Long fasting is effective in inhibiting physiological myocardial 18F-FDG uptake and for evaluating active lesions of cardiac sarcoidosis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Miyako Morooka, Masao Moroi, Kimiichi Uno, Kimiteru Ito, Jin Wu, Takashi Nakagawa, Kazuo Kubota, Ryogo Minamimoto, Yoko Miyata, Momoko Okasaki, Osamu Okazaki, Yoshihito Yamada, Tetsuo Yamaguchi, Michiaki Hiroe

ABSTRACT

BACKGROUND: F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is a promising modality for detecting active lesions of cardiac sarcoidosis (CS). However, determining whether 18F-FDG uptake in the myocardium is physiological is challenging due to metabolic shift in myocardial cells. Although methods for inhibiting physiological myocardial 18F-FDG uptake have been proposed, no standard methods exist. This study therefore aimed to compare the effect of an 18-h fast (long fasting (LF)) with heparin loading plus a 12-h fast (HEP) before 18F-FDG PET scan. METHODS: We analyzed the effects of LF and HEP on the inhibition of physiological myocardial 18F-FDG uptake in healthy subjects (18 in HEP and 19 in LF) and in patients with known or suspected CS (96 in HEP and 69 in LF). In CS, the lower uptake of 18F-FDG in the myocardium was evaluated. A visual four-point scale was used to assess myocardial 18F-FDG uptake in comparison with hepatic uptake (1 lower, 2 similar, 3 somewhat higher, 4 noticeably higher). RESULTS: Myocardial 18F-FDG uptake was 1.68 ± 1.06 in LF and 3.17 ± 1.16 in HEP in healthy subjects (p < 0.0001), whereas it was 1.48 ± 0.99 in LF and 2.48 ± 1.33 in HEP in CS patients (p < 0.0001). Logistic regression and regression trees revealed the LF was the most effective in inhibiting myocardial 18F-FDG uptake. In addition, serum free fatty acid levels on intravenous 18F-FDG injection were a possible biomarker. CONCLUSIONS: LF is effective in inhibiting myocardial 18F-FDG uptake, and consequently, it could be useful for evaluating active lesions of CS in 18F-FDG PET images. More... »

PAGES

1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/2191-219x-4-1

DOI

http://dx.doi.org/10.1186/2191-219x-4-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011957957

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24382020


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Center For Global Health and Medicine", 
          "id": "https://www.grid.ac/institutes/grid.45203.30", 
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, National Center for Global Health and Medicine, 162-8655, Shinjuku-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morooka", 
        "givenName": "Miyako", 
        "id": "sg:person.0667410047.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667410047.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Toho University Ohashi Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.470115.6", 
          "name": [
            "Department of Cardiology, National Center for Global Health and Medicine, 1-21-1 Toyama, 162-8655, Shinjuku-ku, Tokyo, Japan", 
            "Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, 2-17-6 Ohashi, 153-8515, Meguro-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moroi", 
        "givenName": "Masao", 
        "id": "sg:person.01211117404.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211117404.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Gaien Higashi Clinic, 20 Samontyo, 160-0017, Shinjuku-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uno", 
        "givenName": "Kimiichi", 
        "id": "sg:person.01126576601.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126576601.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Center For Global Health and Medicine", 
          "id": "https://www.grid.ac/institutes/grid.45203.30", 
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, National Center for Global Health and Medicine, 162-8655, Shinjuku-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ito", 
        "givenName": "Kimiteru", 
        "id": "sg:person.012345401362.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012345401362.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Gaien Higashi Clinic, 20 Samontyo, 160-0017, Shinjuku-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Jin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Center For Global Health and Medicine", 
          "id": "https://www.grid.ac/institutes/grid.45203.30", 
          "name": [
            "Department of Cardiology, National Center for Global Health and Medicine, 1-21-1 Toyama, 162-8655, Shinjuku-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakagawa", 
        "givenName": "Takashi", 
        "id": "sg:person.013301145667.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013301145667.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Center For Global Health and Medicine", 
          "id": "https://www.grid.ac/institutes/grid.45203.30", 
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, National Center for Global Health and Medicine, 162-8655, Shinjuku-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kubota", 
        "givenName": "Kazuo", 
        "id": "sg:person.0716110777.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716110777.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Center For Global Health and Medicine", 
