Assessment of tumour size in PET/CT lung cancer studies: PET- and CT-based methods compared to pathology View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12

AUTHORS

Patsuree Cheebsumon, Ronald Boellaard, Dirk de Ruysscher, Wouter van Elmpt, Angela van Baardwijk, Maqsood Yaqub, Otto S Hoekstra, Emile FI Comans, Adriaan A Lammertsma, Floris HP van Velden

ABSTRACT

BACKGROUND: Positron emission tomography (PET) may be useful for defining the gross tumour volume for radiation treatment planning and for response monitoring of non-small cell lung cancer (NSCLC) patients. The purpose of this study was to compare tumour sizes obtained from CT- and various more commonly available PET-based tumour delineation methods to pathology findings. METHODS: Retrospective non-respiratory gated whole body [18F]-fluoro-2-deoxy-D-glucose PET/CT studies from 19 NSCLC patients were used. Several (semi-)automatic PET-based tumour delineation methods and manual CT-based delineation were used to assess the maximum tumour diameter. RESULTS: 50%, adaptive 41% threshold-based and contrast-oriented delineation methods showed good agreement with pathology after removing two outliers (R2=0.82). An absolute SUV threshold of 2.5 also showed a good agreement with pathology after the removal of 5 outliers (R2: 0.79), but showed a significant overestimation in the maximum diameter (19.8 mm, p<0.05). Adaptive 50%, relative threshold level and gradient-based methods did not show any outliers, provided only small, non-significant differences in maximum tumour diameter (<4.7 mm, p>0.10), and showed fair correlation (R2>0.62) with pathology. Although adaptive 70% threshold-based methods showed underestimation compared to pathology (36%), it provided the best precision (SD: 14%) together with good correlation (R2=0.81). Good correlation between CT delineation and pathology was observed (R2=0.77). However, CT delineation showed a significant overestimation compared with pathology (3.8 mm, p<0.05). CONCLUSIONS: PET-based tumour delineation methods provided tumour sizes in agreement with pathology and may therefore be useful to define the (metabolically most) active part of the tumour for radiotherapy and response monitoring purposes. More... »

