A flow-injection mass spectrometry fingerprinting scaffold for feature selection and quantitation of Cordyceps and Ganoderma extracts in beverage: a predictive ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12

AUTHORS

Chee Wei Lim, Siew Hoon Tai, Sheot Harn Chan

ABSTRACT

Flow-injection mass spectrometry (FI/MS) represents a powerful analytical tool for the quality assessment of herbal formula in dietary supplements. In this study, we described a scaffold (proof-of-concept) adapted from spectroscopy to quantify Cordyceps sinensis and Ganoderma lucidum in a popular Cordyceps sinensis /Ganoderma lucidum -enriched health beverage by utilizing flow-injection/mass spectrometry/artificial neural network (FI/MS/ANN) model fingerprinting method with feature selection capability. Equal proportion of 0.1% formic acid and methanol (v/v) were used to convert extracts of Cordyceps sinensis and Ganoderma lucidum into their respective ions under positive MS polarity condition. No chromatographic separation was performed. The principal m/z values of Cordyceps sinensis and Ganoderma lucidum were identified as: 104.2, 116.2, 120.2, 175.2, 236.3, 248.3, 266.3, 366.6 and 498.6; 439.7, 469.7, 511.7, 551.6, 623.6, 637.7 and 653.6, respectively. ANN models representing Cordyceps sinensis and Ganoderma lucidum were individually trained and validated using three independent sets of matrix-free and matrix-matched calibration curves at concentration levels of 2, 20, 50, 100, 200 and 400 μg mL-1. Five repeat analyses provided a total of 180 spectra for herbal extracts of Cordyceps sinensis and Ganoderma lucidum. Root-mean-square-deviation (RMSE) were highly satisfactory at <4% for both training and validation models. Correlation coefficient (r2) values of between 0.9994 and 0.9997 were reported. Matrix blanks comprised of complex mixture of Lingzhi fermentation solution and collagen. Recovery assessment was performed over two days using six sets of matrix blank (n = 6) spiked at three concentration levels of approximately 83, 166 and 333 mg kg-1. Extraction using acetonitrile provided good overall recovery range of 92-118%. A quantitation limit of 0.2 mg L-1 was reported for both Cordyceps sinensis and Ganoderma lucidum. Intra-day and inter-day RMSE values of 7% or better were achieved. Application of the scaffold in a high-throughput routine environment would imply a significant reduction in effort and time, since the option of having a model driven analytical solution is now available. More... »