          "id": "https://www.grid.ac/institutes/grid.45203.30", 
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, National Center for Global Health and Medicine, 162-8655, Shinjuku-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Minamimoto", 
        "givenName": "Ryogo", 
        "id": "sg:person.0714511602.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714511602.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Center For Global Health and Medicine", 
          "id": "https://www.grid.ac/institutes/grid.45203.30", 
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, National Center for Global Health and Medicine, 162-8655, Shinjuku-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyata", 
        "givenName": "Yoko", 
        "id": "sg:person.01170302356.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170302356.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Center For Global Health and Medicine", 
          "id": "https://www.grid.ac/institutes/grid.45203.30", 
          "name": [
            "Division of Nuclear Medicine, Department of Radiology, National Center for Global Health and Medicine, 162-8655, Shinjuku-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okasaki", 
        "givenName": "Momoko", 
        "id": "sg:person.01203617123.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203617123.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Center For Global Health and Medicine", 
          "id": "https://www.grid.ac/institutes/grid.45203.30", 
          "name": [
            "Department of Cardiology, National Center for Global Health and Medicine, 1-21-1 Toyama, 162-8655, Shinjuku-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okazaki", 
        "givenName": "Osamu", 
        "id": "sg:person.0613762626.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613762626.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "JR Tokyo General Hospital", 
          "id": "https://www.grid.ac/institutes/grid.414768.8", 
          "name": [
            "Department of Respiratory Medicine, JR Tokyo General Hospital, 2-1-3 Yoyogi, 151-0053, Shibuya-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamada", 
        "givenName": "Yoshihito", 
        "id": "sg:person.01137157021.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137157021.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "JR Tokyo General Hospital", 
          "id": "https://www.grid.ac/institutes/grid.414768.8", 
          "name": [
            "Department of Respiratory Medicine, JR Tokyo General Hospital, 2-1-3 Yoyogi, 151-0053, Shibuya-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamaguchi", 
        "givenName": "Tetsuo", 
        "id": "sg:person.01253405421.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253405421.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Center For Global Health and Medicine", 
          "id": "https://www.grid.ac/institutes/grid.45203.30", 
          "name": [
            "Department of Cardiology, National Center for Global Health and Medicine, 1-21-1 Toyama, 162-8655, Shinjuku-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hiroe", 
        "givenName": "Michiaki", 
        "id": "sg:person.0714645765.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714645765.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s1095-0397(01)00062-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000370645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/ehi180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007824477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0801271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008931532", 
          "https://doi.org/10.1038/sj.ijo.0801271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0801271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008931532", 
          "https://doi.org/10.1038/sj.ijo.0801271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03027431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010527421", 
          "https://doi.org/10.1007/bf03027431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12350-011-9358-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011259760", 
          "https://doi.org/10.1007/s12350-011-9358-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12350-009-9110-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017012456", 
          "https://doi.org/10.1007/s12350-009-9110-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12350-009-9110-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017012456", 
          "https://doi.org/10.1007/s12350-009-9110-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/art.21074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019622766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.107.041574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021371425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/hrt.2011.226076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026401803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-007-0650-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027322306", 
