Identification of pigments by multispectral imaging; a flowchart method View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Antonino Cosentino

ABSTRACT

The literature on the application of Multispectral and Hyperspectral imaging for identification of pigments on artworks is sparse. While these methods do not provide the analytical capability that spectroscopies do offer, the use of spectral imaging has the advantage of being a rapid and relatively low-cost solution for the examination of large areas. This paper presents a flowchart for the identification of historical pigments applied with gum Arabic using multispectral imaging (wavelength ranging from 360 to 1700 nm) performed with a modified digital camera for infrared, visible and ultraviolet photography; and an InGaAs camera for infrared reflectography. The flowchart method will be most successful on paint made of one layer of pure pigment, and it can selectively discriminate only a fraction of the 56 pigments analyzed. Though, considerably limited in its analytical capabilities, the low cost and speed of the workflow make the method worthwhile, even if only to localize retouching and areas appearing the same hue but painted with different pigments. The InGaAs camera is the only expensive instrument used in this study but its cost is relatively affordable for the average painting conservation studio since only a model with a low pixel count is required (320×256 pixels) rather than a more sophisticated InGaAs scanner system. More... »

PAGES

8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/2050-7445-2-8

DOI

http://dx.doi.org/10.1186/2050-7445-2-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004349252


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Independent Scholar at \u201cCultural Heritage Science Open Source\u201d Blog, chsopensource.org, Piazza Cantarella 11, 95025, Aci Sant\u2019Antonio, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cosentino", 
        "givenName": "Antonino", 
        "id": "sg:person.014071655237.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014071655237.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1179/sic.1969.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003011542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/019713691806066782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003310533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1871-1731(07)80007-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003606263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.765711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011449146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-044450487-6/50049-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018150013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/rest.2003.88", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021691587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b902563d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029918054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b902563d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029918054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/sic.2006.51.supplement-1.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032039423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/sic.1963.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045402309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/sic.1982.27.3.102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047377254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.infrared.2006.06.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052791833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0584-8547(01)00302-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053167223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2969257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057888500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1366/11-06230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065265648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1366/11-06230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065265648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1505977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069509626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1506436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069509995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3250528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102029308"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "The literature on the application of Multispectral and Hyperspectral imaging for identification of pigments on artworks is sparse. While these methods do not provide the analytical capability that spectroscopies do offer, the use of spectral imaging has the advantage of being a rapid and relatively low-cost solution for the examination of large areas. This paper presents a flowchart for the identification of historical pigments applied with gum Arabic using multispectral imaging (wavelength ranging from 360 to 1700 nm) performed with a modified digital camera for infrared, visible and ultraviolet photography; and an InGaAs camera for infrared reflectography. The flowchart method will be most successful on paint made of one layer of pure pigment, and it can selectively discriminate only a fraction of the 56 pigments analyzed. Though, considerably limited in its analytical capabilities, the low cost and speed of the workflow make the method worthwhile, even if only to localize retouching and areas appearing the same hue but painted with different pigments. The InGaAs camera is the only expensive instrument used in this study but its cost is relatively affordable for the average painting conservation studio since only a model with a low pixel count is required (320\u00d7256 pixels) rather than a more sophisticated InGaAs scanner system.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/2050-7445-2-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136235", 
        "issn": [
          "2050-7445"
        ], 
        "name": "Heritage Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Identification of pigments by multispectral imaging; a flowchart method", 
    "pagination": "8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "14b94e526ac84e8c6a81365064961fad91c45bcaf157e821a60126cdf7dbb146"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/2050-7445-2-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004349252"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/2050-7445-2-8", 
      "https://app.dimensions.ai/details/publication/pub.1004349252"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F2050-7445-2-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/2050-7445-2-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/2050-7445-2-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/2050-7445-2-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/2050-7445-2-8'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/2050-7445-2-8 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nbc099e7b3c2d452f999652b6fecb06c7
