The development of response surface pathway design to reduce animal numbers in toxicity studies View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Sagita Dewi, Tore Aune, John A Aasen Bunæs, Adrian J Smith, Stig Larsen

ABSTRACT

BACKGROUND: This study describes the development of Response Surface Pathway (RSP) design, assesses its performance and effectiveness in estimating LD50, and compares RSP with Up and Down Procedures (UDPs) and Random Walk (RW) design. METHODS: A basic 4-level RSP design was used on 36 male ICR mice given intraperitoneal doses of Yessotoxin. Simulations were performed to optimise the design. A k-adjustment factor was introduced to ensure coverage of the dose window and calculate the dose steps. Instead of using equal numbers of mice on all levels, the number of mice was increased at each design level. Additionally, the binomial outcome variable was changed to multinomial. The performance of the RSP designs and a comparison of UDPs and RW were assessed by simulations. The optimised 4-level RSP design was used on 24 female NMRI mice given Azaspiracid-1 intraperitoneally. RESULTS: The in vivo experiment with basic 4-level RSP design estimated the LD50 of Yessotoxin to be 463 μg/kgBW (95% CI: 383-535). By inclusion of the k-adjustment factor with equal or increasing numbers of mice on increasing dose levels, the estimate changed to 481 μg/kgBW (95% CI: 362-566) and 447 μg/kgBW (95% CI: 378-504 μg/kgBW), respectively. The optimised 4-level RSP estimated the LD50 to be 473 μg/kgBW (95% CI: 442-517). A similar increase in power was demonstrated using the optimised RSP design on real Azaspiracid-1 data. The simulations showed that the inclusion of the k-adjustment factor, reduction in sample size by increasing the number of mice on higher design levels and incorporation of a multinomial outcome gave estimates of the LD50 that were as good as those with the basic RSP design. Furthermore, optimised RSP design performed on just three levels reduced the number of animals from 36 to 15 without loss of information, when compared with the 4-level designs. Simulated comparison of the RSP design with UDPs and RW design demonstrated the superiority of RSP. CONCLUSION: Optimised RSP design reduces the number of animals needed. The design converges rapidly on the area of interest and is at least as efficient as both the UDPs and RW design. More... »