PAGES

43

Journal

TITLE

AMB Express

ISSUE

1

VOLUME

2

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/2191-0855-2-43

DOI

http://dx.doi.org/10.1186/2191-0855-2-43

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000446243

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22888994


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Health Sciences Authority", 
          "id": "https://www.grid.ac/institutes/grid.413898.f", 
          "name": [
            "Food Safety Laboratory, Applied Sciences Group, Health Sciences Authority, 11 Outram Road, 169078, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lim", 
        "givenName": "Chee Wei", 
        "id": "sg:person.0743641153.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743641153.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "AB SCIEX (Distribution), 10 Biopolis Road #03-06, 138670, Chromos, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tai", 
        "givenName": "Siew Hoon", 
        "id": "sg:person.01011754353.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011754353.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Health Sciences Authority", 
          "id": "https://www.grid.ac/institutes/grid.413898.f", 
          "name": [
            "Food Safety Laboratory, Applied Sciences Group, Health Sciences Authority, 11 Outram Road, 169078, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chan", 
        "givenName": "Sheot Harn", 
        "id": "sg:person.01126202753.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126202753.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2105-9-88", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007306810", 
          "https://doi.org/10.1186/1471-2105-9-88"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2011.06.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008384816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-006-0037-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014281361", 
          "https://doi.org/10.1007/s11306-006-0037-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2009.01.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016315930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2007.500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016814601", 
          "https://doi.org/10.1038/nprot.2007.500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-011-4929-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017802972", 
          "https://doi.org/10.1007/s00216-011-4929-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420045673.ch16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023017430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0605152103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024615468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0an00720j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025520398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2007.511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025542786", 
          "https://doi.org/10.1038/nprot.2007.511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2006.59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036460337", 
          "https://doi.org/10.1038/nprot.2006.59"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2006.59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036460337", 
          "https://doi.org/10.1038/nprot.2006.59"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpba.2009.04.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038775758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-011-5558-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044250353", 
          "https://doi.org/10.1007/s00216-011-5558-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2191-0855-1-40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045021332", 
          "https://doi.org/10.1186/2191-0855-1-40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2008.12.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048275303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-011-5246-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048823619", 
          "https://doi.org/10.1007/s00216-011-5246-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-9422(02)00705-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049724316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/plankt/23.6.651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049859203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00091a040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054971419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac062421q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054998985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac062421q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054998985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac801557f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055070412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac801557f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055070412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac900226w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055071027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac900226w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055071027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf102014j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055908431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf102014j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055908431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf104237y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055909140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf104237y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055909140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf900852y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055926520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf900852y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055926520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078238706", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-12", 
    "datePublishedReg": "2012-12-01", 