PAGES

56

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/2191-219x-2-56

DOI

http://dx.doi.org/10.1186/2191-219x-2-56

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007089028

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23034289


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "VU University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Department of Radiology & Nuclear Medicine, VU University Medical Center, PO Box 7057, 1007MB, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheebsumon", 
        "givenName": "Patsuree", 
        "id": "sg:person.01053600100.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053600100.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "VU University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Department of Radiology & Nuclear Medicine, VU University Medical Center, PO Box 7057, 1007MB, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boellaard", 
        "givenName": "Ronald", 
        "id": "sg:person.01361420011.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361420011.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Maastricht University Medical Centre", 
          "id": "https://www.grid.ac/institutes/grid.412966.e", 
          "name": [
            "Department of Radiation Oncology (Maastro Clinic), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Ruysscher", 
        "givenName": "Dirk", 
        "id": "sg:person.0610230076.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610230076.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Maastricht University Medical Centre", 
          "id": "https://www.grid.ac/institutes/grid.412966.e", 
          "name": [
            "Department of Radiation Oncology (Maastro Clinic), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Elmpt", 
        "givenName": "Wouter", 
        "id": "sg:person.010032070727.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010032070727.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Maastricht University Medical Centre", 
          "id": "https://www.grid.ac/institutes/grid.412966.e", 
          "name": [
            "Department of Radiation Oncology (Maastro Clinic), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Baardwijk", 
        "givenName": "Angela", 
        "id": "sg:person.01143542267.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143542267.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "VU University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Department of Radiology & Nuclear Medicine, VU University Medical Center, PO Box 7057, 1007MB, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yaqub", 
        "givenName": "Maqsood", 
        "id": "sg:person.01362707712.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362707712.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "VU University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Department of Radiology & Nuclear Medicine, VU University Medical Center, PO Box 7057, 1007MB, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoekstra", 
        "givenName": "Otto S", 
        "id": "sg:person.0621551653.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621551653.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "VU University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Department of Radiology & Nuclear Medicine, VU University Medical Center, PO Box 7057, 1007MB, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Comans", 
        "givenName": "Emile FI", 
        "id": "sg:person.0711057525.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711057525.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "VU University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Department of Radiology & Nuclear Medicine, VU University Medical Center, PO Box 7057, 1007MB, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lammertsma", 
        "givenName": "Adriaan A", 
        "id": "sg:person.01352511753.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352511753.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "VU University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.16872.3a", 
          "name": [
            "Department of Radiology & Nuclear Medicine, VU University Medical Center, PO Box 7057, 1007MB, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Velden", 
        "givenName": "Floris HP", 
        "id": "sg:person.01024242563.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024242563.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2010.06.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000630595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2009.08.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003901674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2009.05.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005758553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.108.057307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009233958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2191-219x-1-35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016025628", 
          "https://doi.org/10.1186/2191-219x-1-35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2006.12.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020603807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2005.09.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027079728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2004.08.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027865741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-006-0363-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028309320", 
          "https://doi.org/10.1007/s00259-006-0363-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-006-0363-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028309320", 
          "https://doi.org/10.1007/s00259-006-0363-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-011-1899-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028602483", 
          "https://doi.org/10.1007/s00259-011-1899-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2009.01.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028632632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mnm.0b013e328155d154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031761840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mnm.0b013e328155d154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031761840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.111.092767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040076708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.111.088914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040091269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.107.047787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042832438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-008-0875-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044983042", 
          "https://doi.org/10.1007/s00259-008-0875-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-008-0875-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044983042", 
          "https://doi.org/10.1007/s00259-008-0875-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2010.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045574853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-011-1755-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051740136", 
          "https://doi.org/10.1007/s00259-011-1755-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-9155/54/18/009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059027785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076887958", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-12", 
    "datePublishedReg": "2012-12-01", 
    "description": "\nBACKGROUND: Positron emission tomography (PET) may be useful for defining the gross tumour volume for radiation treatment planning and for response monitoring of non-small cell lung cancer (NSCLC) patients. The purpose of this study was to compare tumour sizes obtained from CT- and various more commonly available PET-based tumour delineation methods to pathology findings.\nMETHODS: Retrospective non-respiratory gated whole body [18F]-fluoro-2-deoxy-D-glucose PET/CT studies from 19 NSCLC patients were used. Several (semi-)automatic PET-based tumour delineation methods and manual CT-based delineation were used to assess the maximum tumour diameter.\nRESULTS: 50%, adaptive 41% threshold-based and contrast-oriented delineation methods showed good agreement with pathology after removing two outliers (R2=0.82). An absolute SUV threshold of 2.5 also showed a good agreement with pathology after the removal of 5 outliers (R2: 0.79), but showed a significant overestimation in the maximum diameter (19.8 mm, p<0.05). Adaptive 50%, relative threshold level and gradient-based methods did not show any outliers, provided only small, non-significant differences in maximum tumour diameter (<4.7 mm, p>0.10), and showed fair correlation (R2>0.62) with pathology. Although adaptive 70% threshold-based methods showed underestimation compared to pathology (36%), it provided the best precision (SD: 14%) together with good correlation (R2=0.81). Good correlation between CT delineation and pathology was observed (R2=0.77). However, CT delineation showed a significant overestimation compared with pathology (3.8 mm, p<0.05).\nCONCLUSIONS: PET-based tumour delineation methods provided tumour sizes in agreement with pathology and may therefore be useful to define the (metabolically most) active part of the tumour for radiotherapy and response monitoring purposes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/2191-219x-2-56", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045165", 
        "issn": [
          "2191-219X"
        ], 
        "name": "EJNMMI Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Assessment of tumour size in PET/CT lung cancer studies: PET- and CT-based methods compared to pathology", 
    "pagination": "56", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "21c4c7835934201a35dc5a01ba833da9f2a90d8c7cfe77d09aaaa2d88645b6a4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23034289"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101560946"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/2191-219x-2-56"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007089028"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/2191-219x-2-56", 
      "https://app.dimensions.ai/details/publication/pub.1007089028"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F2191-219X-2-56"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/2191-219x-2-56'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/2191-219x-2-56'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/2191-219x-2-56'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/2191-219x-2-56'


 

This table displays all metadata directly associated to this object as RDF triples.