          "https://doi.org/10.1007/s00259-007-0650-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.111.090662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029604565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12350-009-9179-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036057987", 
          "https://doi.org/10.1007/s12350-009-9179-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1540-8167.2008.01417.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037446768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0735-1097(97)00352-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037733958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11892-005-0004-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042075280", 
          "https://doi.org/10.1007/s11892-005-0004-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.108.055616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046827268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1164/ajrccm.160.2.ats4-99", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049270626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02970271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050709785", 
          "https://doi.org/10.1007/bf02970271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02970271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050709785", 
          "https://doi.org/10.1007/bf02970271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1071-3581(03)00648-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054677155", 
          "https://doi.org/10.1016/s1071-3581(03)00648-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ehj.2004.03.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054732475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-2003-39781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057422222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075310654", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076976632", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077893928", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078512918", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079420633", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is a promising modality for detecting active lesions of cardiac sarcoidosis (CS). However, determining whether 18F-FDG uptake in the myocardium is physiological is challenging due to metabolic shift in myocardial cells. Although methods for inhibiting physiological myocardial 18F-FDG uptake have been proposed, no standard methods exist. This study therefore aimed to compare the effect of an 18-h fast (long fasting (LF)) with heparin loading plus a 12-h fast (HEP) before 18F-FDG PET scan.\nMETHODS: We analyzed the effects of LF and HEP on the inhibition of physiological myocardial 18F-FDG uptake in healthy subjects (18 in HEP and 19 in LF) and in patients with known or suspected CS (96 in HEP and 69 in LF). In CS, the lower uptake of 18F-FDG in the myocardium was evaluated. A visual four-point scale was used to assess myocardial 18F-FDG uptake in comparison with hepatic uptake (1 lower, 2 similar, 3 somewhat higher, 4 noticeably higher).\nRESULTS: Myocardial 18F-FDG uptake was 1.68\u2009\u00b1\u20091.06 in LF and 3.17\u2009\u00b1\u20091.16 in HEP in healthy subjects (p\u2009<\u20090.0001), whereas it was 1.48\u2009\u00b1\u20090.99 in LF and 2.48\u2009\u00b1\u20091.33 in HEP in CS patients (p\u2009<\u20090.0001). Logistic regression and regression trees revealed the LF was the most effective in inhibiting myocardial 18F-FDG uptake. In addition, serum free fatty acid levels on intravenous 18F-FDG injection were a possible biomarker.\nCONCLUSIONS: LF is effective in inhibiting myocardial 18F-FDG uptake, and consequently, it could be useful for evaluating active lesions of CS in 18F-FDG PET images.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/2191-219x-4-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6078363", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6092620", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6075652", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045165", 
        "issn": [
          "2191-219X"
        ], 
        "name": "EJNMMI Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Long fasting is effective in inhibiting physiological myocardial 18F-FDG uptake and for evaluating active lesions of cardiac sarcoidosis", 
    "pagination": "1", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "38f95a8f88c414116a30c3dcfcec2b467c4606f0892d1af5dbb5e049a270c3af"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24382020"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101560946"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/2191-219x-4-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011957957"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/2191-219x-4-1", 
      "https://app.dimensions.ai/details/publication/pub.1011957957"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F2191-219X-4-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/2191-219x-4-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/2191-219x-4-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/2191-219x-4-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/2191-219x-4-1'


 

This table displays all metadata directly associated to this object as RDF triples.