PAGES

18

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/2050-6511-15-18

DOI

http://dx.doi.org/10.1186/2050-6511-15-18

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008702435

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24661560


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animal Use Alternatives", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lethal Dose 50", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Marine Toxins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice, Inbred ICR", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxocins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Research Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spiro Compounds", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Toxicity Tests", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Norwegian University of Life Sciences", 
          "id": "https://www.grid.ac/institutes/grid.19477.3c", 
          "name": [
            "Centre for Epidemiology and Biostatistics, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, \u00c5s, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dewi", 
        "givenName": "Sagita", 
        "id": "sg:person.010756767707.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010756767707.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Norwegian University of Life Sciences", 
          "id": "https://www.grid.ac/institutes/grid.19477.3c", 
          "name": [
            "Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, \u00c5s, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aune", 
        "givenName": "Tore", 
        "id": "sg:person.0700734655.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700734655.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Norwegian University of Life Sciences", 
          "id": "https://www.grid.ac/institutes/grid.19477.3c", 
          "name": [
            "Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, \u00c5s, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bun\u00e6s", 
        "givenName": "John A Aasen", 
        "id": "sg:person.010305274767.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010305274767.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Norwegian Veterinary Institute", 
          "id": "https://www.grid.ac/institutes/grid.410549.d", 
          "name": [
            "Norecopa, c/o Norwegian Veterinary Institute, P.O. Box 750, 0106, SentrumOslo, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smith", 
        "givenName": "Adrian J", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Norwegian University of Life Sciences", 
          "id": "https://www.grid.ac/institutes/grid.19477.3c", 
          "name": [
            "Centre for Epidemiology and Biostatistics, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, \u00c5s, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Larsen", 
        "givenName": "Stig", 
        "id": "sg:person.013272512512.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013272512512.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.toxicon.2008.06.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007987437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.toxicon.2006.07.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022889250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0048-9697(91)90008-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023273352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0048-9697(91)90008-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023273352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.pa.26.040186.002103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029902572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0272-0590(85)90059-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043736395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/toxsci/kfq143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044583520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ilar.43.4.233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044880486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12539-011-0081-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046271895", 
          "https://doi.org/10.1007/s12539-011-0081-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0887-2333(03)00143-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046359717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0887-2333(03)00143-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046359717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.1351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046577638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00332351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046909399", 
          "https://doi.org/10.1007/bf00332351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01234480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047687458", 
          "https://doi.org/10.1007/bf01234480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0006-341x.2002.00171.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047822170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0041-0101(01)00192-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051915628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es60130a004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055512635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1948.10483254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058298822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1967.10500897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058300187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/toxsci/5.1.151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060056302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076611659", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077240751", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077242073", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: This study describes the development of Response Surface Pathway (RSP) design, assesses its performance and effectiveness in estimating LD50, and compares RSP with Up and Down Procedures (UDPs) and Random Walk (RW) design.\nMETHODS: A basic 4-level RSP design was used on 36 male ICR mice given intraperitoneal doses of Yessotoxin. Simulations were performed to optimise the design. A k-adjustment factor was introduced to ensure coverage of the dose window and calculate the dose steps. Instead of using equal numbers of mice on all levels, the number of mice was increased at each design level. Additionally, the binomial outcome variable was changed to multinomial. The performance of the RSP designs and a comparison of UDPs and RW were assessed by simulations. The optimised 4-level RSP design was used on 24 female NMRI mice given Azaspiracid-1 intraperitoneally.\nRESULTS: The in vivo experiment with basic 4-level RSP design estimated the LD50 of Yessotoxin to be 463 \u03bcg/kgBW (95% CI: 383-535). By inclusion of the k-adjustment factor with equal or increasing numbers of mice on increasing dose levels, the estimate changed to 481 \u03bcg/kgBW (95% CI: 362-566) and 447 \u03bcg/kgBW (95% CI: 378-504 \u03bcg/kgBW), respectively. The optimised 4-level RSP estimated the LD50 to be 473 \u03bcg/kgBW (95% CI: 442-517). A similar increase in power was demonstrated using the optimised RSP design on real Azaspiracid-1 data. The simulations showed that the inclusion of the k-adjustment factor, reduction in sample size by increasing the number of mice on higher design levels and incorporation of a multinomial outcome gave estimates of the LD50 that were as good as those with the basic RSP design. Furthermore, optimised RSP design performed on just three levels reduced the number of animals from 36 to 15 without loss of information, when compared with the 4-level designs. Simulated comparison of the RSP design with UDPs and RW design demonstrated the superiority of RSP.\nCONCLUSION: Optimised RSP design reduces the number of animals needed. The design converges rapidly on the area of interest and is at least as efficient as both the UDPs and RW design.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/2050-6511-15-18", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4645975", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1047317", 
        "issn": [
          "2050-6511"
        ], 
        "name": "BMC Pharmacology and Toxicology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "The development of response surface pathway design to reduce animal numbers in toxicity studies", 
    "pagination": "18", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "29761ee1bae67919152f02b9898f92a49b5616c9ecc4df1e2f391738c9787c9f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24661560"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101590449"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/2050-6511-15-18"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008702435"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/2050-6511-15-18", 
      "https://app.dimensions.ai/details/publication/pub.1008702435"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000536.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F2050-6511-15-18"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/2050-6511-15-18'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/2050-6511-15-18'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/2050-6511-15-18'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/2050-6511-15-18'


 

This table displays all metadata directly associated to this object as RDF triples.