4 schema:citation https://doi.org/10.1016/b978-044450487-6/50049-3
5 https://doi.org/10.1016/j.infrared.2006.06.013
6 https://doi.org/10.1016/s0584-8547(01)00302-0
7 https://doi.org/10.1016/s1871-1731(07)80007-8
8 https://doi.org/10.1039/b902563d
9 https://doi.org/10.1063/1.2969257
10 https://doi.org/10.1117/12.765711
11 https://doi.org/10.1179/019713691806066782
12 https://doi.org/10.1179/sic.1963.012
13 https://doi.org/10.1179/sic.1969.010
14 https://doi.org/10.1179/sic.1982.27.3.102
15 https://doi.org/10.1179/sic.2006.51.supplement-1.3
16 https://doi.org/10.1366/11-06230
17 https://doi.org/10.1515/rest.2003.88
18 https://doi.org/10.2307/1505977
19 https://doi.org/10.2307/1506436
20 https://doi.org/10.2307/3250528
21 schema:datePublished 2014-12
22 schema:datePublishedReg 2014-12-01
23 schema:description The literature on the application of Multispectral and Hyperspectral imaging for identification of pigments on artworks is sparse. While these methods do not provide the analytical capability that spectroscopies do offer, the use of spectral imaging has the advantage of being a rapid and relatively low-cost solution for the examination of large areas. This paper presents a flowchart for the identification of historical pigments applied with gum Arabic using multispectral imaging (wavelength ranging from 360 to 1700 nm) performed with a modified digital camera for infrared, visible and ultraviolet photography; and an InGaAs camera for infrared reflectography. The flowchart method will be most successful on paint made of one layer of pure pigment, and it can selectively discriminate only a fraction of the 56 pigments analyzed. Though, considerably limited in its analytical capabilities, the low cost and speed of the workflow make the method worthwhile, even if only to localize retouching and areas appearing the same hue but painted with different pigments. The InGaAs camera is the only expensive instrument used in this study but its cost is relatively affordable for the average painting conservation studio since only a model with a low pixel count is required (320×256 pixels) rather than a more sophisticated InGaAs scanner system.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf Nb77b9d5ace6b4f74ba48ec23aeb950db
28 Nd5d72fe220064495999a71811f060fe0
29 sg:journal.1136235
30 schema:name Identification of pigments by multispectral imaging; a flowchart method
31 schema:pagination 8
32 schema:productId N53bbe1bab00a45ed9014f552d0babff4
33 N90443ad07fbb423db65930aa4f0c2e53
34 Nd9faa98b667841eaad23df06b0afc521
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004349252
36 https://doi.org/10.1186/2050-7445-2-8
37 schema:sdDatePublished 2019-04-10T19:08
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Ne6c12c9962904ddfb3196b3bfd4163ed
40 schema:url http://link.springer.com/10.1186%2F2050-7445-2-8
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N53bbe1bab00a45ed9014f552d0babff4 schema:name dimensions_id
45 schema:value pub.1004349252
46 rdf:type schema:PropertyValue
47 N65781a5f41764ac2935cc1e1a799cbc3 schema:name Independent Scholar at “Cultural Heritage Science Open Source” Blog, chsopensource.org, Piazza Cantarella 11, 95025, Aci Sant’Antonio, Italy
48 rdf:type schema:Organization
49 N90443ad07fbb423db65930aa4f0c2e53 schema:name doi
50 schema:value 10.1186/2050-7445-2-8
51 rdf:type schema:PropertyValue
52 Nb77b9d5ace6b4f74ba48ec23aeb950db schema:volumeNumber 2
53 rdf:type schema:PublicationVolume
54 Nbc099e7b3c2d452f999652b6fecb06c7 rdf:first sg:person.014071655237.77
55 rdf:rest rdf:nil
56 Nd5d72fe220064495999a71811f060fe0 schema:issueNumber 1
57 rdf:type schema:PublicationIssue
58 Nd9faa98b667841eaad23df06b0afc521 schema:name readcube_id
59 schema:value 14b94e526ac84e8c6a81365064961fad91c45bcaf157e821a60126cdf7dbb146
60 rdf:type schema:PropertyValue
61 Ne6c12c9962904ddfb3196b3bfd4163ed schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
64 schema:name Chemical Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
67 schema:name Physical Chemistry (incl. Structural)
68 rdf:type schema:DefinedTerm
69 sg:journal.1136235 schema:issn 2050-7445
70 schema:name Heritage Science
71 rdf:type schema:Periodical
72 sg:person.014071655237.77 schema:affiliation N65781a5f41764ac2935cc1e1a799cbc3
73 schema:familyName Cosentino
74 schema:givenName Antonino
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014071655237.77
76 rdf:type schema:Person
77 https://doi.org/10.1016/b978-044450487-6/50049-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018150013
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1016/j.infrared.2006.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791833
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1016/s0584-8547(01)00302-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053167223
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/s1871-1731(07)80007-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003606263
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1039/b902563d schema:sameAs https://app.dimensions.ai/details/publication/pub.1029918054
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1063/1.2969257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057888500
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1117/12.765711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011449146
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1179/019713691806066782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003310533
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1179/sic.1963.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045402309
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1179/sic.1969.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003011542
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1179/sic.1982.27.3.102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047377254
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1179/sic.2006.51.supplement-1.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032039423
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1366/11-06230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065265648
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1515/rest.2003.88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021691587
104 rdf:type schema:CreativeWork
105 https://doi.org/10.2307/1505977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069509626
106 rdf:type schema:CreativeWork
107 https://doi.org/10.2307/1506436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069509995
108 rdf:type schema:CreativeWork
109 https://doi.org/10.2307/3250528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102029308
110 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...