An approach to predict the risk of glaucoma development by integrating different attribute data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-10-24

AUTHORS

Yuichi Tokuda, Tomohito Yagi, Kengo Yoshii, Yoko Ikeda, Masahiro Fuwa, Morio Ueno, Masakazu Nakano, Natsue Omi, Masami Tanaka, Kazuhiko Mori, Masaaki Kageyama, Ikumitsu Nagasaki, Katsumi Yagi, Shigeru Kinoshita, Kei Tashiro

ABSTRACT

Primary open-angle glaucoma (POAG) is one of the major causes of blindness worldwide and considered to be influenced by inherited and environmental factors. Recently, we demonstrated a genome-wide association study for the susceptibility to POAG by comparing patients and controls. In addition, the serum cytokine levels, which are affected by environmental and postnatal factors, could be also obtained in patients as well as in controls, simultaneously. Here, in order to predict the effective diagnosis of POAG, we developed an “integration approach” using different attribute data which were integrated simply with several machine learning methods and random sampling. Two data sets were prepared for this study. The one is the “training data set”, which consisted of 42 POAG and 42 controls. The other is the “test data set” consisted of 73 POAG and 52 controls. We first examined for genotype and cytokine data using the training data set with general machine learning methods. After the integration approach was applied, we obtained the stable accuracy, using the support vector machine method with the radial basis function. Although our approach was based on well-known machine learning methods and a simple process, we demonstrated that the integration with two kinds of attributes, genotype and cytokines, was effective and helpful in diagnostic prediction of POAG. More... »

PAGES

41

References to SciGraph publications

  • 2007-06. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls in NATURE
  • 2008-02-06. DNA sequence variants in the LOXL1 gene are associated with pseudoexfoliation glaucoma in a U.S. clinic-based population with broad ethnic diversity in BMC MEDICAL GENOMICS
  • 2010-03-23. The Association Forecasting of 13 Variants Within Seven Asthma Susceptibility Genes on 3 Serum IgE Groups in Taiwanese Population by Integrating of Adaptive Neuro-fuzzy Inference System (ANFIS) and Classification Analysis Methods in JOURNAL OF MEDICAL SYSTEMS
  • 2010-04-23. Identification of Type 2 Diabetes-associated combination of SNPs using Support Vector Machine in BMC GENOMIC DATA
  • 2009-12-31. Molecular complexity of primary open angle glaucoma: current concepts in JOURNAL OF GENETICS
  • 1996-08. Bagging Predictors in MACHINE LEARNING
  • 2006-10. A tutorial on statistical methods for population association studies in NATURE REVIEWS GENETICS
  • 2007-10-14. Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins in NATURE MEDICINE
  • 2011-05-01. Genome-wide association study identifies susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1 in NATURE GENETICS
  • 2010-09-12. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma in NATURE GENETICS
  • 2006-07-23. Principal components analysis corrects for stratification in genome-wide association studies in NATURE GENETICS
  • 2011-05-18. Support Vector Machine Ensembles for Intelligent Diagnosis of Valvular Heart Disease in JOURNAL OF MEDICAL SYSTEMS
  • 1996-08. Bagging predictors in MACHINE LEARNING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/2193-1801-1-41