198 TRIPLES      21 PREDICATES      49 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/2191-219x-2-56 schema:about anzsrc-for:11
2 anzsrc-for:1112
3 schema:author N722157760abb46848ef5ac2b02079d41
4 schema:citation sg:pub.10.1007/s00259-006-0363-4
5 sg:pub.10.1007/s00259-008-0875-1
6 sg:pub.10.1007/s00259-011-1755-7
7 sg:pub.10.1007/s00259-011-1899-5
8 sg:pub.10.1186/2191-219x-1-35
9 https://app.dimensions.ai/details/publication/pub.1076887958
10 https://doi.org/10.1016/j.ijrobp.2004.08.037
11 https://doi.org/10.1016/j.ijrobp.2006.12.067
12 https://doi.org/10.1016/j.ijrobp.2009.01.019
13 https://doi.org/10.1016/j.ijrobp.2009.05.028
14 https://doi.org/10.1016/j.ijrobp.2009.08.018
15 https://doi.org/10.1016/j.ijrobp.2010.06.016
16 https://doi.org/10.1016/j.radonc.2005.09.017
17 https://doi.org/10.1016/j.radonc.2010.10.006
18 https://doi.org/10.1088/0031-9155/54/18/009
19 https://doi.org/10.1097/mnm.0b013e328155d154
20 https://doi.org/10.2967/jnumed.107.047787
21 https://doi.org/10.2967/jnumed.108.057307
22 https://doi.org/10.2967/jnumed.111.088914
23 https://doi.org/10.2967/jnumed.111.092767
24 schema:datePublished 2012-12
25 schema:datePublishedReg 2012-12-01
26 schema:description BACKGROUND: Positron emission tomography (PET) may be useful for defining the gross tumour volume for radiation treatment planning and for response monitoring of non-small cell lung cancer (NSCLC) patients. The purpose of this study was to compare tumour sizes obtained from CT- and various more commonly available PET-based tumour delineation methods to pathology findings. METHODS: Retrospective non-respiratory gated whole body [18F]-fluoro-2-deoxy-D-glucose PET/CT studies from 19 NSCLC patients were used. Several (semi-)automatic PET-based tumour delineation methods and manual CT-based delineation were used to assess the maximum tumour diameter. RESULTS: 50%, adaptive 41% threshold-based and contrast-oriented delineation methods showed good agreement with pathology after removing two outliers (R2=0.82). An absolute SUV threshold of 2.5 also showed a good agreement with pathology after the removal of 5 outliers (R2: 0.79), but showed a significant overestimation in the maximum diameter (19.8 mm, p<0.05). Adaptive 50%, relative threshold level and gradient-based methods did not show any outliers, provided only small, non-significant differences in maximum tumour diameter (<4.7 mm, p>0.10), and showed fair correlation (R2>0.62) with pathology. Although adaptive 70% threshold-based methods showed underestimation compared to pathology (36%), it provided the best precision (SD: 14%) together with good correlation (R2=0.81). Good correlation between CT delineation and pathology was observed (R2=0.77). However, CT delineation showed a significant overestimation compared with pathology (3.8 mm, p<0.05). CONCLUSIONS: PET-based tumour delineation methods provided tumour sizes in agreement with pathology and may therefore be useful to define the (metabolically most) active part of the tumour for radiotherapy and response monitoring purposes.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf Na971a697f54a4fb2ad92195fa2bb0eb6
31 Nf0e3c71bf50c4a84b663b762eb5930fa
32 sg:journal.1045165
33 schema:name Assessment of tumour size in PET/CT lung cancer studies: PET- and CT-based methods compared to pathology
34 schema:pagination 56
35 schema:productId N0f708e6e34b34cf2a8ae8797a30bdd96
36 N289bef165cd44d7aa175240f2561382a
37 Na95b72af49d3486d9fcce6988c74faaf
38 Ne4c92456ebc648b1b50c23f8942f4152
39 Nf7857e01575d4a7a874222ad884e0d20
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007089028
41 https://doi.org/10.1186/2191-219x-2-56
42 schema:sdDatePublished 2019-04-10T21:36
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N2c67d0f905ec474f87e19042e70041d0
45 schema:url http://link.springer.com/10.1186%2F2191-219X-2-56
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N0f708e6e34b34cf2a8ae8797a30bdd96 schema:name nlm_unique_id
50 schema:value 101560946
51 rdf:type schema:PropertyValue
52 N114d04483f924a0e8af7afe60f313074 rdf:first sg:person.01024242563.29
