EMPeror: a tool for visualizing high-throughput microbial community data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

Yoshiki Vázquez-Baeza, Meg Pirrung, Antonio Gonzalez, Rob Knight

ABSTRACT

BACKGROUND: As microbial ecologists take advantage of high-throughput sequencing technologies to describe microbial communities across ever-increasing numbers of samples, new analysis tools are required to relate the distribution of microbes among larger numbers of communities, and to use increasingly rich and standards-compliant metadata to understand the biological factors driving these relationships. In particular, the Earth Microbiome Project drives these needs by profiling the genomic content of tens of thousands of samples across multiple environment types. FINDINGS: Features of EMPeror include: ability to visualize gradients and categorical data, visualize different principal coordinates axes, present the data in the form of parallel coordinates, show taxa as well as environmental samples, dynamically adjust the size and transparency of the spheres representing the communities on a per-category basis, dynamically scale the axes according to the fraction of variance each explains, show, hide or recolor points according to arbitrary metadata including that compliant with the MIxS family of standards developed by the Genomic Standards Consortium, display jackknifed-resampled data to assess statistical confidence in clustering, perform coordinate comparisons (useful for procrustes analysis plots), and greatly reduce loading times and overall memory footprint compared with existing approaches. Additionally, ease of sharing, given EMPeror's small output file size, enables agile collaboration by allowing users to embed these visualizations via emails or web pages without the need for extra plugins. CONCLUSIONS: Here we present EMPeror, an open source and web browser enabled tool with a versatile command line interface that allows researchers to perform rapid exploratory investigations of 3D visualizations of microbial community data, such as the widely used principal coordinates plots. EMPeror includes a rich set of controllers to modify features as a function of the metadata. By being specifically tailored to the requirements of microbial ecologists, EMPeror thus increases the speed with which insight can be gained from large microbiome datasets. More... »

PAGES

16

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/2047-217x-2-16

DOI

http://dx.doi.org/10.1186/2047-217x-2-16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022546943