    DOI

    http://dx.doi.org/10.1186/2193-1801-1-41

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1052330422

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/23961367


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kajiicho 465, Kawaramachi-Hirokoji, 602-8566, Kamigyo-ku, Kyoto, Japan", 
              "id": "http://www.grid.ac/institutes/grid.272458.e", 
              "name": [
                "Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kajiicho 465, Kawaramachi-Hirokoji, 602-8566, Kamigyo-ku, Kyoto, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tokuda", 
            "givenName": "Yuichi", 
            "id": "sg:person.01361350642.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361350642.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kajiicho 465, Kawaramachi-Hirokoji, 602-8566, Kamigyo-ku, Kyoto, Japan", 
              "id": "http://www.grid.ac/institutes/grid.272458.e", 
              "name": [
                "Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kajiicho 465, Kawaramachi-Hirokoji, 602-8566, Kamigyo-ku, Kyoto, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yagi", 
            "givenName": "Tomohito", 
            "id": "sg:person.0635744542.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635744542.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kajiicho 465, Kawaramachi-Hirokoji, 602-8566, Kamigyo-ku, Kyoto, Japan", 
              "id": "http://www.grid.ac/institutes/grid.272458.e", 
              "name": [
                "Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kajiicho 465, Kawaramachi-Hirokoji, 602-8566, Kamigyo-ku, Kyoto, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yoshii", 
            "givenName": "Kengo", 
            "id": "sg:person.0704057742.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704057742.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kajiicho 465, Kawaramachi-Hirokoji, 602-8566, Kamigyo-ku, Kyoto, Japan", 
              "id": "http://www.grid.ac/institutes/grid.272458.e", 
              "name": [
                "Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kajiicho 465, Kawaramachi-Hirokoji, 602-8566, Kamigyo-ku, Kyoto, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ikeda", 
            "givenName": "Yoko", 
            "id": "sg:person.0752173142.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752173142.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Research and Development Center, Santen Pharmaceutical Co. Ltd, 8916-16 Takayama-cho, 630-0101, Ikoma, Nara, Japan", 
              "id": "http://www.grid.ac/institutes/grid.419503.a", 
              "name": [
                "Research and Development Center, Santen Pharmaceutical Co. Ltd, 8916-16 Takayama-cho, 630-0101, Ikoma, Nara, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fuwa", 
            "givenName": "Masahiro", 
            "id": "sg:person.01020306342.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020306342.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kajiicho 465, Kawaramachi-Hirokoji, 602-8566, Kamigyo-ku, Kyoto, Japan", 
              "id": "http://www.grid.ac/institutes/grid.272458.e", 
              "name": [
                "Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kajiicho 465, Kawaramachi-Hirokoji, 602-8566, Kamigyo-ku, Kyoto, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ueno", 
            "givenName": "Morio", 
            "id": "sg:person.01074315450.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074315450.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kajiicho 465, Kawaramachi-Hirokoji, 602-8566, Kamigyo-ku, Kyoto, Japan", 
              "id": "http://www.grid.ac/institutes/grid.272458.e", 
              "name": [
                "Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kajiicho 465, Kawaramachi-Hirokoji, 602-8566, Kamigyo-ku, Kyoto, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nakano", 
            "givenName": "Masakazu", 
            "id": "sg:person.01134534742.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134534742.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kajiicho 465, Kawaramachi-Hirokoji, 602-8566, Kamigyo-ku, Kyoto, Japan", 
              "id": "http://www.grid.ac/institutes/grid.272458.e", 
              "name": [
                "Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kajiicho 465, Kawaramachi-Hirokoji, 602-8566, Kamigyo-ku, Kyoto, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Omi", 
            "givenName": "Natsue", 
            "id": "sg:person.01202650142.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202650142.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kajiicho 465, Kawaramachi-Hirokoji, 602-8566, Kamigyo-ku, Kyoto, Japan", 
              "id": "http://www.grid.ac/institutes/grid.272458.e", 
              "name": [
                "Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kajiicho 465, Kawaramachi-Hirokoji, 602-8566, Kamigyo-ku, Kyoto, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tanaka", 
            "givenName": "Masami", 
            "id": "sg:person.015630103704.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015630103704.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kajiicho 465, Kawaramachi-Hirokoji, 602-8566, Kamigyo-ku, Kyoto, Japan", 
              "id": "http://www.grid.ac/institutes/grid.272458.e", 
              "name": [
                "Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kajiicho 465, Kawaramachi-Hirokoji, 602-8566, Kamigyo-ku, Kyoto, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mori", 
            "givenName": "Kazuhiko", 
            "id": "sg:person.01317076542.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317076542.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Research and Development Center, Santen Pharmaceutical Co. Ltd, 8916-16 Takayama-cho, 630-0101, Ikoma, Nara, Japan", 
              "id": "http://www.grid.ac/institutes/grid.419503.a", 
              "name": [
                "Research and Development Center, Santen Pharmaceutical Co. Ltd, 8916-16 Takayama-cho, 630-0101, Ikoma, Nara, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kageyama", 
            "givenName": "Masaaki", 
            "id": "sg:person.01306743033.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306743033.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Kyoto Prefectural University of Medicine, Kajiicho 465, Kawaramachi-Hirokoji, 602-8566, Kamigyo-ku, Kyoto, Japan", 
              "id": "http://www.grid.ac/institutes/grid.272458.e", 
              "name": [
                "Department of Mathematics, Kyoto Prefectural University of Medicine, Kajiicho 465, Kawaramachi-Hirokoji, 602-8566, Kamigyo-ku, Kyoto, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nagasaki", 
            "givenName": "Ikumitsu", 
            "id": "sg:person.0641605642.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641605642.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Louis Pasteur Center for Medical Research, 103-5, Tanakamonzen-cho, Sakyo-ku, 606-8225, Kyoto City, Kyoto, Japan", 
              "id": "http://www.grid.ac/institutes/grid.452539.c", 
              "name": [
                "Louis Pasteur Center for Medical Research, 103-5, Tanakamonzen-cho, Sakyo-ku, 606-8225, Kyoto City, Kyoto, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yagi", 
            "givenName": "Katsumi", 
            "id": "sg:person.013635661341.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013635661341.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kajiicho 465, Kawaramachi-Hirokoji, 602-8566, Kamigyo-ku, Kyoto, Japan", 
              "id": "http://www.grid.ac/institutes/grid.272458.e", 