258 TRIPLES      21 PREDICATES      55 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/2191-219x-4-1 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N6b80a756f8374eb98313ce8ca9526d1a
4 schema:citation sg:pub.10.1007/bf02970271
5 sg:pub.10.1007/bf03027431
6 sg:pub.10.1007/s00259-007-0650-8
7 sg:pub.10.1007/s11892-005-0004-5
8 sg:pub.10.1007/s12350-009-9110-0
9 sg:pub.10.1007/s12350-009-9179-5
10 sg:pub.10.1007/s12350-011-9358-z
11 sg:pub.10.1016/s1071-3581(03)00648-2
12 sg:pub.10.1038/sj.ijo.0801271
13 https://app.dimensions.ai/details/publication/pub.1075310654
14 https://app.dimensions.ai/details/publication/pub.1076976632
15 https://app.dimensions.ai/details/publication/pub.1077893928
16 https://app.dimensions.ai/details/publication/pub.1078512918
17 https://app.dimensions.ai/details/publication/pub.1079420633
18 https://doi.org/10.1002/art.21074
19 https://doi.org/10.1016/j.ehj.2004.03.012
20 https://doi.org/10.1016/s0735-1097(97)00352-5
21 https://doi.org/10.1016/s1095-0397(01)00062-0
22 https://doi.org/10.1055/s-2003-39781
23 https://doi.org/10.1093/eurheartj/ehi180
24 https://doi.org/10.1111/j.1540-8167.2008.01417.x
25 https://doi.org/10.1136/hrt.2011.226076
26 https://doi.org/10.1164/ajrccm.160.2.ats4-99
27 https://doi.org/10.2967/jnumed.107.041574
28 https://doi.org/10.2967/jnumed.108.055616
29 https://doi.org/10.2967/jnumed.111.090662
30 schema:datePublished 2014-12
31 schema:datePublishedReg 2014-12-01
32 schema:description BACKGROUND: F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is a promising modality for detecting active lesions of cardiac sarcoidosis (CS). However, determining whether 18F-FDG uptake in the myocardium is physiological is challenging due to metabolic shift in myocardial cells. Although methods for inhibiting physiological myocardial 18F-FDG uptake have been proposed, no standard methods exist. This study therefore aimed to compare the effect of an 18-h fast (long fasting (LF)) with heparin loading plus a 12-h fast (HEP) before 18F-FDG PET scan. METHODS: We analyzed the effects of LF and HEP on the inhibition of physiological myocardial 18F-FDG uptake in healthy subjects (18 in HEP and 19 in LF) and in patients with known or suspected CS (96 in HEP and 69 in LF). In CS, the lower uptake of 18F-FDG in the myocardium was evaluated. A visual four-point scale was used to assess myocardial 18F-FDG uptake in comparison with hepatic uptake (1 lower, 2 similar, 3 somewhat higher, 4 noticeably higher). RESULTS: Myocardial 18F-FDG uptake was 1.68 ± 1.06 in LF and 3.17 ± 1.16 in HEP in healthy subjects (p < 0.0001), whereas it was 1.48 ± 0.99 in LF and 2.48 ± 1.33 in HEP in CS patients (p < 0.0001). Logistic regression and regression trees revealed the LF was the most effective in inhibiting myocardial 18F-FDG uptake. In addition, serum free fatty acid levels on intravenous 18F-FDG injection were a possible biomarker. CONCLUSIONS: LF is effective in inhibiting myocardial 18F-FDG uptake, and consequently, it could be useful for evaluating active lesions of CS in 18F-FDG PET images.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N10642090c8204c948f0b01696c4fcd86
37 N4bf0477ddfc14f0fbc847a0378510e93
38 sg:journal.1045165
39 schema:name Long fasting is effective in inhibiting physiological myocardial 18F-FDG uptake and for evaluating active lesions of cardiac sarcoidosis
40 schema:pagination 1
41 schema:productId N786865a6be2e4a96966d48d7edd17789
42 N9896719e0d574a21aff418ec27a7134b
43 Na0a1529e53014836a5e87839c0715c14
44 Nb1e057246cb046f2943efc6a48152f6d
45 Nef566ea39d8c429c95379d68829a683c
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011957957
47 https://doi.org/10.1186/2191-219x-4-1
48 schema:sdDatePublished 2019-04-10T23:24
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N9f1fbb42fb4348409a51aaac41c02de0
51 schema:url http://link.springer.com/10.1186%2F2191-219X-4-1
