Exploring the utility of organo-polyoxometalate hybrids to inhibit SOX transcription factors View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Kamesh Narasimhan, Kevin Micoine, Emmanuel Lacôte, Serge Thorimbert, Edwin Cheung, Bernold Hasenknopf, Ralf Jauch

ABSTRACT

BACKGROUND: SOX transcription factors constitute an attractive target class for intervention with small molecules as they play a prominent role in the field of regenerative biomedicine and cancer biology. However, rationally engineering specific inhibitors that interfere with transcription factor DNA interfaces continues to be a monumental challenge in the field of transcription factor chemical biology. Polyoxometalates (POMs) are inorganic compounds that were previously shown to target the high-mobility group (HMG) of SOX proteins at nanomolar concentrations. In continuation of this work, we carried out an assessment of the selectivity of a panel of newly synthesized organo-polyoxometalate hybrids in targeting different transcription factor families to enable the usage of polyoxometalates as specific SOX transcription factor drugs. RESULTS: The residual DNA-binding activities of 15 different transcription factors were measured after treatment with a panel of diverse polyoxometalates. Polyoxometalates belonging to the Dawson structural class were found to be more potent inhibitors than the Keggin class. Further, organically modified Dawson polyoxometalates were found to be the most potent in inhibiting transcription factor DNA binding activity. The size of the polyoxometalates and its derivitization were found to be the key determinants of their potency. CONCLUSION: Polyoxometalates are highly potent, nanomolar range inhibitors of the DNA binding activity of the Sox-HMG family. However, binding assays involving a limited subset of structurally diverse polyoxometalates revealed a low selectivity profile against different transcription factor families. Further progress in achieving selectivity and deciphering structure-activity relationship of POMs require the identification of POM binding sites on transcription factors using elaborate approaches like X-ray crystallography and multidimensional NMR. In summary, our report reaffirms that transcription factors are challenging molecular architectures and that future polyoxometalate chemistry must consider further modification strategies, to address the substantial challenges involved in achieving target selectivity. More... »

PAGES

10

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/2045-9769-3-10

DOI

http://dx.doi.org/10.1186/2045-9769-3-10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023975357