              "name": [
                "Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kajiicho 465, Kawaramachi-Hirokoji, 602-8566, Kamigyo-ku, Kyoto, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kinoshita", 
            "givenName": "Shigeru", 
            "id": "sg:person.01016754101.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016754101.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kajiicho 465, Kawaramachi-Hirokoji, 602-8566, Kamigyo-ku, Kyoto, Japan", 
              "id": "http://www.grid.ac/institutes/grid.272458.e", 
              "name": [
                "Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kajiicho 465, Kawaramachi-Hirokoji, 602-8566, Kamigyo-ku, Kyoto, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tashiro", 
            "givenName": "Kei", 
            "id": "sg:person.014513351771.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014513351771.48"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ng1847", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031429813", 
              "https://doi.org/10.1038/ng1847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10916-011-9740-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045124680", 
              "https://doi.org/10.1007/s10916-011-9740-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2156-11-26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033747557", 
              "https://doi.org/10.1186/1471-2156-11-26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.661", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039602768", 
              "https://doi.org/10.1038/ng.661"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00058655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002929950", 
              "https://doi.org/10.1007/bf00058655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.824", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042843457", 
              "https://doi.org/10.1038/ng.824"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1916", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029660577", 
              "https://doi.org/10.1038/nrg1916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05911", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004556449", 
              "https://doi.org/10.1038/nature05911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm1653", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053583368", 
              "https://doi.org/10.1038/nm1653"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2350-9-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034663924", 
              "https://doi.org/10.1186/1471-2350-9-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10916-010-9457-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045220431", 
              "https://doi.org/10.1007/s10916-010-9457-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12041-009-0065-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028735680", 
              "https://doi.org/10.1007/s12041-009-0065-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1018054314350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047284588", 
              "https://doi.org/10.1023/a:1018054314350"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-10-24", 
        "datePublishedReg": "2012-10-24", 
        "description": "Primary open-angle glaucoma (POAG) is one of the major causes of blindness worldwide and considered to be influenced by inherited and environmental factors. Recently, we demonstrated a genome-wide association study for the susceptibility to POAG by comparing patients and controls. In addition, the serum cytokine levels, which are affected by environmental and postnatal factors, could be also obtained in patients as well as in controls, simultaneously. Here, in order to predict the effective diagnosis of POAG, we developed an \u201cintegration approach\u201d using different attribute data which were integrated simply with several machine learning methods and random sampling. Two data sets were prepared for this study. The one is the \u201ctraining data set\u201d, which consisted of 42 POAG and 42 controls. The other is the \u201ctest data set\u201d consisted of 73 POAG and 52 controls. We first examined for genotype and cytokine data using the training data set with general machine learning methods. After the integration approach was applied, we obtained the stable accuracy, using the support vector machine method with the radial basis function. Although our approach was based on well-known machine learning methods and a simple process, we demonstrated that the integration with two kinds of attributes, genotype and cytokines, was effective and helpful in diagnostic prediction of POAG.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/2193-1801-1-41", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6038502", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6071475", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6101025", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1047790", 
            "issn": [
              "2193-1801"
            ], 
            "name": "SpringerPlus", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "1"
          }
        ], 
        "keywords": [
          "training data", 
          "attribute data", 
          "integration approach", 
          "support vector machine method", 
          "vector machine method", 
          "kinds of attributes", 
          "general machine", 
          "radial basis functions", 
          "machine method", 
          "stable accuracy", 
          "machine", 
          "data sets", 
          "diagnostic prediction", 
          "test data", 
          "basis functions", 
          "effective diagnosis", 
          "data", 
          "accuracy", 
          "method", 
          "set", 
          "attributes", 
          "integration", 
          "kind", 
          "prediction", 
          "random sampling", 
          "order", 
          "control", 
          "one", 
          "process", 
          "simple process", 
          "development", 
          "sampling", 
          "function", 
          "addition", 
          "blindness", 
          "study", 
          "levels", 
          "diagnosis", 
          "factors", 
          "wide association study", 
          "association studies", 
          "risk", 
          "environmental factors", 
          "major cause", 
          "genotypes", 
          "glaucoma", 
          "cause", 
          "primary open-angle glaucoma", 
          "susceptibility", 
          "cytokines", 
          "patients", 
          "approach", 
          "open-angle glaucoma", 
          "cytokine data", 
          "glaucoma development", 
          "postnatal factors", 
          "cytokine levels", 
          "serum cytokine levels"
        ], 
        "name": "An approach to predict the risk of glaucoma development by integrating different attribute data", 
        "pagination": "41", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1052330422"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/2193-1801-1-41"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "23961367"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/2193-1801-1-41", 
          "https://app.dimensions.ai/details/publication/pub.1052330422"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_556.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/2193-1801-1-41"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/2193-1801-1-41'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/2193-1801-1-41'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/2193-1801-1-41'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/2193-1801-1-41'