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N033c9336e21440239eeb80922b1644a5 schema:name Gaien Higashi Clinic, 20 Samontyo, 160-0017, Shinjuku-ku, Tokyo, Japan
56 rdf:type schema:Organization
57 N08855fcbcc91436488d441b2441909eb rdf:first sg:person.01126576601.84
58 rdf:rest Nb71f18a8610b43d78b8bf80bc66b2ad6
59 N10642090c8204c948f0b01696c4fcd86 schema:issueNumber 1
60 rdf:type schema:PublicationIssue
61 N4bf0477ddfc14f0fbc847a0378510e93 schema:volumeNumber 4
62 rdf:type schema:PublicationVolume
63 N59dd99befe1946ab92711d6b883b1736 rdf:first sg:person.01211117404.38
64 rdf:rest N08855fcbcc91436488d441b2441909eb
65 N6b80a756f8374eb98313ce8ca9526d1a rdf:first sg:person.0667410047.02
66 rdf:rest N59dd99befe1946ab92711d6b883b1736
67 N786865a6be2e4a96966d48d7edd17789 schema:name pubmed_id
68 schema:value 24382020
69 rdf:type schema:PropertyValue
70 N860be0b91d814346b2a30d4655d76799 schema:name Gaien Higashi Clinic, 20 Samontyo, 160-0017, Shinjuku-ku, Tokyo, Japan
71 rdf:type schema:Organization
72 N8fbf8cdc4f38423e810abd5510df8770 rdf:first sg:person.0716110777.77
73 rdf:rest Nb585c175c45b4764af692d373c3f1703
74 N92bb2aaadb4a4ed8a05f1500fc0b7085 rdf:first Nf70f7e56c9b04cf4b44126a1a1f7f95b
75 rdf:rest N93008bf4599e447f84a1f31046a2ecc4
76 N93008bf4599e447f84a1f31046a2ecc4 rdf:first sg:person.013301145667.04
77 rdf:rest N8fbf8cdc4f38423e810abd5510df8770
78 N97e683834c534d03bc5515d792086dec rdf:first sg:person.01170302356.91
79 rdf:rest Nc777cba986534623b60a369d1f610d76
80 N9896719e0d574a21aff418ec27a7134b schema:name nlm_unique_id
81 schema:value 101560946
82 rdf:type schema:PropertyValue
83 N9f1fbb42fb4348409a51aaac41c02de0 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Na0a1529e53014836a5e87839c0715c14 schema:name readcube_id
86 schema:value 38f95a8f88c414116a30c3dcfcec2b467c4606f0892d1af5dbb5e049a270c3af
87 rdf:type schema:PropertyValue
88 Nb1e057246cb046f2943efc6a48152f6d schema:name doi
89 schema:value 10.1186/2191-219x-4-1
90 rdf:type schema:PropertyValue
91 Nb585c175c45b4764af692d373c3f1703 rdf:first sg:person.0714511602.66
92 rdf:rest N97e683834c534d03bc5515d792086dec
93 Nb71f18a8610b43d78b8bf80bc66b2ad6 rdf:first sg:person.012345401362.45
94 rdf:rest N92bb2aaadb4a4ed8a05f1500fc0b7085
95 Nc22eefef53634cd4938c1db25efa5d6f rdf:first sg:person.01137157021.24
96 rdf:rest Ne8ee5e71b7db4c51bc27f45ffa049f4e
97 Nc777cba986534623b60a369d1f610d76 rdf:first sg:person.01203617123.27
98 rdf:rest Nd518eff7ec4a4189bec7e5e7afe25dd0
99 Nd381583b95c94208905771a44fe533ea rdf:first sg:person.0714645765.11
100 rdf:rest rdf:nil
101 Nd518eff7ec4a4189bec7e5e7afe25dd0 rdf:first sg:person.0613762626.77
102 rdf:rest Nc22eefef53634cd4938c1db25efa5d6f
103 Ne8ee5e71b7db4c51bc27f45ffa049f4e rdf:first sg:person.01253405421.48
104 rdf:rest Nd381583b95c94208905771a44fe533ea
105 Nef566ea39d8c429c95379d68829a683c schema:name dimensions_id
106 schema:value pub.1011957957
107 rdf:type schema:PropertyValue
108 Nf70f7e56c9b04cf4b44126a1a1f7f95b schema:affiliation N860be0b91d814346b2a30d4655d76799
109 schema:familyName Wu
110 schema:givenName Jin
111 rdf:type schema:Person
112 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
113 schema:name Medical and Health Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
116 schema:name Clinical Sciences
117 rdf:type schema:DefinedTerm
118 sg:grant.6075652 http://pending.schema.org/fundedItem sg:pub.10.1186/2191-219x-4-1
119 rdf:type schema:MonetaryGrant
120 sg:grant.6078363 http://pending.schema.org/fundedItem sg:pub.10.1186/2191-219x-4-1
121 rdf:type schema:MonetaryGrant
122 sg:grant.6092620 http://pending.schema.org/fundedItem sg:pub.10.1186/2191-219x-4-1
123 rdf:type schema:MonetaryGrant
124 sg:journal.1045165 schema:issn 2191-219X
125 schema:name EJNMMI Research
126 rdf:type schema:Periodical
127 sg:person.01126576601.84 schema:affiliation N033c9336e21440239eeb80922b1644a5
128 schema:familyName Uno