53 rdf:rest rdf:nil
54 N289bef165cd44d7aa175240f2561382a schema:name doi
55 schema:value 10.1186/2191-219x-2-56
56 rdf:type schema:PropertyValue
57 N29d85f64ef634d32bd7d106a46e38eb7 rdf:first sg:person.0711057525.04
58 rdf:rest Ned73e62cbc324abfbb71d3ce544fee25
59 N2c67d0f905ec474f87e19042e70041d0 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N4fbb34a186334aafb08e3eda1c753daf rdf:first sg:person.01362707712.99
62 rdf:rest N64aab7ced0984340bc4686544274777a
63 N64aab7ced0984340bc4686544274777a rdf:first sg:person.0621551653.25
64 rdf:rest N29d85f64ef634d32bd7d106a46e38eb7
65 N722157760abb46848ef5ac2b02079d41 rdf:first sg:person.01053600100.07
66 rdf:rest N7cb95d1a024840bcb91620c66847f4a9
67 N7cb95d1a024840bcb91620c66847f4a9 rdf:first sg:person.01361420011.63
68 rdf:rest N837e8a54aa4947d1bfcacccaad7d6642
69 N837e8a54aa4947d1bfcacccaad7d6642 rdf:first sg:person.0610230076.93
70 rdf:rest N99ad1f978eac4a8181cd5d92165b0efb
71 N99ad1f978eac4a8181cd5d92165b0efb rdf:first sg:person.010032070727.48
72 rdf:rest Na7f17977a9744efd9e016b7074b6b7a8
73 Na7f17977a9744efd9e016b7074b6b7a8 rdf:first sg:person.01143542267.84
74 rdf:rest N4fbb34a186334aafb08e3eda1c753daf
75 Na95b72af49d3486d9fcce6988c74faaf schema:name readcube_id
76 schema:value 21c4c7835934201a35dc5a01ba833da9f2a90d8c7cfe77d09aaaa2d88645b6a4
77 rdf:type schema:PropertyValue
78 Na971a697f54a4fb2ad92195fa2bb0eb6 schema:issueNumber 1
79 rdf:type schema:PublicationIssue
80 Ne4c92456ebc648b1b50c23f8942f4152 schema:name dimensions_id
81 schema:value pub.1007089028
82 rdf:type schema:PropertyValue
83 Ned73e62cbc324abfbb71d3ce544fee25 rdf:first sg:person.01352511753.53
84 rdf:rest N114d04483f924a0e8af7afe60f313074
85 Nf0e3c71bf50c4a84b663b762eb5930fa schema:volumeNumber 2
86 rdf:type schema:PublicationVolume
87 Nf7857e01575d4a7a874222ad884e0d20 schema:name pubmed_id
88 schema:value 23034289
89 rdf:type schema:PropertyValue
90 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
91 schema:name Medical and Health Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
94 schema:name Oncology and Carcinogenesis
95 rdf:type schema:DefinedTerm
96 sg:journal.1045165 schema:issn 2191-219X
97 schema:name EJNMMI Research
98 rdf:type schema:Periodical
99 sg:person.010032070727.48 schema:affiliation https://www.grid.ac/institutes/grid.412966.e
100 schema:familyName van Elmpt
101 schema:givenName Wouter
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010032070727.48
103 rdf:type schema:Person
104 sg:person.01024242563.29 schema:affiliation https://www.grid.ac/institutes/grid.16872.3a
105 schema:familyName van Velden
106 schema:givenName Floris HP
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024242563.29
108 rdf:type schema:Person
109 sg:person.01053600100.07 schema:affiliation https://www.grid.ac/institutes/grid.16872.3a
110 schema:familyName Cheebsumon
111 schema:givenName Patsuree
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053600100.07
113 rdf:type schema:Person
114 sg:person.01143542267.84 schema:affiliation https://www.grid.ac/institutes/grid.412966.e
115 schema:familyName van Baardwijk
116 schema:givenName Angela
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143542267.84
118 rdf:type schema:Person
119 sg:person.01352511753.53 schema:affiliation https://www.grid.ac/institutes/grid.16872.3a
120 schema:familyName Lammertsma
121 schema:givenName Adriaan A
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352511753.53
123 rdf:type schema:Person
124 sg:person.01361420011.63 schema:affiliation https://www.grid.ac/institutes/grid.16872.3a
125 schema:familyName Boellaard
126 schema:givenName Ronald
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361420011.63
128 rdf:type schema:Person
129 sg:person.01362707712.99 schema:affiliation https://www.grid.ac/institutes/grid.16872.3a
130 schema:familyName Yaqub
131 schema:givenName Maqsood
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362707712.99
133 rdf:type schema:Person
134 sg:person.0610230076.93 schema:affiliation https://www.grid.ac/institutes/grid.412966.e