     

    This table displays all metadata directly associated to this object as RDF triples.

    292 TRIPLES      21 PREDICATES      98 URIs      75 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/2193-1801-1-41 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 anzsrc-for:08
    4 anzsrc-for:0801
    5 schema:author N9ff9ab4ebee34074888a114c08810989
    6 schema:citation sg:pub.10.1007/bf00058655
    7 sg:pub.10.1007/s10916-010-9457-4
    8 sg:pub.10.1007/s10916-011-9740-z
    9 sg:pub.10.1007/s12041-009-0065-3
    10 sg:pub.10.1023/a:1018054314350
    11 sg:pub.10.1038/nature05911
    12 sg:pub.10.1038/ng.661
    13 sg:pub.10.1038/ng.824
    14 sg:pub.10.1038/ng1847
    15 sg:pub.10.1038/nm1653
    16 sg:pub.10.1038/nrg1916
    17 sg:pub.10.1186/1471-2156-11-26
    18 sg:pub.10.1186/1471-2350-9-5
    19 schema:datePublished 2012-10-24
    20 schema:datePublishedReg 2012-10-24
    21 schema:description Primary open-angle glaucoma (POAG) is one of the major causes of blindness worldwide and considered to be influenced by inherited and environmental factors. Recently, we demonstrated a genome-wide association study for the susceptibility to POAG by comparing patients and controls. In addition, the serum cytokine levels, which are affected by environmental and postnatal factors, could be also obtained in patients as well as in controls, simultaneously. Here, in order to predict the effective diagnosis of POAG, we developed an “integration approach” using different attribute data which were integrated simply with several machine learning methods and random sampling. Two data sets were prepared for this study. The one is the “training data set”, which consisted of 42 POAG and 42 controls. The other is the “test data set” consisted of 73 POAG and 52 controls. We first examined for genotype and cytokine data using the training data set with general machine learning methods. After the integration approach was applied, we obtained the stable accuracy, using the support vector machine method with the radial basis function. Although our approach was based on well-known machine learning methods and a simple process, we demonstrated that the integration with two kinds of attributes, genotype and cytokines, was effective and helpful in diagnostic prediction of POAG.
    22 schema:genre article
    23 schema:isAccessibleForFree true
    24 schema:isPartOf Nb8c045952a3740e9a80afdd03d422209
    25 Nd5c70a6000f14761b445ff7fa94cccea
    26 sg:journal.1047790
    27 schema:keywords accuracy
    28 addition
    29 approach
    30 association studies
    31 attribute data
    32 attributes
    33 basis functions
    34 blindness
    35 cause
    36 control
    37 cytokine data
    38 cytokine levels
    39 cytokines
    40 data
    41 data sets
    42 development
    43 diagnosis
    44 diagnostic prediction
    45 effective diagnosis
    46 environmental factors
    47 factors
    48 function
    49 general machine
    50 genotypes
    51 glaucoma
    52 glaucoma development
    53 integration
    54 integration approach
    55 kind
    56 kinds of attributes
    57 levels
    58 machine
    59 machine method
    60 major cause
    61 method
    62 one
    63 open-angle glaucoma
    64 order
    65 patients
    66 postnatal factors
    67 prediction
    68 primary open-angle glaucoma
    69 process
    70 radial basis functions
    71 random sampling
    72 risk
    73 sampling
    74 serum cytokine levels
    75 set
    76 simple process
    77 stable accuracy
    78 study
    79 support vector machine method
    80 susceptibility
    81 test data
    82 training data
    83 vector machine method
    84 wide association study
    85 schema:name An approach to predict the risk of glaucoma development by integrating different attribute data
    86 schema:pagination 41
    87 schema:productId N1abe39dff0714d709a2e0c97c3bf96f8
    88 Na0e94551b7d64fc8989ff8ccc23ede3d
    89 Ne6d30f507c46467b931af4bfb94a3e1d