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25678957


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Genome Institute of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.418377.e", 
          "name": [
            "Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, M5S 3E1, Toronto, Canada", 
            "Genome Institute of Singapore, 60 Biopolis Street, 138672, Buona Vista, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Narasimhan", 
        "givenName": "Kamesh", 
        "id": "sg:person.0663222513.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663222513.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Parisien de Chimie Mol\u00e9culaire", 
          "id": "https://www.grid.ac/institutes/grid.462019.8", 
          "name": [
            "UPMC Univ Paris 06, Institut Parisien de Chimie Mol\u00e9culaire, Sorbonne Universit\u00e9s, UMR 8232, 4 Place Jussieu, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Micoine", 
        "givenName": "Kevin", 
        "id": "sg:person.0610337427.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610337427.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Parisien de Chimie Mol\u00e9culaire", 
          "id": "https://www.grid.ac/institutes/grid.462019.8", 
          "name": [
            "UPMC Univ Paris 06, Institut Parisien de Chimie Mol\u00e9culaire, Sorbonne Universit\u00e9s, UMR 8232, 4 Place Jussieu, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lac\u00f4te", 
        "givenName": "Emmanuel", 
        "id": "sg:person.0662424112.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662424112.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Parisien de Chimie Mol\u00e9culaire", 
          "id": "https://www.grid.ac/institutes/grid.462019.8", 
          "name": [
            "UPMC Univ Paris 06, Institut Parisien de Chimie Mol\u00e9culaire, Sorbonne Universit\u00e9s, UMR 8232, 4 Place Jussieu, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thorimbert", 
        "givenName": "Serge", 
        "id": "sg:person.01337715012.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337715012.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Macau", 
          "id": "https://www.grid.ac/institutes/grid.437123.0", 
          "name": [
            "Genome Institute of Singapore, 60 Biopolis Street, 138672, Buona Vista, Singapore", 
            "Faculty of Health Sciences, University of Macau, Av. Padre Tomas Pereira, Taipa, Macau, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheung", 
        "givenName": "Edwin", 
        "id": "sg:person.01056052677.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056052677.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "UPMC Univ Paris 06, Institut Parisien de Chimie Mol\u00e9culaire, Sorbonne Universit\u00e9s, UMR 8232, 4 Place Jussieu, 75005, Paris, France", 
            "CNRS, Institut Parisien de Chimie Mol\u00e9culaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hasenknopf", 
        "givenName": "Bernold", 
        "id": "sg:person.0614310712.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614310712.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genome Institute of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.418377.e", 
          "name": [
            "Genome Institute of Singapore, 60 Biopolis Street, 138672, Buona Vista, Singapore", 
            "Genome Regulation Laboratory, Drug Development Pipeline, Guangzhou Institutes of Biomedicine, 190 Kai Yuan Avenue, Science Park, 510530, Guangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jauch", 
        "givenName": "Ralf", 
        "id": "sg:person.01017702210.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017702210.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/molbev/msp058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001055622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msp058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001055622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3cc41628c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002780640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jinorgbio.2004.10.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003937354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bmcl.2010.12.103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005842495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2mb25389e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006285050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ejic.201201224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007997613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009755412", 
          "https://doi.org/10.1038/nature13305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010986814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ab.2013.11.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013919658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ccr.2013.09.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014283628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019784452", 
          "https://doi.org/10.1038/ncomms4422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/chem.201203020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022488296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0958-1669(96)80071-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023264753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/chem.201002815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027696789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/chem.201002815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027696789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr960396q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028592735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr960396q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028592735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201007067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029234428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cbpa.2010.03.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032846983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chembiol.2008.05.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037095654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.200600285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040706046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11468-013-9655-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040961470", 
          "https://doi.org/10.1007/s11468-013-9655-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00044-012-0125-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042598850", 
          "https://doi.org/10.1007/s00044-012-0125-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejmech.2011.03.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042828176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2dt31784b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044747844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jinorgbio.2009.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044809623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046543214", 
          "https://doi.org/10.1038/nrc906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046543214", 
          "https://doi.org/10.1038/nrc906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi900832t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055209906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi900832t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055209906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cb100432x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055225950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic3010079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055563951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic400019r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055564938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja050397c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055838397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja050397c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055838397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ol701701f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056257046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ol701701f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056257046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2741/1527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070913813"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: SOX transcription factors constitute an attractive target class for intervention with small molecules as they play a prominent role in the field of regenerative biomedicine and cancer biology. However, rationally engineering specific inhibitors that interfere with transcription factor DNA interfaces continues to be a monumental challenge in the field of transcription factor chemical biology. Polyoxometalates (POMs) are inorganic compounds that were previously shown to target the high-mobility group (HMG) of SOX proteins at nanomolar concentrations. In continuation of this work, we carried out an assessment of the selectivity of a panel of newly synthesized organo-polyoxometalate hybrids in targeting different transcription factor families to enable the usage of polyoxometalates as specific SOX transcription factor drugs.\nRESULTS: The residual DNA-binding activities of 15 different transcription factors were measured after treatment with a panel of diverse polyoxometalates. Polyoxometalates belonging to the Dawson structural class were found to be more potent inhibitors than the Keggin class. Further, organically modified Dawson polyoxometalates were found to be the most potent in inhibiting transcription factor DNA binding activity. The size of the polyoxometalates and its derivitization were found to be the key determinants of their potency.\nCONCLUSION: Polyoxometalates are highly potent, nanomolar range inhibitors of the DNA binding activity of the Sox-HMG family. However, binding assays involving a limited subset of structurally diverse polyoxometalates revealed a low selectivity profile against different transcription factor families. Further progress in achieving selectivity and deciphering structure-activity relationship of POMs require the identification of POM binding sites on transcription factors using elaborate approaches like X-ray crystallography and multidimensional NMR. In summary, our report reaffirms that transcription factors are challenging molecular architectures and that future polyoxometalate chemistry must consider further modification strategies, to address the substantial challenges involved in achieving target selectivity.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/2045-9769-3-10", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4524300", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1049770", 
        "issn": [
          "2045-9769"
        ], 
        "name": "Cell Regeneration", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Exploring the utility of organo-polyoxometalate hybrids to inhibit SOX transcription factors", 
    "pagination": "10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7238d75b68766bc35fe192c6615dd3e48cbd77d20671d57a83d00b2771c6d49d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25678957"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101627311"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/2045-9769-3-10"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023975357"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/2045-9769-3-10", 
      "https://app.dimensions.ai/details/publication/pub.1023975357"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000550.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F2045-9769-3-10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/2045-9769-3-10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/2045-9769-3-10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/2045-9769-3-10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/2045-9769-3-10'


 

This table displays all metadata directly associated to this object as RDF triples.

