "https://www.grid.ac/institutes/grid.1527.1", 
              "name": [
                "Bureau of Meteorology, GPO Box 1289, Vic 3001, Melbourne, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kuleshov", 
            "givenName": "Yuriy", 
            "id": "sg:person.014127440703.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014127440703.53"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0168-1923(85)90095-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008665330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0168-1923(85)90095-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008665330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1057/palgrave.jors.2600858", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010475272", 
              "https://doi.org/10.1057/palgrave.jors.2600858"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02283607", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013563830", 
              "https://doi.org/10.1007/bf02283607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02283607", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013563830", 
              "https://doi.org/10.1007/bf02283607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0906865106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021807458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0906865106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021807458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/qj.49708235202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023906734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/waf-d-12-00072.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039982536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10479-008-0478-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045968301", 
              "https://doi.org/10.1007/s10479-008-0478-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0377-2217(89)90273-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051256401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0377-2217(89)90273-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051256401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/inte.1060.0222", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064707987"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-12", 
        "datePublishedReg": "2014-12-01", 
        "description": "ABSTRACT: Developments in meteorology over the last couple of decades have enabled significant improvements to be made in the accuracy of seasonal forecasts. This paper focuses on developing a model for cash crop planning that utilises these forecasts. It does this by determining the rate of growth of each crop as a function of heat units accumulated. This enables time to maturity to be determined and used in planning, particularly for planting new crops, removing unprofitable immature crops, and harvesting mature crops for profits. The proposed model is solved on a rolling horizon basis. To illustrate the advantage to be gained from improved seasonal forecasts the model is first applied to a problem using long-term temperature averages (climatology). Solutions to the same problem utilising improved seasonal forecasts for temperature are then obtained. This forecast proves to be a valuable input to the model and makes the second approach outperform the first consistently in our simulations.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/2193-1801-3-422", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3931843", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1047790", 
            "issn": [
              "2193-1801"
            ], 
            "name": "SpringerPlus", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "name": "Using improved climate forecasting in cash crop planning", 
        "pagination": "422", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3abd9fec6106eba92e7c01eecb2929609d940731fb1385f8bc9ba035c2b1f7f5"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "25184105"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101597967"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/2193-1801-3-422"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1012329278"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/2193-1801-3-422", 
          "https://app.dimensions.ai/details/publication/pub.1012329278"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T21:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000511.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2F2193-1801-3-422"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/2193-1801-3-422'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/2193-1801-3-422'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/2193-1801-3-422'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/2193-1801-3-422'


     

    This table displays all metadata directly associated to this object as RDF triples.