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24280061


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Colorado Boulder", 
          "id": "https://www.grid.ac/institutes/grid.266190.a", 
          "name": [
            "Department of Computer Science, University of Colorado at Boulder, 80309, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "V\u00e1zquez-Baeza", 
        "givenName": "Yoshiki", 
        "id": "sg:person.01113460501.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113460501.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Colorado Anschutz Medical Campus", 
          "id": "https://www.grid.ac/institutes/grid.430503.1", 
          "name": [
            "Department of Pharmacology, University of Colorado Denver, 80045, Aurora, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pirrung", 
        "givenName": "Meg", 
        "id": "sg:person.01203015020.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203015020.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Colorado Boulder", 
          "id": "https://www.grid.ac/institutes/grid.266190.a", 
          "name": [
            "BioFrontiers Institute, University of Colorado at Boulder, 80309, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gonzalez", 
        "givenName": "Antonio", 
        "id": "sg:person.01301120245.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301120245.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Howard Hughes Medical Institute", 
          "id": "https://www.grid.ac/institutes/grid.413575.1", 
          "name": [
            "BioFrontiers Institute, University of Colorado at Boulder, 80309, Boulder, CO, USA", 
            "Department of Chemistry & Biochemistry, University of Colorado at Boulder, 80309, Boulder, CO, USA", 
            "Howard Hughes Medical Institute, 80309, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Knight", 
        "givenName": "Rob", 
        "id": "sg:person.016311745377.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311745377.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/9780471729259.mc01e05s27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000284393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1000081107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003337956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007740093", 
          "https://doi.org/10.1038/nature11234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.f.303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009032055", 
          "https://doi.org/10.1038/nmeth.f.303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.f.303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009032055", 
          "https://doi.org/10.1038/nmeth.f.303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.4056/sigs.1433550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015489166", 
          "https://doi.org/10.4056/sigs.1433550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1177486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019669855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/plankt/fbq021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024357388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/plankt/fbq021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024357388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.copbio.2011.11.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031079447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0054703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032724920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035276516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035276516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2007-8-8-r171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036049247", 
          "https://doi.org/10.1186/gb-2007-8-8-r171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01896809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037656988", 
          "https://doi.org/10.1007/bf01896809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01896809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037656988", 
          "https://doi.org/10.1007/bf01896809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.f.301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039247021", 
          "https://doi.org/10.1038/nmeth.f.301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.f.301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039247021", 
          "https://doi.org/10.1038/nmeth.f.301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.00335-09", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043659253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1198719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049041229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2011-12-5-r50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050643751", 
          "https://doi.org/10.1186/gb-2011-12-5-r50"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mcse.2007.55", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061398159"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": "BACKGROUND: As microbial ecologists take advantage of high-throughput sequencing technologies to describe microbial communities across ever-increasing numbers of samples, new analysis tools are required to relate the distribution of microbes among larger numbers of communities, and to use increasingly rich and standards-compliant metadata to understand the biological factors driving these relationships. In particular, the Earth Microbiome Project drives these needs by profiling the genomic content of tens of thousands of samples across multiple environment types.