    90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052330422
    91 https://doi.org/10.1186/2193-1801-1-41
    92 schema:sdDatePublished 2022-08-04T17:00
    93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    94 schema:sdPublisher N23a56aa32a4c435a8ab11ce92784e73d
    95 schema:url https://doi.org/10.1186/2193-1801-1-41
    96 sgo:license sg:explorer/license/
    97 sgo:sdDataset articles
    98 rdf:type schema:ScholarlyArticle
    99 N047ea7bd85ca4bacaf32171f779973c9 rdf:first sg:person.0752173142.37
    100 rdf:rest N7b4735499896403d824efb1a86a3d50a
    101 N1abe39dff0714d709a2e0c97c3bf96f8 schema:name pubmed_id
    102 schema:value 23961367
    103 rdf:type schema:PropertyValue
    104 N23a56aa32a4c435a8ab11ce92784e73d schema:name Springer Nature - SN SciGraph project
    105 rdf:type schema:Organization
    106 N2e8886ff41424d5d860d74ab3983115c rdf:first sg:person.013635661341.32
    107 rdf:rest Nd651bdabf8ca4d1db75db0fcbbac452f
    108 N4d6768981b774ed298f0ec8e5f551312 rdf:first sg:person.01074315450.48
    109 rdf:rest N7cc4eb0e80de4b5face5f876f79379dc
    110 N5c3078b6426641e5bdabe7948fee5dc7 rdf:first sg:person.01317076542.38
    111 rdf:rest Nadac69f719c7493db06134b46b45360d
    112 N7b4735499896403d824efb1a86a3d50a rdf:first sg:person.01020306342.31
    113 rdf:rest N4d6768981b774ed298f0ec8e5f551312
    114 N7cc4eb0e80de4b5face5f876f79379dc rdf:first sg:person.01134534742.17
    115 rdf:rest N8d09dc9c8b4e4fbc995502f058c09759
    116 N7e0a81a070e445acab8487f86108c561 rdf:first sg:person.0635744542.21
    117 rdf:rest Ndba53bc2d38343708c0f8db0b34da14d
    118 N8d09dc9c8b4e4fbc995502f058c09759 rdf:first sg:person.01202650142.38
    119 rdf:rest Nf34ddcec54a14b86a6c83661460bb409
    120 N9ff9ab4ebee34074888a114c08810989 rdf:first sg:person.01361350642.66
    121 rdf:rest N7e0a81a070e445acab8487f86108c561
    122 Na0e94551b7d64fc8989ff8ccc23ede3d schema:name dimensions_id
    123 schema:value pub.1052330422
    124 rdf:type schema:PropertyValue
    125 Nadac69f719c7493db06134b46b45360d rdf:first sg:person.01306743033.30
    126 rdf:rest Nb7b415ed5851436785bca6ff92747b9f
    127 Nb7b415ed5851436785bca6ff92747b9f rdf:first sg:person.0641605642.29
    128 rdf:rest N2e8886ff41424d5d860d74ab3983115c
    129 Nb8c045952a3740e9a80afdd03d422209 schema:volumeNumber 1
    130 rdf:type schema:PublicationVolume
    131 Nb9e6c88a039c4f5d829c85566200896d rdf:first sg:person.014513351771.48
    132 rdf:rest rdf:nil
    133 Nd5c70a6000f14761b445ff7fa94cccea schema:issueNumber 1
    134 rdf:type schema:PublicationIssue
    135 Nd651bdabf8ca4d1db75db0fcbbac452f rdf:first sg:person.01016754101.20
    136 rdf:rest Nb9e6c88a039c4f5d829c85566200896d
    137 Ndba53bc2d38343708c0f8db0b34da14d rdf:first sg:person.0704057742.66
    138 rdf:rest N047ea7bd85ca4bacaf32171f779973c9
    139 Ne6d30f507c46467b931af4bfb94a3e1d schema:name doi
    140 schema:value 10.1186/2193-1801-1-41
    141 rdf:type schema:PropertyValue
    142 Nf34ddcec54a14b86a6c83661460bb409 rdf:first sg:person.015630103704.38
    143 rdf:rest N5c3078b6426641e5bdabe7948fee5dc7
    144 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    145 schema:name Mathematical Sciences
    146 rdf:type schema:DefinedTerm
    147 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    148 schema:name Statistics
    149 rdf:type schema:DefinedTerm
    150 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    151 schema:name Information and Computing Sciences
    152 rdf:type schema:DefinedTerm
    153 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    154 schema:name Artificial Intelligence and Image Processing
    155 rdf:type schema:DefinedTerm
    156 sg:grant.6038502 http://pending.schema.org/fundedItem sg:pub.10.1186/2193-1801-1-41
    157 rdf:type schema:MonetaryGrant
    158 sg:grant.6071475 http://pending.schema.org/fundedItem sg:pub.10.1186/2193-1801-1-41
    159 rdf:type schema:MonetaryGrant
