Do simple screening statistical tools help to detect reporting bias? View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-09-02

AUTHORS

Romain Pirracchio, Matthieu Resche-Rigon, Sylvie Chevret, Didier Journois

ABSTRACT

BackgroundAs a result of reporting bias, or frauds, false or misunderstood findings may represent the majority of published research claims. This article provides simple methods that might help to appraise the quality of the reporting of randomized, controlled trials (RCT).MethodsThis evaluation roadmap proposed herein relies on four steps: evaluation of the distribution of the reported variables; evaluation of the distribution of the reported p values; data simulation using parametric bootstrap and explicit computation of the p values. Such an approach was illustrated using published data from a retracted RCT comparing a hydroxyethyl starch versus albumin-based priming for cardiopulmonary bypass.ResultsDespite obvious nonnormal distributions, several variables are presented as if they were normally distributed. The set of 16 p values testing for differences in baseline characteristics across randomized groups did not follow a Uniform distribution on [0,1] (p = 0.045). The p values obtained by explicit computations were different from the results reported by the authors for the two following variables: urine output at 5 hours (calculated p value < 10-6, reported p ≥ 0.05); packed red blood cells (PRBC) during surgery (calculated p value = 0.08; reported p < 0.05). Finally, parametric bootstrap found p value > 0.05 in only 5 of the 10,000 simulated datasets concerning urine output 5 hours after surgery. Concerning PRBC transfused during surgery, parametric bootstrap showed that only the corresponding p value had less than a 50% chance to be inferior to 0.05 (3,920/10,000, p value < 0.05).ConclusionsSuch simple evaluation methods might offer some warning signals. However, it should be emphasized that such methods do not allow concluding to the presence of error or fraud but should rather be used to justify asking for an access to the raw data. More... »