129 schema:givenName Kimiichi
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126576601.84
131 rdf:type schema:Person
132 sg:person.01137157021.24 schema:affiliation https://www.grid.ac/institutes/grid.414768.8
133 schema:familyName Yamada
134 schema:givenName Yoshihito
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137157021.24
136 rdf:type schema:Person
137 sg:person.01170302356.91 schema:affiliation https://www.grid.ac/institutes/grid.45203.30
138 schema:familyName Miyata
139 schema:givenName Yoko
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170302356.91
141 rdf:type schema:Person
142 sg:person.01203617123.27 schema:affiliation https://www.grid.ac/institutes/grid.45203.30
143 schema:familyName Okasaki
144 schema:givenName Momoko
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203617123.27
146 rdf:type schema:Person
147 sg:person.01211117404.38 schema:affiliation https://www.grid.ac/institutes/grid.470115.6
148 schema:familyName Moroi
149 schema:givenName Masao
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211117404.38
151 rdf:type schema:Person
152 sg:person.012345401362.45 schema:affiliation https://www.grid.ac/institutes/grid.45203.30
153 schema:familyName Ito
154 schema:givenName Kimiteru
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012345401362.45
156 rdf:type schema:Person
157 sg:person.01253405421.48 schema:affiliation https://www.grid.ac/institutes/grid.414768.8
158 schema:familyName Yamaguchi
159 schema:givenName Tetsuo
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253405421.48
161 rdf:type schema:Person
162 sg:person.013301145667.04 schema:affiliation https://www.grid.ac/institutes/grid.45203.30
163 schema:familyName Nakagawa
164 schema:givenName Takashi
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013301145667.04
166 rdf:type schema:Person
167 sg:person.0613762626.77 schema:affiliation https://www.grid.ac/institutes/grid.45203.30
168 schema:familyName Okazaki
169 schema:givenName Osamu
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613762626.77
171 rdf:type schema:Person
172 sg:person.0667410047.02 schema:affiliation https://www.grid.ac/institutes/grid.45203.30
173 schema:familyName Morooka
174 schema:givenName Miyako
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667410047.02
176 rdf:type schema:Person
177 sg:person.0714511602.66 schema:affiliation https://www.grid.ac/institutes/grid.45203.30
178 schema:familyName Minamimoto
179 schema:givenName Ryogo
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714511602.66
181 rdf:type schema:Person
182 sg:person.0714645765.11 schema:affiliation https://www.grid.ac/institutes/grid.45203.30
183 schema:familyName Hiroe
184 schema:givenName Michiaki
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714645765.11
186 rdf:type schema:Person
187 sg:person.0716110777.77 schema:affiliation https://www.grid.ac/institutes/grid.45203.30
188 schema:familyName Kubota
189 schema:givenName Kazuo
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716110777.77
191 rdf:type schema:Person
192 sg:pub.10.1007/bf02970271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050709785
193 https://doi.org/10.1007/bf02970271
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/bf03027431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010527421
196 https://doi.org/10.1007/bf03027431
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/s00259-007-0650-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027322306
199 https://doi.org/10.1007/s00259-007-0650-8
200 rdf:type schema:CreativeWork
201 sg:pub.10.1007/s11892-005-0004-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042075280
202 https://doi.org/10.1007/s11892-005-0004-5
203 rdf:type schema:CreativeWork
204 sg:pub.10.1007/s12350-009-9110-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017012456
205 https://doi.org/10.1007/s12350-009-9110-0
206 rdf:type schema:CreativeWork