    160 sg:grant.6101025 http://pending.schema.org/fundedItem sg:pub.10.1186/2193-1801-1-41
    161 rdf:type schema:MonetaryGrant
    162 sg:journal.1047790 schema:issn 2193-1801
    163 schema:name SpringerPlus
    164 schema:publisher Springer Nature
    165 rdf:type schema:Periodical
    166 sg:person.01016754101.20 schema:affiliation grid-institutes:grid.272458.e
    167 schema:familyName Kinoshita
    168 schema:givenName Shigeru
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016754101.20
    170 rdf:type schema:Person
    171 sg:person.01020306342.31 schema:affiliation grid-institutes:grid.419503.a
    172 schema:familyName Fuwa
    173 schema:givenName Masahiro
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020306342.31
    175 rdf:type schema:Person
    176 sg:person.01074315450.48 schema:affiliation grid-institutes:grid.272458.e
    177 schema:familyName Ueno
    178 schema:givenName Morio
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074315450.48
    180 rdf:type schema:Person
    181 sg:person.01134534742.17 schema:affiliation grid-institutes:grid.272458.e
    182 schema:familyName Nakano
    183 schema:givenName Masakazu
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134534742.17
    185 rdf:type schema:Person
    186 sg:person.01202650142.38 schema:affiliation grid-institutes:grid.272458.e
    187 schema:familyName Omi
    188 schema:givenName Natsue
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202650142.38
    190 rdf:type schema:Person
    191 sg:person.01306743033.30 schema:affiliation grid-institutes:grid.419503.a
    192 schema:familyName Kageyama
    193 schema:givenName Masaaki
    194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306743033.30
    195 rdf:type schema:Person
    196 sg:person.01317076542.38 schema:affiliation grid-institutes:grid.272458.e
    197 schema:familyName Mori
    198 schema:givenName Kazuhiko
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317076542.38
    200 rdf:type schema:Person
    201 sg:person.01361350642.66 schema:affiliation grid-institutes:grid.272458.e
    202 schema:familyName Tokuda
    203 schema:givenName Yuichi
    204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361350642.66
    205 rdf:type schema:Person
    206 sg:person.013635661341.32 schema:affiliation grid-institutes:grid.452539.c
    207 schema:familyName Yagi
    208 schema:givenName Katsumi
    209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013635661341.32
    210 rdf:type schema:Person
    211 sg:person.014513351771.48 schema:affiliation grid-institutes:grid.272458.e
    212 schema:familyName Tashiro
    213 schema:givenName Kei
    214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014513351771.48
    215 rdf:type schema:Person
    216 sg:person.015630103704.38 schema:affiliation grid-institutes:grid.272458.e
    217 schema:familyName Tanaka
    218 schema:givenName Masami
    219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015630103704.38
    220 rdf:type schema:Person
    221 sg:person.0635744542.21 schema:affiliation grid-institutes:grid.272458.e
    222 schema:familyName Yagi
    223 schema:givenName Tomohito
    224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635744542.21
    225 rdf:type schema:Person
    226 sg:person.0641605642.29 schema:affiliation grid-institutes:grid.272458.e
    227 schema:familyName Nagasaki
    228 schema:givenName Ikumitsu
    229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641605642.29
    230 rdf:type schema:Person
    231 sg:person.0704057742.66 schema:affiliation grid-institutes:grid.272458.e
    232 schema:familyName Yoshii
    233 schema:givenName Kengo
    234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704057742.66
    235 rdf:type schema:Person
    236 sg:person.0752173142.37 schema:affiliation grid-institutes:grid.272458.e
    237 schema:familyName Ikeda
    238 schema:givenName Yoko
    239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752173142.37