PAGES

29

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/2110-5820-3-29

DOI

http://dx.doi.org/10.1186/2110-5820-3-29

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048530347

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24004521


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Informatics and Biostatistics, Unit\u00e9 Inserm UMR S717, H\u00f4pital Saint Louis, Universit\u00e9 Paris 7 Diderot, Paris, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Anesthesiology and Critical Care Medicine, H\u00f4pital Europ\u00e9en Georges Pompidou, Universit\u00e9 Paris-Descartes Sorbonne Paris Cit\u00e9, Paris, France", 
            "Department of Informatics and Biostatistics, Unit\u00e9 Inserm UMR S717, H\u00f4pital Saint Louis, Universit\u00e9 Paris 7 Diderot, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pirracchio", 
        "givenName": "Romain", 
        "id": "sg:person.01047623565.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047623565.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Informatics and Biostatistics, Unit\u00e9 Inserm UMR S717, H\u00f4pital Saint Louis, Universit\u00e9 Paris 7 Diderot, Paris, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Informatics and Biostatistics, Unit\u00e9 Inserm UMR S717, H\u00f4pital Saint Louis, Universit\u00e9 Paris 7 Diderot, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Resche-Rigon", 
        "givenName": "Matthieu", 
        "id": "sg:person.01036155166.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036155166.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Informatics and Biostatistics, Unit\u00e9 Inserm UMR S717, H\u00f4pital Saint Louis, Universit\u00e9 Paris 7 Diderot, Paris, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Informatics and Biostatistics, Unit\u00e9 Inserm UMR S717, H\u00f4pital Saint Louis, Universit\u00e9 Paris 7 Diderot, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chevret", 
        "givenName": "Sylvie", 
        "id": "sg:person.0625147223.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625147223.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Anesthesiology and Critical Care Medicine, H\u00f4pital Europ\u00e9en Georges Pompidou, Universit\u00e9 Paris-Descartes Sorbonne Paris Cit\u00e9, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.414093.b", 
          "name": [
            "Department of Anesthesiology and Critical Care Medicine, H\u00f4pital Europ\u00e9en Georges Pompidou, Universit\u00e9 Paris-Descartes Sorbonne Paris Cit\u00e9, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Journois", 
        "givenName": "Didier", 
        "id": "sg:person.01171372357.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171372357.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/cc12611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001588772", 
          "https://doi.org/10.1186/cc12611"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-09-02", 
    "datePublishedReg": "2013-09-02", 
    "description": "BackgroundAs a result of reporting bias, or frauds, false or misunderstood findings may represent the majority of published research claims. This article provides simple methods that might help to appraise the quality of the reporting of randomized, controlled trials (RCT).MethodsThis evaluation roadmap proposed herein relies on four steps: evaluation of the distribution of the reported variables; evaluation of the distribution of the reported p values; data simulation using parametric bootstrap and explicit computation of the p values. Such an approach was illustrated using published data from a retracted RCT comparing a hydroxyethyl starch versus albumin-based priming for cardiopulmonary bypass.ResultsDespite obvious nonnormal distributions, several variables are presented as if they were normally distributed. The set of 16 p values testing for differences in baseline characteristics across randomized groups did not follow a Uniform distribution on [0,1] (p = 0.045). The p values obtained by explicit computations were different from the results reported by the authors for the two following variables: urine output at 5 hours (calculated p value < 10-6, reported p \u2265 0.05); packed red blood cells (PRBC) during surgery (calculated p value = 0.08; reported p < 0.05). Finally, parametric bootstrap found p value > 0.05 in only 5 of the 10,000 simulated datasets concerning urine output 5 hours after surgery. Concerning PRBC transfused during surgery, parametric bootstrap showed that only the corresponding p value had less than a 50% chance to be inferior to 0.05 (3,920/10,000, p value < 0.05).ConclusionsSuch simple evaluation methods might offer some warning signals. However, it should be emphasized that such methods do not allow concluding to the presence of error or fraud but should rather be used to justify asking for an access to the raw data.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/2110-5820-3-29", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045300", 
        "issn": [
          "2110-5820"
        ], 
        "name": "Annals of Intensive Care", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "p-value", 
      "baseline characteristics", 
      "urine output", 
      "red blood cells", 
      "cardiopulmonary bypass", 
      "randomized groups", 
      "hydroxyethyl starch", 
      "surgery", 
      "blood cells", 
      "hours", 
      "RCTs", 
      "PRBC", 
      "bypass", 
      "trials", 
      "evaluation", 
      "albumin", 
      "priming", 
      "cells", 
      "group", 
      "majority", 
      "findings", 
      "reporting", 
      "variables", 
      "data", 
      "differences", 
      "simple evaluation method", 
      "warning signals", 
      "chance", 
      "bias", 
      "values", 
      "presence", 
      "results", 
      "access", 
      "method", 
      "quality", 
      "authors", 
      "characteristics", 
      "distribution", 
      "tool", 
      "nonnormal distributions", 
      "simple method", 
      "evaluation method", 
      "article", 
      "output", 
      "approach", 
      "evaluation roadmap", 
      "raw data", 
      "signals", 
      "claims", 
      "step", 
      "roadmap", 
      "statistical tools", 
      "starch", 
      "such methods", 
      "research claims", 
      "dataset", 
      "bootstrap", 
      "error", 
      "parametric bootstrap", 
      "set", 
      "data simulation", 
      "uniform distribution", 
      "presence of errors", 
      "fraud", 
      "simulations", 
      "computation", 
      "explicit computation"
    ], 
    "name": "Do simple screening statistical tools help to detect reporting bias?", 
    "pagination": "29", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048530347"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/2110-5820-3-29"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24004521"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/2110-5820-3-29", 
      "https://app.dimensions.ai/details/publication/pub.1048530347"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_592.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/2110-5820-3-29"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/2110-5820-3-29'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/2110-5820-3-29'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/2110-5820-3-29'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/2110-5820-3-29'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      22 PREDICATES      94 URIs      84 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/2110-5820-3-29 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 anzsrc-for:1117