135 schema:familyName de Ruysscher
136 schema:givenName Dirk
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610230076.93
138 rdf:type schema:Person
139 sg:person.0621551653.25 schema:affiliation https://www.grid.ac/institutes/grid.16872.3a
140 schema:familyName Hoekstra
141 schema:givenName Otto S
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621551653.25
143 rdf:type schema:Person
144 sg:person.0711057525.04 schema:affiliation https://www.grid.ac/institutes/grid.16872.3a
145 schema:familyName Comans
146 schema:givenName Emile FI
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711057525.04
148 rdf:type schema:Person
149 sg:pub.10.1007/s00259-006-0363-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028309320
150 https://doi.org/10.1007/s00259-006-0363-4
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s00259-008-0875-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044983042
153 https://doi.org/10.1007/s00259-008-0875-1
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s00259-011-1755-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051740136
156 https://doi.org/10.1007/s00259-011-1755-7
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s00259-011-1899-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028602483
159 https://doi.org/10.1007/s00259-011-1899-5
160 rdf:type schema:CreativeWork
161 sg:pub.10.1186/2191-219x-1-35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016025628
162 https://doi.org/10.1186/2191-219x-1-35
163 rdf:type schema:CreativeWork
164 https://app.dimensions.ai/details/publication/pub.1076887958 schema:CreativeWork
165 https://doi.org/10.1016/j.ijrobp.2004.08.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027865741
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.ijrobp.2006.12.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020603807
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.ijrobp.2009.01.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028632632
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.ijrobp.2009.05.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005758553
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.ijrobp.2009.08.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003901674
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.ijrobp.2010.06.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000630595
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.radonc.2005.09.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027079728
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.radonc.2010.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045574853
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1088/0031-9155/54/18/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059027785
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1097/mnm.0b013e328155d154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031761840
184 rdf:type schema:CreativeWork
185 https://doi.org/10.2967/jnumed.107.047787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042832438
186 rdf:type schema:CreativeWork
187 https://doi.org/10.2967/jnumed.108.057307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009233958
188 rdf:type schema:CreativeWork
189 https://doi.org/10.2967/jnumed.111.088914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040091269
190 rdf:type schema:CreativeWork
191 https://doi.org/10.2967/jnumed.111.092767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040076708
192 rdf:type schema:CreativeWork
193 https://www.grid.ac/institutes/grid.16872.3a schema:alternateName VU University Medical Center
194 schema:name Department of Radiology & Nuclear Medicine, VU University Medical Center, PO Box 7057, 1007MB, Amsterdam, The Netherlands
195 rdf:type schema:Organization
196 https://www.grid.ac/institutes/grid.412966.e schema:alternateName Maastricht University Medical Centre
197 schema:name Department of Radiation Oncology (Maastro Clinic), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
198 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...