    128 TRIPLES      21 PREDICATES      38 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/2193-1801-3-422 schema:about anzsrc-for:07
    2 anzsrc-for:0703
    3 schema:author Nf4adbd952ce144ada7de92bf33dca8a9
    4 schema:citation sg:pub.10.1007/bf02283607
    5 sg:pub.10.1007/s10479-008-0478-z
    6 sg:pub.10.1057/palgrave.jors.2600858
    7 https://doi.org/10.1002/qj.49708235202
    8 https://doi.org/10.1016/0168-1923(85)90095-4
    9 https://doi.org/10.1016/0377-2217(89)90273-7
    10 https://doi.org/10.1073/pnas.0906865106
    11 https://doi.org/10.1175/waf-d-12-00072.1
    12 https://doi.org/10.1287/inte.1060.0222
    13 schema:datePublished 2014-12
    14 schema:datePublishedReg 2014-12-01
    15 schema:description ABSTRACT: Developments in meteorology over the last couple of decades have enabled significant improvements to be made in the accuracy of seasonal forecasts. This paper focuses on developing a model for cash crop planning that utilises these forecasts. It does this by determining the rate of growth of each crop as a function of heat units accumulated. This enables time to maturity to be determined and used in planning, particularly for planting new crops, removing unprofitable immature crops, and harvesting mature crops for profits. The proposed model is solved on a rolling horizon basis. To illustrate the advantage to be gained from improved seasonal forecasts the model is first applied to a problem using long-term temperature averages (climatology). Solutions to the same problem utilising improved seasonal forecasts for temperature are then obtained. This forecast proves to be a valuable input to the model and makes the second approach outperform the first consistently in our simulations.
    16 schema:genre research_article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree true
    19 schema:isPartOf N182a08abc1074d389bc3d86a18c98add
    20 N525ff999b0a74c9d80a44254b3b54866
    21 sg:journal.1047790
    22 schema:name Using improved climate forecasting in cash crop planning
    23 schema:pagination 422
    24 schema:productId N2f59ebdd0b6d4c318308e8842a64f77c
    25 N3e85cefe02914d758e96f32fabf5387d
    26 N650094588a75465c86808a2587cd50a4
    27 N9e2c2157a68d46fe9c390560daf6b086
    28 Nbc170198b3e642119fbd833503a1b483
    29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012329278
    30 https://doi.org/10.1186/2193-1801-3-422
    31 schema:sdDatePublished 2019-04-10T21:36
    32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    33 schema:sdPublisher Nbe4b0e5652104783b9be0aa8835f6c92
    34 schema:url http://link.springer.com/10.1186%2F2193-1801-3-422
    35 sgo:license sg:explorer/license/
    36 sgo:sdDataset articles
    37 rdf:type schema:ScholarlyArticle
    38 N0ef2c70e88bc4a43895c32b7e3cae7dd rdf:first sg:person.01151511254.56
    39 rdf:rest Ne7c8b67e0c6845c69f7d36de951f674a
    40 N182a08abc1074d389bc3d86a18c98add schema:volumeNumber 3
    41 rdf:type schema:PublicationVolume
    42 N2f59ebdd0b6d4c318308e8842a64f77c schema:name pubmed_id
    43 schema:value 25184105
    44 rdf:type schema:PropertyValue
    45 N3e85cefe02914d758e96f32fabf5387d schema:name readcube_id
    46 schema:value 3abd9fec6106eba92e7c01eecb2929609d940731fb1385f8bc9ba035c2b1f7f5
    47 rdf:type schema:PropertyValue
    48 N525ff999b0a74c9d80a44254b3b54866 schema:issueNumber 1
    49 rdf:type schema:PublicationIssue
    50 N650094588a75465c86808a2587cd50a4 schema:name nlm_unique_id
    51 schema:value 101597967
    52 rdf:type schema:PropertyValue
    53 N9e2c2157a68d46fe9c390560daf6b086 schema:name doi
    54 schema:value 10.1186/2193-1801-3-422
    55 rdf:type schema:PropertyValue
    56 Nbc170198b3e642119fbd833503a1b483 schema:name dimensions_id
    57 schema:value pub.1012329278
    58 rdf:type schema:PropertyValue
    59 Nbe4b0e5652104783b9be0aa8835f6c92 schema:name Springer Nature - SN SciGraph project
    60 rdf:type schema:Organization
    61 Ne7c8b67e0c6845c69f7d36de951f674a rdf:first sg:person.01217624454.13
    62 rdf:rest Nf46f90e73b5b4a5f95bf6f89373a1178
    63 Nf46f90e73b5b4a5f95bf6f89373a1178 rdf:first sg:person.014127440703.53
    64 rdf:rest rdf:nil
    65 Nf4adbd952ce144ada7de92bf33dca8a9 rdf:first sg:person.01103376054.33
    66 rdf:rest N0ef2c70e88bc4a43895c32b7e3cae7dd
    67 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Agricultural and Veterinary Sciences
    69 rdf:type schema:DefinedTerm
    70 anzsrc-for:0703 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Crop and Pasture Production
    72 rdf:type schema:DefinedTerm
    73 sg:grant.3931843 http://pending.schema.org/fundedItem sg:pub.10.1186/2193-1801-3-422
    74 rdf:type schema:MonetaryGrant
    75 sg:journal.1047790 schema:issn 2193-1801
    76 schema:name SpringerPlus
    77 rdf:type schema:Periodical
    78 sg:person.01103376054.33 schema:affiliation https://www.grid.ac/institutes/grid.443165.1
    79 schema:familyName Rachmawati
    80 schema:givenName Ramya
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103376054.33
    82 rdf:type schema:Person
    83 sg:person.01151511254.56 schema:affiliation https://www.grid.ac/institutes/grid.1017.7
    84 schema:familyName Ozlen
    85 schema:givenName Melih
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151511254.56
    87 rdf:type schema:Person
    88 sg:person.01217624454.13 schema:affiliation https://www.grid.ac/institutes/grid.1017.7
    89 schema:familyName Hearne
    90 schema:givenName John W
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217624454.13
    92 rdf:type schema:Person
    93 sg:person.014127440703.53 schema:affiliation https://www.grid.ac/institutes/grid.1527.1
    94 schema:familyName Kuleshov
    95 schema:givenName Yuriy
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014127440703.53
    97 rdf:type schema:Person
    98 sg:pub.10.1007/bf02283607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013563830
    99 https://doi.org/10.1007/bf02283607
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/s10479-008-0478-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1045968301
    102 https://doi.org/10.1007/s10479-008-0478-z
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1057/palgrave.jors.2600858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010475272
    105 https://doi.org/10.1057/palgrave.jors.2600858
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1002/qj.49708235202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023906734
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1016/0168-1923(85)90095-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008665330
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/0377-2217(89)90273-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051256401
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1073/pnas.0906865106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021807458
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1175/waf-d-12-00072.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039982536
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1287/inte.1060.0222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064707987
    118 rdf:type schema:CreativeWork
    119 https://www.grid.ac/institutes/grid.1017.7 schema:alternateName RMIT University
    120 schema:name School of Mathematical and Geospatial Sciences RMIT University, Melbourne, Australia
    121 rdf:type schema:Organization
    122 https://www.grid.ac/institutes/grid.1527.1 schema:alternateName Bureau of Meteorology
    123 schema:name Bureau of Meteorology, GPO Box 1289, Vic 3001, Melbourne, Australia
    124 rdf:type schema:Organization
    125 https://www.grid.ac/institutes/grid.443165.1 schema:alternateName University of Bengkulu
    126 schema:name Mathematics Department Faculty of Mathematics and Natural Sciences, University of Bengkulu, Bengkulu, Indonesia
    127 School of Mathematical and Geospatial Sciences RMIT University, Melbourne, Australia
    128 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...