226 TRIPLES      21 PREDICATES      61 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/2045-9769-3-10 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N0532c0198b1147f7942af9b6acbbd841
4 schema:citation sg:pub.10.1007/s00044-012-0125-8
5 sg:pub.10.1007/s11468-013-9655-2
6 sg:pub.10.1038/nature13305
7 sg:pub.10.1038/ncomms4422
8 sg:pub.10.1038/nrc906
9 https://doi.org/10.1002/anie.200600285
10 https://doi.org/10.1002/anie.201007067
11 https://doi.org/10.1002/chem.201002815
12 https://doi.org/10.1002/chem.201203020
13 https://doi.org/10.1002/ejic.201201224
14 https://doi.org/10.1016/j.ab.2013.11.017
15 https://doi.org/10.1016/j.bmcl.2010.12.103
16 https://doi.org/10.1016/j.cbpa.2010.03.022
17 https://doi.org/10.1016/j.ccr.2013.09.018
18 https://doi.org/10.1016/j.chembiol.2008.05.018
19 https://doi.org/10.1016/j.ejmech.2011.03.036
20 https://doi.org/10.1016/j.jinorgbio.2004.10.020
21 https://doi.org/10.1016/j.jinorgbio.2009.05.002
22 https://doi.org/10.1016/s0958-1669(96)80071-1
23 https://doi.org/10.1021/bi900832t
24 https://doi.org/10.1021/cb100432x
25 https://doi.org/10.1021/cr960396q
26 https://doi.org/10.1021/ic3010079
27 https://doi.org/10.1021/ic400019r
28 https://doi.org/10.1021/ja050397c
29 https://doi.org/10.1021/ol701701f
30 https://doi.org/10.1039/c2dt31784b
31 https://doi.org/10.1039/c2mb25389e
32 https://doi.org/10.1039/c3cc41628c
33 https://doi.org/10.1093/molbev/msp058
34 https://doi.org/10.1093/nar/gks153
35 https://doi.org/10.2741/1527
36 schema:datePublished 2014-12
37 schema:datePublishedReg 2014-12-01
38 schema:description BACKGROUND: SOX transcription factors constitute an attractive target class for intervention with small molecules as they play a prominent role in the field of regenerative biomedicine and cancer biology. However, rationally engineering specific inhibitors that interfere with transcription factor DNA interfaces continues to be a monumental challenge in the field of transcription factor chemical biology. Polyoxometalates (POMs) are inorganic compounds that were previously shown to target the high-mobility group (HMG) of SOX proteins at nanomolar concentrations. In continuation of this work, we carried out an assessment of the selectivity of a panel of newly synthesized organo-polyoxometalate hybrids in targeting different transcription factor families to enable the usage of polyoxometalates as specific SOX transcription factor drugs. RESULTS: The residual DNA-binding activities of 15 different transcription factors were measured after treatment with a panel of diverse polyoxometalates. Polyoxometalates belonging to the Dawson structural class were found to be more potent inhibitors than the Keggin class. Further, organically modified Dawson polyoxometalates were found to be the most potent in inhibiting transcription factor DNA binding activity. The size of the polyoxometalates and its derivitization were found to be the key determinants of their potency. CONCLUSION: Polyoxometalates are highly potent, nanomolar range inhibitors of the DNA binding activity of the Sox-HMG family. However, binding assays involving a limited subset of structurally diverse polyoxometalates revealed a low selectivity profile against different transcription factor families. Further progress in achieving selectivity and deciphering structure-activity relationship of POMs require the identification of POM binding sites on transcription factors using elaborate approaches like X-ray crystallography and multidimensional NMR. In summary, our report reaffirms that transcription factors are challenging molecular architectures and that future polyoxometalate chemistry must consider further modification strategies, to address the substantial challenges involved in achieving target selectivity.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree true
42 schema:isPartOf N1e8834cafaaa47b8b05a657ee42b7c23
43 N39ac31efd0ae4f67adb8da17494bd397
44 sg:journal.1049770
45 schema:name Exploring the utility of organo-polyoxometalate hybrids to inhibit SOX transcription factors
46 schema:pagination 10
47 schema:productId N02e181b4606541f79db18770153ded32
48 N33d226ff2fa543c7b40e3e9bb06b9126
49 N4e7a86bd1824481a9adb1f722525df98
50 Nb5d4b77c95aa48349499c55d2f251b78
51 Nc6618eee3c8947b1940d84d305e3f44f
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023975357
53 https://doi.org/10.1186/2045-9769-3-10
54 schema:sdDatePublished 2019-04-10T20:03
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N75e8b807f7a845c48f50c3d4ca3a79ec
57 schema:url http://link.springer.com/10.1186%2F2045-9769-3-10
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N02e181b4606541f79db18770153ded32 schema:name dimensions_id
62 schema:value pub.1023975357
63 rdf:type schema:PropertyValue
64 N0532c0198b1147f7942af9b6acbbd841 rdf:first sg:person.0663222513.08