207 sg:pub.10.1007/s12350-009-9179-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036057987
208 https://doi.org/10.1007/s12350-009-9179-5
209 rdf:type schema:CreativeWork
210 sg:pub.10.1007/s12350-011-9358-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1011259760
211 https://doi.org/10.1007/s12350-011-9358-z
212 rdf:type schema:CreativeWork
213 sg:pub.10.1016/s1071-3581(03)00648-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054677155
214 https://doi.org/10.1016/s1071-3581(03)00648-2
215 rdf:type schema:CreativeWork
216 sg:pub.10.1038/sj.ijo.0801271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008931532
217 https://doi.org/10.1038/sj.ijo.0801271
218 rdf:type schema:CreativeWork
219 https://app.dimensions.ai/details/publication/pub.1075310654 schema:CreativeWork
220 https://app.dimensions.ai/details/publication/pub.1076976632 schema:CreativeWork
221 https://app.dimensions.ai/details/publication/pub.1077893928 schema:CreativeWork
222 https://app.dimensions.ai/details/publication/pub.1078512918 schema:CreativeWork
223 https://app.dimensions.ai/details/publication/pub.1079420633 schema:CreativeWork
224 https://doi.org/10.1002/art.21074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019622766
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/j.ehj.2004.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054732475
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/s0735-1097(97)00352-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037733958
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/s1095-0397(01)00062-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000370645
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1055/s-2003-39781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057422222
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1093/eurheartj/ehi180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007824477
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1111/j.1540-8167.2008.01417.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037446768
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1136/hrt.2011.226076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026401803
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1164/ajrccm.160.2.ats4-99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049270626
241 rdf:type schema:CreativeWork
242 https://doi.org/10.2967/jnumed.107.041574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021371425
243 rdf:type schema:CreativeWork
244 https://doi.org/10.2967/jnumed.108.055616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046827268
245 rdf:type schema:CreativeWork
246 https://doi.org/10.2967/jnumed.111.090662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029604565
247 rdf:type schema:CreativeWork
248 https://www.grid.ac/institutes/grid.414768.8 schema:alternateName JR Tokyo General Hospital
249 schema:name Department of Respiratory Medicine, JR Tokyo General Hospital, 2-1-3 Yoyogi, 151-0053, Shibuya-ku, Tokyo, Japan
250 rdf:type schema:Organization
251 https://www.grid.ac/institutes/grid.45203.30 schema:alternateName National Center For Global Health and Medicine
252 schema:name Department of Cardiology, National Center for Global Health and Medicine, 1-21-1 Toyama, 162-8655, Shinjuku-ku, Tokyo, Japan
253 Division of Nuclear Medicine, Department of Radiology, National Center for Global Health and Medicine, 162-8655, Shinjuku-ku, Tokyo, Japan
254 rdf:type schema:Organization
255 https://www.grid.ac/institutes/grid.470115.6 schema:alternateName Toho University Ohashi Medical Center
256 schema:name Department of Cardiology, National Center for Global Health and Medicine, 1-21-1 Toyama, 162-8655, Shinjuku-ku, Tokyo, Japan
257 Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, 2-17-6 Ohashi, 153-8515, Meguro-ku, Tokyo, Japan
258 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...