\nFINDINGS: Features of EMPeror include: ability to visualize gradients and categorical data, visualize different principal coordinates axes, present the data in the form of parallel coordinates, show taxa as well as environmental samples, dynamically adjust the size and transparency of the spheres representing the communities on a per-category basis, dynamically scale the axes according to the fraction of variance each explains, show, hide or recolor points according to arbitrary metadata including that compliant with the MIxS family of standards developed by the Genomic Standards Consortium, display jackknifed-resampled data to assess statistical confidence in clustering, perform coordinate comparisons (useful for procrustes analysis plots), and greatly reduce loading times and overall memory footprint compared with existing approaches. Additionally, ease of sharing, given EMPeror's small output file size, enables agile collaboration by allowing users to embed these visualizations via emails or web pages without the need for extra plugins.\nCONCLUSIONS: Here we present EMPeror, an open source and web browser enabled tool with a versatile command line interface that allows researchers to perform rapid exploratory investigations of 3D visualizations of microbial community data, such as the widely used principal coordinates plots. EMPeror includes a rich set of controllers to modify features as a function of the metadata. By being specifically tailored to the requirements of microbial ecologists, EMPeror thus increases the speed with which insight can be gained from large microbiome datasets.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/2047-217x-2-16", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1047731", 
        "issn": [
          "2047-217X"
        ], 
        "name": "GigaScience", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "EMPeror: a tool for visualizing high-throughput microbial community data", 
    "pagination": "16", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6b6b15563ace1c69b019a617fb8ff62036a8bccdeb5023227d5bdb6f8d44ef4a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24280061"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101596872"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/2047-217x-2-16"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022546943"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/2047-217x-2-16", 
      "https://app.dimensions.ai/details/publication/pub.1022546943"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F2047-217X-2-16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/2047-217x-2-16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/2047-217x-2-16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/2047-217x-2-16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/2047-217x-2-16'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      21 PREDICATES      46 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/2047-217x-2-16 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N3952a62fe35c4d5397639b4b095f658b
4 schema:citation sg:pub.10.1007/bf01896809
5 sg:pub.10.1038/nature11234
6 sg:pub.10.1038/nmeth.f.301
7 sg:pub.10.1038/nmeth.f.303
8 sg:pub.10.1186/gb-2007-8-8-r171
9 sg:pub.10.1186/gb-2011-12-5-r50
10 sg:pub.10.4056/sigs.1433550
11 https://doi.org/10.1002/9780471729259.mc01e05s27
12 https://doi.org/10.1002/pro.250
13 https://doi.org/10.1016/j.copbio.2011.11.028
14 https://doi.org/10.1073/pnas.1000081107
15 https://doi.org/10.1093/plankt/fbq021
16 https://doi.org/10.1109/mcse.2007.55
17 https://doi.org/10.1126/science.1177486
18 https://doi.org/10.1126/science.1198719
19 https://doi.org/10.1128/aem.00335-09
20 https://doi.org/10.1371/journal.pone.0054703
21 schema:datePublished 2013-12
22 schema:datePublishedReg 2013-12-01
23 schema:description BACKGROUND: As microbial ecologists take advantage of high-throughput sequencing technologies to describe microbial communities across ever-increasing numbers of samples, new analysis tools are required to relate the distribution of microbes among larger numbers of communities, and to use increasingly rich and standards-compliant metadata to understand the biological factors driving these relationships. In particular, the Earth Microbiome Project drives these needs by profiling the genomic content of tens of thousands of samples across multiple environment types. FINDINGS: Features of EMPeror include: ability to visualize gradients and categorical data, visualize different principal coordinates axes, present the data in the form of parallel coordinates, show taxa as well as environmental samples, dynamically adjust the size and transparency of the spheres representing the communities on a per-category basis, dynamically scale the axes according to the fraction of variance each explains, show, hide or recolor points according to arbitrary metadata including that compliant with the MIxS family of standards developed by the Genomic Standards Consortium, display jackknifed-resampled data to assess statistical confidence in clustering, perform coordinate comparisons (useful for procrustes analysis plots), and greatly reduce loading times and overall memory footprint compared with existing approaches. Additionally, ease of sharing, given EMPeror's small output file size, enables agile collaboration by allowing users to embed these visualizations via emails or web pages without the need for extra plugins. CONCLUSIONS: Here we present EMPeror, an open source and web browser enabled tool with a versatile command line interface that allows researchers to perform rapid exploratory investigations of 3D visualizations of microbial community data, such as the widely used principal coordinates plots. EMPeror includes a rich set of controllers to modify features as a function of the metadata. By being specifically tailored to the requirements of microbial ecologists, EMPeror thus increases the speed with which insight can be gained from large microbiome datasets.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N981a64aad2ef4016a0e317473bc4892a
28 Nb99b2b467ec64c0daf55a704ef547a67
29 sg:journal.1047731
30 schema:name EMPeror: a tool for visualizing high-throughput microbial community data
31 schema:pagination 16
32 schema:productId N03e277025be549009581496a7196942b
33 N0f04dcbc33c84d7994047273ed886633
34 N3845b4e8a0654054b2b299a193a69768
35 N7e26975ba6af484fa816c7cab77d3bf8
36 N89c52f39202b45e8b3c0eb73d52e47b0
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022546943
38 https://doi.org/10.1186/2047-217x-2-16
39 schema:sdDatePublished 2019-04-10T19:08
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Nc9184f1bde18404584756228e9fe082d
42 schema:url http://link.springer.com/10.1186%2F2047-217X-2-16