220 TRIPLES      21 PREDICATES      64 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/2050-6511-15-18 schema:about N10a56d0822d24b7888a79ddf5b855746
2 N1106a4feb3d94197b0b1dc886aa50b7f
3 N21ff16f1626540c0b9098574292b781d
4 N3073dc31169343fda9dec166150abd0b
5 N326c83bf0a0143a48ae3a0be18b84bc2
6 N76f025e524864e91a4ac6d2409566f1f
7 N89118544a78749cbba47a559b342dde5
8 N8ee3910d9f174aa2b829f3cf38481f85
9 Na3d8dff3084b49ffbf7183cf29c8b5b4
10 Na59df9ed63f747caace8289cac1ab542
11 Na76115aac9d744028019386141ed490b
12 Ncba644e8cba346869624acdf50d34471
13 Neda57e5b92274ca9b037f92ce3da0a3b
14 Nf0f455f7f0a549b0a277101e5b08eb00
15 anzsrc-for:08
16 anzsrc-for:0806
17 schema:author Nb90b0bcae80b46179fbe717cda390a00
18 schema:citation sg:pub.10.1007/bf00332351
19 sg:pub.10.1007/bf01234480
20 sg:pub.10.1007/s12539-011-0081-x
21 https://app.dimensions.ai/details/publication/pub.1076611659
22 https://app.dimensions.ai/details/publication/pub.1077240751
23 https://app.dimensions.ai/details/publication/pub.1077242073
24 https://doi.org/10.1002/sim.1351
25 https://doi.org/10.1016/0048-9697(91)90008-3
26 https://doi.org/10.1016/0272-0590(85)90059-4
27 https://doi.org/10.1016/j.toxicon.2006.07.033
28 https://doi.org/10.1016/j.toxicon.2008.06.025
29 https://doi.org/10.1016/s0041-0101(01)00192-1
30 https://doi.org/10.1016/s0887-2333(03)00143-7
31 https://doi.org/10.1021/es60130a004
32 https://doi.org/10.1080/01621459.1948.10483254
33 https://doi.org/10.1080/01621459.1967.10500897
34 https://doi.org/10.1093/ilar.43.4.233
35 https://doi.org/10.1093/toxsci/5.1.151
36 https://doi.org/10.1093/toxsci/kfq143
37 https://doi.org/10.1111/j.0006-341x.2002.00171.x
38 https://doi.org/10.1146/annurev.pa.26.040186.002103
39 schema:datePublished 2014-12
40 schema:datePublishedReg 2014-12-01
41 schema:description BACKGROUND: This study describes the development of Response Surface Pathway (RSP) design, assesses its performance and effectiveness in estimating LD50, and compares RSP with Up and Down Procedures (UDPs) and Random Walk (RW) design. METHODS: A basic 4-level RSP design was used on 36 male ICR mice given intraperitoneal doses of Yessotoxin. Simulations were performed to optimise the design. A k-adjustment factor was introduced to ensure coverage of the dose window and calculate the dose steps. Instead of using equal numbers of mice on all levels, the number of mice was increased at each design level. Additionally, the binomial outcome variable was changed to multinomial. The performance of the RSP designs and a comparison of UDPs and RW were assessed by simulations. The optimised 4-level RSP design was used on 24 female NMRI mice given Azaspiracid-1 intraperitoneally. RESULTS: The in vivo experiment with basic 4-level RSP design estimated the LD50 of Yessotoxin to be 463 μg/kgBW (95% CI: 383-535). By inclusion of the k-adjustment factor with equal or increasing numbers of mice on increasing dose levels, the estimate changed to 481 μg/kgBW (95% CI: 362-566) and 447 μg/kgBW (95% CI: 378-504 μg/kgBW), respectively. The optimised 4-level RSP estimated the LD50 to be 473 μg/kgBW (95% CI: 442-517). A similar increase in power was demonstrated using the optimised RSP design on real Azaspiracid-1 data. The simulations showed that the inclusion of the k-adjustment factor, reduction in sample size by increasing the number of mice on higher design levels and incorporation of a multinomial outcome gave estimates of the LD50 that were as good as those with the basic RSP design. Furthermore, optimised RSP design performed on just three levels reduced the number of animals from 36 to 15 without loss of information, when compared with the 4-level designs. Simulated comparison of the RSP design with UDPs and RW design demonstrated the superiority of RSP. CONCLUSION: Optimised RSP design reduces the number of animals needed. The design converges rapidly on the area of interest and is at least as efficient as both the UDPs and RW design.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N9b851e1f47ab462e9eca58aa74c5c5be
46 Nd2abefda40ae4b9a975dc52fe2cecfcf
47 sg:journal.1047317
48 schema:name The development of response surface pathway design to reduce animal numbers in toxicity studies
49 schema:pagination 18
50 schema:productId N4f3164fcc3d04fab98b2cc7fb84c0b87
51 N550ab661a0774f04a2c997b5ac2781cd
52 N5c1bef989eb44e708d51190b044b0f01
53 Nd54f77b210084ae5b37b0a35a4c629e3