    240 rdf:type schema:Person
    241 sg:pub.10.1007/bf00058655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002929950
    242 https://doi.org/10.1007/bf00058655
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1007/s10916-010-9457-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045220431
    245 https://doi.org/10.1007/s10916-010-9457-4
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1007/s10916-011-9740-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1045124680
    248 https://doi.org/10.1007/s10916-011-9740-z
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1007/s12041-009-0065-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028735680
    251 https://doi.org/10.1007/s12041-009-0065-3
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1023/a:1018054314350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047284588
    254 https://doi.org/10.1023/a:1018054314350
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/nature05911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004556449
    257 https://doi.org/10.1038/nature05911
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/ng.661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039602768
    260 https://doi.org/10.1038/ng.661
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/ng.824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042843457
    263 https://doi.org/10.1038/ng.824
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1038/ng1847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031429813
    266 https://doi.org/10.1038/ng1847
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1038/nm1653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053583368
    269 https://doi.org/10.1038/nm1653
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/nrg1916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029660577
    272 https://doi.org/10.1038/nrg1916
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1186/1471-2156-11-26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033747557
    275 https://doi.org/10.1186/1471-2156-11-26
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1186/1471-2350-9-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034663924
    278 https://doi.org/10.1186/1471-2350-9-5
    279 rdf:type schema:CreativeWork
    280 grid-institutes:grid.272458.e schema:alternateName Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kajiicho 465, Kawaramachi-Hirokoji, 602-8566, Kamigyo-ku, Kyoto, Japan
    281 Department of Mathematics, Kyoto Prefectural University of Medicine, Kajiicho 465, Kawaramachi-Hirokoji, 602-8566, Kamigyo-ku, Kyoto, Japan
    282 Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kajiicho 465, Kawaramachi-Hirokoji, 602-8566, Kamigyo-ku, Kyoto, Japan
    283 schema:name Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kajiicho 465, Kawaramachi-Hirokoji, 602-8566, Kamigyo-ku, Kyoto, Japan
    284 Department of Mathematics, Kyoto Prefectural University of Medicine, Kajiicho 465, Kawaramachi-Hirokoji, 602-8566, Kamigyo-ku, Kyoto, Japan
    285 Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kajiicho 465, Kawaramachi-Hirokoji, 602-8566, Kamigyo-ku, Kyoto, Japan
    286 rdf:type schema:Organization
    287 grid-institutes:grid.419503.a schema:alternateName Research and Development Center, Santen Pharmaceutical Co. Ltd, 8916-16 Takayama-cho, 630-0101, Ikoma, Nara, Japan
    288 schema:name Research and Development Center, Santen Pharmaceutical Co. Ltd, 8916-16 Takayama-cho, 630-0101, Ikoma, Nara, Japan
    289 rdf:type schema:Organization
    290 grid-institutes:grid.452539.c schema:alternateName Louis Pasteur Center for Medical Research, 103-5, Tanakamonzen-cho, Sakyo-ku, 606-8225, Kyoto City, Kyoto, Japan
    291 schema:name Louis Pasteur Center for Medical Research, 103-5, Tanakamonzen-cho, Sakyo-ku, 606-8225, Kyoto City, Kyoto, Japan
    292 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...