4 schema:author N684029996d904a0485e231b3c966f434
5 schema:citation sg:pub.10.1186/cc12611
6 schema:datePublished 2013-09-02
7 schema:datePublishedReg 2013-09-02
8 schema:description BackgroundAs a result of reporting bias, or frauds, false or misunderstood findings may represent the majority of published research claims. This article provides simple methods that might help to appraise the quality of the reporting of randomized, controlled trials (RCT).MethodsThis evaluation roadmap proposed herein relies on four steps: evaluation of the distribution of the reported variables; evaluation of the distribution of the reported p values; data simulation using parametric bootstrap and explicit computation of the p values. Such an approach was illustrated using published data from a retracted RCT comparing a hydroxyethyl starch versus albumin-based priming for cardiopulmonary bypass.ResultsDespite obvious nonnormal distributions, several variables are presented as if they were normally distributed. The set of 16 p values testing for differences in baseline characteristics across randomized groups did not follow a Uniform distribution on [0,1] (p = 0.045). The p values obtained by explicit computations were different from the results reported by the authors for the two following variables: urine output at 5 hours (calculated p value < 10-6, reported p ≥ 0.05); packed red blood cells (PRBC) during surgery (calculated p value = 0.08; reported p < 0.05). Finally, parametric bootstrap found p value > 0.05 in only 5 of the 10,000 simulated datasets concerning urine output 5 hours after surgery. Concerning PRBC transfused during surgery, parametric bootstrap showed that only the corresponding p value had less than a 50% chance to be inferior to 0.05 (3,920/10,000, p value < 0.05).ConclusionsSuch simple evaluation methods might offer some warning signals. However, it should be emphasized that such methods do not allow concluding to the presence of error or fraud but should rather be used to justify asking for an access to the raw data.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf N9117dba3fa634b24afea5f85a3a18da8
13 N9aebd1ddd53943bd8272dedc2eeb4e52
14 sg:journal.1045300
15 schema:keywords PRBC
16 RCTs
17 access
18 albumin
19 approach
20 article
21 authors
22 baseline characteristics
23 bias
24 blood cells
25 bootstrap
26 bypass
27 cardiopulmonary bypass
28 cells
29 chance
30 characteristics
31 claims
32 computation
33 data
34 data simulation
35 dataset
36 differences
37 distribution
38 error
39 evaluation
40 evaluation method
41 evaluation roadmap
42 explicit computation
43 findings
44 fraud
45 group
46 hours
47 hydroxyethyl starch
48 majority
49 method
50 nonnormal distributions
51 output
52 p-value
53 parametric bootstrap
54 presence
55 presence of errors
56 priming
57 quality
58 randomized groups
59 raw data
60 red blood cells
61 reporting
62 research claims
63 results
64 roadmap
65 set
66 signals
67 simple evaluation method
68 simple method
69 simulations
70 starch
71 statistical tools
72 step
73 such methods
74 surgery
75 tool
76 trials
77 uniform distribution
78 urine output
79 values
80 variables
81 warning signals
82 schema:name Do simple screening statistical tools help to detect reporting bias?
83 schema:pagination 29
84 schema:productId N5bad7e1cc9ec4f03a6732fdb39124618
85 N7cd319f264724d4c8403c1e88ac30ce7
86 Nbac897869e874ae3963ad49a84eb3024
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048530347
88 https://doi.org/10.1186/2110-5820-3-29
89 schema:sdDatePublished 2022-06-01T22:12
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher Nbe049880a16e4a3b94565fcc007fadf2
92 schema:url https://doi.org/10.1186/2110-5820-3-29
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N5bad7e1cc9ec4f03a6732fdb39124618 schema:name doi
97 schema:value 10.1186/2110-5820-3-29
98 rdf:type schema:PropertyValue
99 N684029996d904a0485e231b3c966f434 rdf:first sg:person.01047623565.27
100 rdf:rest Nd3dd232d543b4a9cb2c129069e52a828
101 N7cd319f264724d4c8403c1e88ac30ce7 schema:name dimensions_id
102 schema:value pub.1048530347
103 rdf:type schema:PropertyValue
104 N9117dba3fa634b24afea5f85a3a18da8 schema:issueNumber 1
105 rdf:type schema:PublicationIssue
106 N9aebd1ddd53943bd8272dedc2eeb4e52 schema:volumeNumber 3
107 rdf:type schema:PublicationVolume
108 Nad9f12c5f0154e56b0d2f6e599e1a341 rdf:first sg:person.0625147223.89
109 rdf:rest Neeb4ec143f244a01a9ad58b24a1330ab
110 Nbac897869e874ae3963ad49a84eb3024 schema:name pubmed_id
111 schema:value 24004521
112 rdf:type schema:PropertyValue
113 Nbe049880a16e4a3b94565fcc007fadf2 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 Nd3dd232d543b4a9cb2c129069e52a828 rdf:first sg:person.01036155166.50
116 rdf:rest Nad9f12c5f0154e56b0d2f6e599e1a341
117 Neeb4ec143f244a01a9ad58b24a1330ab rdf:first sg:person.01171372357.44
118 rdf:rest rdf:nil
119 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
120 schema:name Medical and Health Sciences
121 rdf:type schema:DefinedTerm
122 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
123 schema:name Clinical Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
126 schema:name Public Health and Health Services
127 rdf:type schema:DefinedTerm
128 sg:journal.1045300 schema:issn 2110-5820
129 schema:name Annals of Intensive Care
130 schema:publisher Springer Nature
131 rdf:type schema:Periodical
132 sg:person.01036155166.50 schema:affiliation grid-institutes:None
133 schema:familyName Resche-Rigon
134 schema:givenName Matthieu
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036155166.50
136 rdf:type schema:Person
137 sg:person.01047623565.27 schema:affiliation grid-institutes:None
138 schema:familyName Pirracchio
139 schema:givenName Romain
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047623565.27
141 rdf:type schema:Person
142 sg:person.01171372357.44 schema:affiliation grid-institutes:grid.414093.b
143 schema:familyName Journois
144 schema:givenName Didier
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171372357.44
146 rdf:type schema:Person
147 sg:person.0625147223.89 schema:affiliation grid-institutes:None
148 schema:familyName Chevret
149 schema:givenName Sylvie
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625147223.89
151 rdf:type schema:Person
152 sg:pub.10.1186/cc12611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001588772
153 https://doi.org/10.1186/cc12611
154 rdf:type schema:CreativeWork
155 grid-institutes:None schema:alternateName Department of Informatics and Biostatistics, Unité Inserm UMR S717, Hôpital Saint Louis, Université Paris 7 Diderot, Paris, France
156 schema:name Department of Anesthesiology and Critical Care Medicine, Hôpital Européen Georges Pompidou, Université Paris-Descartes Sorbonne Paris Cité, Paris, France
157 Department of Informatics and Biostatistics, Unité Inserm UMR S717, Hôpital Saint Louis, Université Paris 7 Diderot, Paris, France
158 rdf:type schema:Organization
159 grid-institutes:grid.414093.b schema:alternateName Department of Anesthesiology and Critical Care Medicine, Hôpital Européen Georges Pompidou, Université Paris-Descartes Sorbonne Paris Cité, Paris, France
160 schema:name Department of Anesthesiology and Critical Care Medicine, Hôpital Européen Georges Pompidou, Université Paris-Descartes Sorbonne Paris Cité, Paris, France
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...