54 Ndcba00d3c0754a13b97319901aa0b4f1
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008702435
56 https://doi.org/10.1186/2050-6511-15-18
57 schema:sdDatePublished 2019-04-10T22:37
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N98beb66af9514bcfa94efef8219d5312
60 schema:url http://link.springer.com/10.1186%2F2050-6511-15-18
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N10a56d0822d24b7888a79ddf5b855746 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Animal Use Alternatives
66 rdf:type schema:DefinedTerm
67 N1106a4feb3d94197b0b1dc886aa50b7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Mice, Inbred ICR
69 rdf:type schema:DefinedTerm
70 N21ff16f1626540c0b9098574292b781d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Male
72 rdf:type schema:DefinedTerm
73 N3073dc31169343fda9dec166150abd0b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Animals
75 rdf:type schema:DefinedTerm
76 N326c83bf0a0143a48ae3a0be18b84bc2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Research Design
78 rdf:type schema:DefinedTerm
79 N38781f1438eb4e3082d39986d785ce74 schema:affiliation https://www.grid.ac/institutes/grid.410549.d
80 schema:familyName Smith
81 schema:givenName Adrian J
82 rdf:type schema:Person
83 N4b58f1434db84be884676a60ad4386f7 rdf:first sg:person.010305274767.84
84 rdf:rest N7dc3db5cb49d42d380c14ba030452256
85 N4f3164fcc3d04fab98b2cc7fb84c0b87 schema:name nlm_unique_id
86 schema:value 101590449
87 rdf:type schema:PropertyValue
88 N550ab661a0774f04a2c997b5ac2781cd schema:name readcube_id
89 schema:value 29761ee1bae67919152f02b9898f92a49b5616c9ecc4df1e2f391738c9787c9f
90 rdf:type schema:PropertyValue
91 N5c1bef989eb44e708d51190b044b0f01 schema:name dimensions_id
92 schema:value pub.1008702435
93 rdf:type schema:PropertyValue
94 N76f025e524864e91a4ac6d2409566f1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Models, Biological
96 rdf:type schema:DefinedTerm
97 N7dc3db5cb49d42d380c14ba030452256 rdf:first N38781f1438eb4e3082d39986d785ce74
98 rdf:rest N7ea468f37caf47188a46340f27f4690f
99 N7ea468f37caf47188a46340f27f4690f rdf:first sg:person.013272512512.34
100 rdf:rest rdf:nil
101 N89118544a78749cbba47a559b342dde5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Oxocins
103 rdf:type schema:DefinedTerm
104 N8ee3910d9f174aa2b829f3cf38481f85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Mice
106 rdf:type schema:DefinedTerm
107 N98beb66af9514bcfa94efef8219d5312 schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 N9b851e1f47ab462e9eca58aa74c5c5be schema:issueNumber 1
110 rdf:type schema:PublicationIssue
111 Na3d8dff3084b49ffbf7183cf29c8b5b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Toxicity Tests
113 rdf:type schema:DefinedTerm
114 Na59df9ed63f747caace8289cac1ab542 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Lethal Dose 50
116 rdf:type schema:DefinedTerm
117 Na76115aac9d744028019386141ed490b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Computer Simulation
119 rdf:type schema:DefinedTerm
120 Nb90b0bcae80b46179fbe717cda390a00 rdf:first sg:person.010756767707.05
121 rdf:rest Nfe6ab1992efc47b9b143f661541207f2
122 Ncba644e8cba346869624acdf50d34471 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Marine Toxins
124 rdf:type schema:DefinedTerm
125 Nd2abefda40ae4b9a975dc52fe2cecfcf schema:volumeNumber 15
126 rdf:type schema:PublicationVolume
127 Nd54f77b210084ae5b37b0a35a4c629e3 schema:name pubmed_id
128 schema:value 24661560
129 rdf:type schema:PropertyValue
130 Ndcba00d3c0754a13b97319901aa0b4f1 schema:name doi
131 schema:value 10.1186/2050-6511-15-18
132 rdf:type schema:PropertyValue
133 Neda57e5b92274ca9b037f92ce3da0a3b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Spiro Compounds
135 rdf:type schema:DefinedTerm
136 Nf0f455f7f0a549b0a277101e5b08eb00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Female
138 rdf:type schema:DefinedTerm
139 Nfe6ab1992efc47b9b143f661541207f2 rdf:first sg:person.0700734655.08
140 rdf:rest N4b58f1434db84be884676a60ad4386f7
141 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
142 schema:name Information and Computing Sciences
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
145 schema:name Information Systems
146 rdf:type schema:DefinedTerm
147 sg:grant.4645975 http://pending.schema.org/fundedItem sg:pub.10.1186/2050-6511-15-18
148 rdf:type schema:MonetaryGrant
149 sg:journal.1047317 schema:issn 2050-6511
150 schema:name BMC Pharmacology and Toxicology