    "description": " Flow-injection mass spectrometry (FI/MS) represents a powerful analytical tool for the quality assessment of herbal formula in dietary supplements. In this study, we described a scaffold (proof-of-concept) adapted from spectroscopy to quantify Cordyceps sinensis and Ganoderma lucidum in a popular Cordyceps sinensis /Ganoderma lucidum -enriched health beverage by utilizing flow-injection/mass spectrometry/artificial neural network (FI/MS/ANN) model fingerprinting method with feature selection capability. Equal proportion of 0.1% formic acid and methanol (v/v) were used to convert extracts of Cordyceps sinensis and Ganoderma lucidum into their respective ions under positive MS polarity condition. No chromatographic separation was performed. The principal m/z values of Cordyceps sinensis and Ganoderma lucidum were identified as: 104.2, 116.2, 120.2, 175.2, 236.3, 248.3, 266.3, 366.6 and 498.6; 439.7, 469.7, 511.7, 551.6, 623.6, 637.7 and 653.6, respectively. ANN models representing Cordyceps sinensis and Ganoderma lucidum were individually trained and validated using three independent sets of matrix-free and matrix-matched calibration curves at concentration levels of 2, 20, 50, 100, 200 and 400 \u03bcg mL-1. Five repeat analyses provided a total of 180 spectra for herbal extracts of Cordyceps sinensis and Ganoderma lucidum. Root-mean-square-deviation (RMSE) were highly satisfactory at <4% for both training and validation models. Correlation coefficient (r2) values of between 0.9994 and 0.9997 were reported. Matrix blanks comprised of complex mixture of Lingzhi fermentation solution and collagen. Recovery assessment was performed over two days using six sets of matrix blank (n\u2009=\u20096) spiked at three concentration levels of approximately 83, 166 and 333 mg kg-1. Extraction using acetonitrile provided good overall recovery range of 92-118%. A quantitation limit of 0.2 mg L-1 was reported for both Cordyceps sinensis and Ganoderma lucidum. Intra-day and inter-day RMSE values of 7% or better were achieved. Application of the scaffold in a high-throughput routine environment would imply a significant reduction in effort and time, since the option of having a model driven analytical solution is now available.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/2191-0855-2-43", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045217", 
        "issn": [
          "2191-0855"
        ], 
        "name": "AMB Express", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "A flow-injection mass spectrometry fingerprinting scaffold for feature selection and quantitation of Cordyceps and Ganoderma extracts in beverage: a predictive artificial neural network modelling strategy", 
    "pagination": "43", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "021fee1a36afc54161af9f0812ac2e8047234861d42dddc2b0695c226ae5905b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22888994"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101561785"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/2191-0855-2-43"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000446243"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/2191-0855-2-43", 
      "https://app.dimensions.ai/details/publication/pub.1000446243"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000536.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F2191-0855-2-43"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/2191-0855-2-43'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/2191-0855-2-43'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/2191-0855-2-43'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/2191-0855-2-43'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      21 PREDICATES      55 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/2191-0855-2-43 schema:about anzsrc-for:03
2 anzsrc-for:0301
3 schema:author Nae20e4c8d70a4dcbab59f2e523b8f6ff
4 schema:citation sg:pub.10.1007/s00216-011-4929-z
5 sg:pub.10.1007/s00216-011-5246-2
6 sg:pub.10.1007/s00216-011-5558-2
7 sg:pub.10.1007/s11306-006-0037-z
8 sg:pub.10.1038/nprot.2006.59
9 sg:pub.10.1038/nprot.2007.500
10 sg:pub.10.1038/nprot.2007.511
11 sg:pub.10.1186/1471-2105-9-88
12 sg:pub.10.1186/2191-0855-1-40
13 https://app.dimensions.ai/details/publication/pub.1078238706
14 https://doi.org/10.1016/j.aca.2009.01.009
15 https://doi.org/10.1016/j.aca.2011.06.033
16 https://doi.org/10.1016/j.chroma.2008.12.070
17 https://doi.org/10.1016/j.jpba.2009.04.027
18 https://doi.org/10.1016/s0031-9422(02)00705-7
19 https://doi.org/10.1021/ac00091a040
20 https://doi.org/10.1021/ac062421q
21 https://doi.org/10.1021/ac801557f
22 https://doi.org/10.1021/ac900226w
23 https://doi.org/10.1021/jf102014j
24 https://doi.org/10.1021/jf104237y
25 https://doi.org/10.1021/jf900852y
26 https://doi.org/10.1039/c0an00720j
27 https://doi.org/10.1073/pnas.0605152103
28 https://doi.org/10.1093/plankt/23.6.651
29 https://doi.org/10.1201/9781420045673.ch16
30 schema:datePublished 2012-12
31 schema:datePublishedReg 2012-12-01
32 schema:description Flow-injection mass spectrometry (FI/MS) represents a powerful analytical tool for the quality assessment of herbal formula in dietary supplements. In this study, we described a scaffold (proof-of-concept) adapted from spectroscopy to quantify Cordyceps sinensis and Ganoderma lucidum in a popular Cordyceps sinensis /Ganoderma lucidum -enriched health beverage by utilizing flow-injection/mass spectrometry/artificial neural network (FI/MS/ANN) model fingerprinting method with feature selection capability. Equal proportion of 0.1% formic acid and methanol (v/v) were used to convert extracts of Cordyceps sinensis and Ganoderma lucidum into their respective ions under positive MS polarity condition. No chromatographic separation was performed. The principal m/z values of Cordyceps sinensis and Ganoderma lucidum were identified as: 104.2, 116.2, 120.2, 175.2, 236.3, 248.3, 266.3, 366.6 and 498.6; 439.7, 469.7, 511.7, 551.6, 623.6, 637.7 and 653.6, respectively. ANN models representing Cordyceps sinensis and Ganoderma lucidum were individually trained and validated using three independent sets of matrix-free and matrix-matched calibration curves at concentration levels of 2, 20, 50, 100, 200 and 400 μg mL-1. Five repeat analyses provided a total of 180 spectra for herbal extracts of Cordyceps sinensis and Ganoderma lucidum. Root-mean-square-deviation (RMSE) were highly satisfactory at <4% for both training and validation models. Correlation coefficient (r2) values of between 0.9994 and 0.9997 were reported. Matrix blanks comprised of complex mixture of Lingzhi fermentation solution and collagen. Recovery assessment was performed over two days using six sets of matrix blank (n = 6) spiked at three concentration levels of approximately 83, 166 and 333 mg kg-1. Extraction using acetonitrile provided good overall recovery range of 92-118%. A quantitation limit of 0.2 mg L-1 was reported for both Cordyceps sinensis and Ganoderma lucidum. Intra-day and inter-day RMSE values of 7% or better were achieved. Application of the scaffold in a high-throughput routine environment would imply a significant reduction in effort and time, since the option of having a model driven analytical solution is now available.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N21d27af0bdca4b81a5da2e86267274e7
37 N83d40d27ddc9499cbd86ab3889ddd092
38 sg:journal.1045217
39 schema:name A flow-injection mass spectrometry fingerprinting scaffold for feature selection and quantitation of Cordyceps and Ganoderma extracts in beverage: a predictive artificial neural network modelling strategy
40 schema:pagination 43
41 schema:productId N278d037b4e654a83b61e93f246bd0804
42 N63dbef66868f4751a0e9c3d7854a6e66
43 N9e33d97dd9f6437f8a5f8eaf0ada017c