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N03e277025be549009581496a7196942b schema:name dimensions_id
47 schema:value pub.1022546943
48 rdf:type schema:PropertyValue
49 N0f04dcbc33c84d7994047273ed886633 schema:name pubmed_id
50 schema:value 24280061
51 rdf:type schema:PropertyValue
52 N14c73b53a89f4cc4908cbf20de9fb750 rdf:first sg:person.016311745377.96
53 rdf:rest rdf:nil
54 N3845b4e8a0654054b2b299a193a69768 schema:name nlm_unique_id
55 schema:value 101596872
56 rdf:type schema:PropertyValue
57 N3952a62fe35c4d5397639b4b095f658b rdf:first sg:person.01113460501.49
58 rdf:rest Ndc05518e72544d94b1a38319dd707db9
59 N7e26975ba6af484fa816c7cab77d3bf8 schema:name doi
60 schema:value 10.1186/2047-217x-2-16
61 rdf:type schema:PropertyValue
62 N89c52f39202b45e8b3c0eb73d52e47b0 schema:name readcube_id
63 schema:value 6b6b15563ace1c69b019a617fb8ff62036a8bccdeb5023227d5bdb6f8d44ef4a
64 rdf:type schema:PropertyValue
65 N981a64aad2ef4016a0e317473bc4892a schema:volumeNumber 2
66 rdf:type schema:PublicationVolume
67 Nb99b2b467ec64c0daf55a704ef547a67 schema:issueNumber 1
68 rdf:type schema:PublicationIssue
69 Nc9184f1bde18404584756228e9fe082d schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Ndc05518e72544d94b1a38319dd707db9 rdf:first sg:person.01203015020.78
72 rdf:rest Nf0310cc0b7f14fe7b789530433f5e6d2
73 Nf0310cc0b7f14fe7b789530433f5e6d2 rdf:first sg:person.01301120245.46
74 rdf:rest N14c73b53a89f4cc4908cbf20de9fb750
75 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
76 schema:name Information and Computing Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
79 schema:name Information Systems
80 rdf:type schema:DefinedTerm
81 sg:journal.1047731 schema:issn 2047-217X
82 schema:name GigaScience
83 rdf:type schema:Periodical
84 sg:person.01113460501.49 schema:affiliation https://www.grid.ac/institutes/grid.266190.a
85 schema:familyName Vázquez-Baeza
86 schema:givenName Yoshiki
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113460501.49
88 rdf:type schema:Person
89 sg:person.01203015020.78 schema:affiliation https://www.grid.ac/institutes/grid.430503.1
90 schema:familyName Pirrung
91 schema:givenName Meg
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203015020.78
93 rdf:type schema:Person
94 sg:person.01301120245.46 schema:affiliation https://www.grid.ac/institutes/grid.266190.a
95 schema:familyName Gonzalez
96 schema:givenName Antonio
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301120245.46
98 rdf:type schema:Person
99 sg:person.016311745377.96 schema:affiliation https://www.grid.ac/institutes/grid.413575.1
100 schema:familyName Knight
101 schema:givenName Rob
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311745377.96
103 rdf:type schema:Person
104 sg:pub.10.1007/bf01896809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037656988
105 https://doi.org/10.1007/bf01896809
106 rdf:type schema:CreativeWork
107 sg:pub.10.1038/nature11234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007740093
108 https://doi.org/10.1038/nature11234
109 rdf:type schema:CreativeWork
110 sg:pub.10.1038/nmeth.f.301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039247021
111 https://doi.org/10.1038/nmeth.f.301
112 rdf:type schema:CreativeWork
113 sg:pub.10.1038/nmeth.f.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009032055
114 https://doi.org/10.1038/nmeth.f.303
115 rdf:type schema:CreativeWork
116 sg:pub.10.1186/gb-2007-8-8-r171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036049247
117 https://doi.org/10.1186/gb-2007-8-8-r171
118 rdf:type schema:CreativeWork
119 sg:pub.10.1186/gb-2011-12-5-r50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050643751
120 https://doi.org/10.1186/gb-2011-12-5-r50
121 rdf:type schema:CreativeWork
122 sg:pub.10.4056/sigs.1433550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015489166
123 https://doi.org/10.4056/sigs.1433550
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1002/9780471729259.mc01e05s27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000284393
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1002/pro.250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035276516
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.copbio.2011.11.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031079447
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1073/pnas.1000081107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003337956
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1093/plankt/fbq021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024357388
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/mcse.2007.55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061398159
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1126/science.1177486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019669855
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1126/science.1198719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049041229
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1128/aem.00335-09 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043659253
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1371/journal.pone.0054703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032724920
144 rdf:type schema:CreativeWork
145 https://www.grid.ac/institutes/grid.266190.a schema:alternateName University of Colorado Boulder
146 schema:name BioFrontiers Institute, University of Colorado at Boulder, 80309, Boulder, CO, USA
147 Department of Computer Science, University of Colorado at Boulder, 80309, Boulder, CO, USA
148 rdf:type schema:Organization
149 https://www.grid.ac/institutes/grid.413575.1 schema:alternateName Howard Hughes Medical Institute
150 schema:name BioFrontiers Institute, University of Colorado at Boulder, 80309, Boulder, CO, USA
151 Department of Chemistry & Biochemistry, University of Colorado at Boulder, 80309, Boulder, CO, USA
152 Howard Hughes Medical Institute, 80309, Boulder, CO, USA
153 rdf:type schema:Organization
154 https://www.grid.ac/institutes/grid.430503.1 schema:alternateName University of Colorado Anschutz Medical Campus
155 schema:name Department of Pharmacology, University of Colorado Denver, 80045, Aurora, CO, USA
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...