65 rdf:rest Nc996ff62deb04f3bbe774c7a187a3894
66 N1e8834cafaaa47b8b05a657ee42b7c23 schema:issueNumber 1
67 rdf:type schema:PublicationIssue
68 N2065b6f561244366920b31a5d01a4e34 rdf:first sg:person.01056052677.11
69 rdf:rest Na40a4174b1bb44469a6198fd9043218d
70 N33d226ff2fa543c7b40e3e9bb06b9126 schema:name nlm_unique_id
71 schema:value 101627311
72 rdf:type schema:PropertyValue
73 N39ac31efd0ae4f67adb8da17494bd397 schema:volumeNumber 3
74 rdf:type schema:PublicationVolume
75 N4e7a86bd1824481a9adb1f722525df98 schema:name readcube_id
76 schema:value 7238d75b68766bc35fe192c6615dd3e48cbd77d20671d57a83d00b2771c6d49d
77 rdf:type schema:PropertyValue
78 N75e8b807f7a845c48f50c3d4ca3a79ec schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N77161fb2fea242ba8d8c214014af56f6 rdf:first sg:person.0662424112.65
81 rdf:rest N8b846d5880dc4d98aace1ba9932ef06e
82 N77d6577b185449d5b5ab23a5ce1dbb13 rdf:first sg:person.01017702210.01
83 rdf:rest rdf:nil
84 N8b846d5880dc4d98aace1ba9932ef06e rdf:first sg:person.01337715012.38
85 rdf:rest N2065b6f561244366920b31a5d01a4e34
86 Na40a4174b1bb44469a6198fd9043218d rdf:first sg:person.0614310712.78
87 rdf:rest N77d6577b185449d5b5ab23a5ce1dbb13
88 Nb5d4b77c95aa48349499c55d2f251b78 schema:name doi
89 schema:value 10.1186/2045-9769-3-10
90 rdf:type schema:PropertyValue
91 Nc6618eee3c8947b1940d84d305e3f44f schema:name pubmed_id
92 schema:value 25678957
93 rdf:type schema:PropertyValue
94 Nc996ff62deb04f3bbe774c7a187a3894 rdf:first sg:person.0610337427.60
95 rdf:rest N77161fb2fea242ba8d8c214014af56f6
96 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
97 schema:name Biological Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
100 schema:name Biochemistry and Cell Biology
101 rdf:type schema:DefinedTerm
102 sg:grant.4524300 http://pending.schema.org/fundedItem sg:pub.10.1186/2045-9769-3-10
103 rdf:type schema:MonetaryGrant
104 sg:journal.1049770 schema:issn 2045-9769
105 schema:name Cell Regeneration
106 rdf:type schema:Periodical
107 sg:person.01017702210.01 schema:affiliation https://www.grid.ac/institutes/grid.418377.e
108 schema:familyName Jauch
109 schema:givenName Ralf
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017702210.01
111 rdf:type schema:Person
112 sg:person.01056052677.11 schema:affiliation https://www.grid.ac/institutes/grid.437123.0
113 schema:familyName Cheung
114 schema:givenName Edwin
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056052677.11
116 rdf:type schema:Person
117 sg:person.01337715012.38 schema:affiliation https://www.grid.ac/institutes/grid.462019.8
118 schema:familyName Thorimbert
119 schema:givenName Serge
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337715012.38
121 rdf:type schema:Person
122 sg:person.0610337427.60 schema:affiliation https://www.grid.ac/institutes/grid.462019.8
123 schema:familyName Micoine
124 schema:givenName Kevin
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610337427.60
126 rdf:type schema:Person
127 sg:person.0614310712.78 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
128 schema:familyName Hasenknopf
129 schema:givenName Bernold
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614310712.78
131 rdf:type schema:Person
132 sg:person.0662424112.65 schema:affiliation https://www.grid.ac/institutes/grid.462019.8
133 schema:familyName Lacôte
134 schema:givenName Emmanuel
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662424112.65
136 rdf:type schema:Person
137 sg:person.0663222513.08 schema:affiliation https://www.grid.ac/institutes/grid.418377.e
138 schema:familyName Narasimhan
139 schema:givenName Kamesh
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663222513.08
141 rdf:type schema:Person
142 sg:pub.10.1007/s00044-012-0125-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042598850
143 https://doi.org/10.1007/s00044-012-0125-8
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s11468-013-9655-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040961470
146 https://doi.org/10.1007/s11468-013-9655-2
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nature13305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009755412
149 https://doi.org/10.1038/nature13305
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/ncomms4422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019784452
152 https://doi.org/10.1038/ncomms4422
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nrc906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046543214
155 https://doi.org/10.1038/nrc906
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/anie.200600285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040706046
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1002/anie.201007067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029234428