44 Nb4653ddbf44b4219be5c49756e732a7e
45 Ncd13464f04a24e4e9326a0713b8df061
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000446243
47 https://doi.org/10.1186/2191-0855-2-43
48 schema:sdDatePublished 2019-04-10T19:13
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Nb603ee95d14143ce9be5d00709dca7ff
51 schema:url http://link.springer.com/10.1186%2F2191-0855-2-43
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N21d27af0bdca4b81a5da2e86267274e7 schema:volumeNumber 2
56 rdf:type schema:PublicationVolume
57 N278d037b4e654a83b61e93f246bd0804 schema:name pubmed_id
58 schema:value 22888994
59 rdf:type schema:PropertyValue
60 N63dbef66868f4751a0e9c3d7854a6e66 schema:name dimensions_id
61 schema:value pub.1000446243
62 rdf:type schema:PropertyValue
63 N76d136eb16cc4baebd34d1f1e4fb2513 schema:name AB SCIEX (Distribution), 10 Biopolis Road #03-06, 138670, Chromos, Singapore
64 rdf:type schema:Organization
65 N7f0c0b20ffb6479d8fd8210cd4cd4951 rdf:first sg:person.01126202753.47
66 rdf:rest rdf:nil
67 N83d40d27ddc9499cbd86ab3889ddd092 schema:issueNumber 1
68 rdf:type schema:PublicationIssue
69 N9e33d97dd9f6437f8a5f8eaf0ada017c schema:name nlm_unique_id
70 schema:value 101561785
71 rdf:type schema:PropertyValue
72 Nae20e4c8d70a4dcbab59f2e523b8f6ff rdf:first sg:person.0743641153.90
73 rdf:rest Nd1abde64a5a4462598a9e5308492a67d
74 Nb4653ddbf44b4219be5c49756e732a7e schema:name doi
75 schema:value 10.1186/2191-0855-2-43
76 rdf:type schema:PropertyValue
77 Nb603ee95d14143ce9be5d00709dca7ff schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 Ncd13464f04a24e4e9326a0713b8df061 schema:name readcube_id
80 schema:value 021fee1a36afc54161af9f0812ac2e8047234861d42dddc2b0695c226ae5905b
81 rdf:type schema:PropertyValue
82 Nd1abde64a5a4462598a9e5308492a67d rdf:first sg:person.01011754353.73
83 rdf:rest N7f0c0b20ffb6479d8fd8210cd4cd4951
84 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
85 schema:name Chemical Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
88 schema:name Analytical Chemistry
89 rdf:type schema:DefinedTerm
90 sg:journal.1045217 schema:issn 2191-0855
91 schema:name AMB Express
92 rdf:type schema:Periodical
93 sg:person.01011754353.73 schema:affiliation N76d136eb16cc4baebd34d1f1e4fb2513
94 schema:familyName Tai
95 schema:givenName Siew Hoon
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011754353.73
97 rdf:type schema:Person
98 sg:person.01126202753.47 schema:affiliation https://www.grid.ac/institutes/grid.413898.f
99 schema:familyName Chan
100 schema:givenName Sheot Harn
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126202753.47
102 rdf:type schema:Person
103 sg:person.0743641153.90 schema:affiliation https://www.grid.ac/institutes/grid.413898.f
104 schema:familyName Lim
105 schema:givenName Chee Wei
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743641153.90
107 rdf:type schema:Person
108 sg:pub.10.1007/s00216-011-4929-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1017802972
109 https://doi.org/10.1007/s00216-011-4929-z
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s00216-011-5246-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048823619
112 https://doi.org/10.1007/s00216-011-5246-2
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s00216-011-5558-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044250353
115 https://doi.org/10.1007/s00216-011-5558-2
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s11306-006-0037-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1014281361
118 https://doi.org/10.1007/s11306-006-0037-z
119 rdf:type schema:CreativeWork
120 sg:pub.10.1038/nprot.2006.59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036460337
121 https://doi.org/10.1038/nprot.2006.59
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/nprot.2007.500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016814601
124 https://doi.org/10.1038/nprot.2007.500
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/nprot.2007.511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025542786
127 https://doi.org/10.1038/nprot.2007.511
128 rdf:type schema:CreativeWork
129 sg:pub.10.1186/1471-2105-9-88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007306810
130 https://doi.org/10.1186/1471-2105-9-88
131 rdf:type schema:CreativeWork
132 sg:pub.10.1186/2191-0855-1-40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045021332
133 https://doi.org/10.1186/2191-0855-1-40
134 rdf:type schema:CreativeWork
135 https://app.dimensions.ai/details/publication/pub.1078238706 schema:CreativeWork
136 https://doi.org/10.1016/j.aca.2009.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016315930
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.aca.2011.06.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008384816
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.chroma.2008.12.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048275303
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.jpba.2009.04.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038775758
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/s0031-9422(02)00705-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049724316
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1021/ac00091a040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054971419
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1021/ac062421q schema:sameAs https://app.dimensions.ai/details/publication/pub.1054998985
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1021/ac801557f schema:sameAs https://app.dimensions.ai/details/publication/pub.1055070412
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1021/ac900226w schema:sameAs https://app.dimensions.ai/details/publication/pub.1055071027
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1021/jf102014j schema:sameAs https://app.dimensions.ai/details/publication/pub.1055908431
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1021/jf104237y schema:sameAs https://app.dimensions.ai/details/publication/pub.1055909140
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1021/jf900852y schema:sameAs https://app.dimensions.ai/details/publication/pub.1055926520
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1039/c0an00720j schema:sameAs https://app.dimensions.ai/details/publication/pub.1025520398
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1073/pnas.0605152103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024615468
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1093/plankt/23.6.651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049859203
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1201/9781420045673.ch16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023017430
167 rdf:type schema:CreativeWork
168 https://www.grid.ac/institutes/grid.413898.f schema:alternateName Health Sciences Authority
169 schema:name Food Safety Laboratory, Applied Sciences Group, Health Sciences Authority, 11 Outram Road, 169078, Singapore, Singapore
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...