151 rdf:type schema:Periodical
152 sg:person.010305274767.84 schema:affiliation https://www.grid.ac/institutes/grid.19477.3c
153 schema:familyName Bunæs
154 schema:givenName John A Aasen
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010305274767.84
156 rdf:type schema:Person
157 sg:person.010756767707.05 schema:affiliation https://www.grid.ac/institutes/grid.19477.3c
158 schema:familyName Dewi
159 schema:givenName Sagita
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010756767707.05
161 rdf:type schema:Person
162 sg:person.013272512512.34 schema:affiliation https://www.grid.ac/institutes/grid.19477.3c
163 schema:familyName Larsen
164 schema:givenName Stig
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013272512512.34
166 rdf:type schema:Person
167 sg:person.0700734655.08 schema:affiliation https://www.grid.ac/institutes/grid.19477.3c
168 schema:familyName Aune
169 schema:givenName Tore
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700734655.08
171 rdf:type schema:Person
172 sg:pub.10.1007/bf00332351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046909399
173 https://doi.org/10.1007/bf00332351
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/bf01234480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047687458
176 https://doi.org/10.1007/bf01234480
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s12539-011-0081-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046271895
179 https://doi.org/10.1007/s12539-011-0081-x
180 rdf:type schema:CreativeWork
181 https://app.dimensions.ai/details/publication/pub.1076611659 schema:CreativeWork
182 https://app.dimensions.ai/details/publication/pub.1077240751 schema:CreativeWork
183 https://app.dimensions.ai/details/publication/pub.1077242073 schema:CreativeWork
184 https://doi.org/10.1002/sim.1351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046577638
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/0048-9697(91)90008-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023273352
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/0272-0590(85)90059-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043736395
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.toxicon.2006.07.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022889250
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.toxicon.2008.06.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007987437
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/s0041-0101(01)00192-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051915628
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/s0887-2333(03)00143-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046359717
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1021/es60130a004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055512635
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1080/01621459.1948.10483254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058298822
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1080/01621459.1967.10500897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058300187
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1093/ilar.43.4.233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044880486
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1093/toxsci/5.1.151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060056302
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1093/toxsci/kfq143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044583520
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1111/j.0006-341x.2002.00171.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047822170
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1146/annurev.pa.26.040186.002103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029902572
213 rdf:type schema:CreativeWork
214 https://www.grid.ac/institutes/grid.19477.3c schema:alternateName Norwegian University of Life Sciences
215 schema:name Centre for Epidemiology and Biostatistics, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
216 Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
217 rdf:type schema:Organization
218 https://www.grid.ac/institutes/grid.410549.d schema:alternateName Norwegian Veterinary Institute
219 schema:name Norecopa, c/o Norwegian Veterinary Institute, P.O. Box 750, 0106, SentrumOslo, Norway
220 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...