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1002/chem.201002815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027696789
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/chem.201203020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022488296
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1002/ejic.201201224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007997613
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.ab.2013.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013919658
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.bmcl.2010.12.103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005842495
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.cbpa.2010.03.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032846983
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.ccr.2013.09.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014283628
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.chembiol.2008.05.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037095654
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.ejmech.2011.03.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042828176
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.jinorgbio.2004.10.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003937354
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.jinorgbio.2009.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044809623
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s0958-1669(96)80071-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023264753
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1021/bi900832t schema:sameAs https://app.dimensions.ai/details/publication/pub.1055209906
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1021/cb100432x schema:sameAs https://app.dimensions.ai/details/publication/pub.1055225950
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1021/cr960396q schema:sameAs https://app.dimensions.ai/details/publication/pub.1028592735
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1021/ic3010079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055563951
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1021/ic400019r schema:sameAs https://app.dimensions.ai/details/publication/pub.1055564938
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1021/ja050397c schema:sameAs https://app.dimensions.ai/details/publication/pub.1055838397
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1021/ol701701f schema:sameAs https://app.dimensions.ai/details/publication/pub.1056257046
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1039/c2dt31784b schema:sameAs https://app.dimensions.ai/details/publication/pub.1044747844
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1039/c2mb25389e schema:sameAs https://app.dimensions.ai/details/publication/pub.1006285050
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1039/c3cc41628c schema:sameAs https://app.dimensions.ai/details/publication/pub.1002780640
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1093/molbev/msp058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001055622
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1093/nar/gks153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010986814
208 rdf:type schema:CreativeWork
209 https://doi.org/10.2741/1527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070913813
210 rdf:type schema:CreativeWork
211 https://www.grid.ac/institutes/grid.418377.e schema:alternateName Genome Institute of Singapore
212 schema:name Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, M5S 3E1, Toronto, Canada
213 Genome Institute of Singapore, 60 Biopolis Street, 138672, Buona Vista, Singapore
214 Genome Regulation Laboratory, Drug Development Pipeline, Guangzhou Institutes of Biomedicine, 190 Kai Yuan Avenue, Science Park, 510530, Guangzhou, China
215 rdf:type schema:Organization
216 https://www.grid.ac/institutes/grid.437123.0 schema:alternateName University of Macau
217 schema:name Faculty of Health Sciences, University of Macau, Av. Padre Tomas Pereira, Taipa, Macau, China
218 Genome Institute of Singapore, 60 Biopolis Street, 138672, Buona Vista, Singapore
219 rdf:type schema:Organization
220 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
221 schema:name CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
222 UPMC Univ Paris 06, Institut Parisien de Chimie Moléculaire, Sorbonne Universités, UMR 8232, 4 Place Jussieu, 75005, Paris, France
223 rdf:type schema:Organization
224 https://www.grid.ac/institutes/grid.462019.8 schema:alternateName Institut Parisien de Chimie Moléculaire
225 schema:name UPMC Univ Paris 06, Institut Parisien de Chimie Moléculaire, Sorbonne Universités, UMR 8232, 4 Place Jussieu, 75005, Paris, France
226 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...