Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Peter E Larsen, Frank R Collart, Dawn Field, Folker Meyer, Kevin P Keegan, Christopher S Henry, John McGrath, John Quinn, Jack A Gilbert

ABSTRACT

BACKGROUND: The world's oceans are home to a diverse array of microbial life whose metabolic activity helps to drive the earth's biogeochemical cycles. Metagenomic analysis has revolutionized our access to these communities, providing a system-scale perspective of microbial community interactions. However, while metagenome sequencing can provide useful estimates of the relative change in abundance of specific genes and taxa between environments or over time, this does not investigate the relative changes in the production or consumption of different metabolites. RESULTS: We propose a methodology, Predicted Relative Metabolic Turnover (PRMT) that defines and enables exploration of metabolite-space inferred from the metagenome. Our analysis of metagenomic data from a time-series study in the Western English Channel demonstrated considerable correlations between predicted relative metabolic turnover and seasonal changes in abundance of measured environmental parameters as well as with observed seasonal changes in bacterial population structure. CONCLUSIONS: The PRMT method was successfully applied to metagenomic data to explore the Western English Channel microbial metabalome to generate specific, biologically testable hypotheses. Generated hypotheses linked organic phosphate utilization to Gammaproteobactaria, Plantcomycetes, and Betaproteobacteria, chitin degradation to Actinomycetes, and potential small molecule biosynthesis pathways for Lentisphaerae, Chlamydiae, and Crenarchaeota. The PRMT method can be applied as a general tool for the analysis of additional metagenomic or transcriptomic datasets. More... »

PAGES

4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/2042-5783-1-4

DOI

http://dx.doi.org/10.1186/2042-5783-1-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030642249

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22587810


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Argonne National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.187073.a", 
          "name": [
            "Argonne National Laboratory, 9700, S. Cass Ave, Argonne, Illinois, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Larsen", 
        "givenName": "Peter E", 
        "id": "sg:person.01073775742.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073775742.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Argonne National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.187073.a", 
          "name": [
            "Argonne National Laboratory, 9700, S. Cass Ave, Argonne, Illinois, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Collart", 
        "givenName": "Frank R", 
        "id": "sg:person.01027235003.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027235003.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Ecology and Hydrology", 
          "id": "https://www.grid.ac/institutes/grid.494924.6", 
          "name": [
            "NERC Centre for Ecology and Hydrology, CEH Oxford, Mansfield Road, OX1 3SR, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Field", 
        "givenName": "Dawn", 
        "id": "sg:person.01223211445.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223211445.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Argonne National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.187073.a", 
          "name": [
            "Argonne National Laboratory, 9700, S. Cass Ave, Argonne, Illinois, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meyer", 
        "givenName": "Folker", 
        "id": "sg:person.0623154651.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623154651.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Argonne National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.187073.a", 
          "name": [
            "Argonne National Laboratory, 9700, S. Cass Ave, Argonne, Illinois, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keegan", 
        "givenName": "Kevin P", 
        "id": "sg:person.01047770551.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047770551.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Argonne National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.187073.a", 
          "name": [
            "Argonne National Laboratory, 9700, S. Cass Ave, Argonne, Illinois, USA", 
            "Computation Institute, University of Chicago, 5735 South Ellis Avenue, 60637, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Henry", 
        "givenName": "Christopher S", 
        "id": "sg:person.01134232120.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134232120.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "School of Biological Science, Queens University, Medical Biology Centre, 97 Lisburn Road, BT9 7BL, Belfast, Northern Ireland, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McGrath", 
        "givenName": "John", 
        "id": "sg:person.0651461220.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651461220.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "School of Biological Science, Queens University, Medical Biology Centre, 97 Lisburn Road, BT9 7BL, Belfast, Northern Ireland, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Quinn", 
        "givenName": "John", 
        "id": "sg:person.016466536062.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016466536062.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Argonne National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.187073.a", 
          "name": [
            "Argonne National Laboratory, 9700, S. Cass Ave, Argonne, Illinois, USA", 
            "Department of Ecology and Evolution, University of Chicago, 5640 South Ellis Avenue, 60637, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gilbert", 
        "givenName": "Jack A", 
        "id": "sg:person.0727626545.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727626545.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ismej.2010.51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000387248", 
          "https://doi.org/10.1038/ismej.2010.51"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.66.4.1692-1697.2000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000909157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/331341a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002094778", 
          "https://doi.org/10.1038/331341a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0065-2881(04)47001-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002742928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11306-008-0152-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003660520", 
          "https://doi.org/10.1007/s11306-008-0152-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003696513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1462-2920.2008.01745.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004594116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl1043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005543336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005758392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006083026", 
          "https://doi.org/10.1186/1471-2105-9-386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mmbr.00004-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006482005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008035809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-4165(99)00172-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009839500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009961531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.4056/sigs.1202536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011257048", 
          "https://doi.org/10.4056/sigs.1202536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1431443100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012873272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0305-1978(91)90051-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013423289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0305-1978(91)90051-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013423289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1462-2920.2007.01397.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016239118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.1.27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017305614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.66.3.1195-1201.2000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019238495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-marine-120709-142811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020377040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1462-2920.2009.02017.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021785415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1462-2920.2009.02017.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021785415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m301871200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022883536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023691117", 
          "https://doi.org/10.1038/nature05700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/19.2.270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028650634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b805354e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031149559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031380945", 
          "https://doi.org/10.1038/nrmicro1745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/371123a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036593404", 
          "https://doi.org/10.1038/371123a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr0503613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037277119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr0503613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037277119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038073766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/pa005i001p00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038371683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038439506", 
          "https://doi.org/10.1038/nbt1360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0808022106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043068456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ja.2008.113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043238533", 
          "https://doi.org/10.1038/ja.2008.113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ja.2008.113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043238533", 
          "https://doi.org/10.1038/ja.2008.113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0015545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044682001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1751-7915.2010.00193.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046610331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10629361003771009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047467381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050102057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050102057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1584/jpestics.31.245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051701601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9780824751999.ch7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052384467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1239303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052744398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2202/1544-6115.1287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053273840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1153213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053637244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ol060630r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056247773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ol060630r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056247773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00221287-144-5-1299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060369854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1108925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062451530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1137959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062455161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3354/meps332301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071178941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074466889", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074484667", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "BACKGROUND: The world's oceans are home to a diverse array of microbial life whose metabolic activity helps to drive the earth's biogeochemical cycles. Metagenomic analysis has revolutionized our access to these communities, providing a system-scale perspective of microbial community interactions. However, while metagenome sequencing can provide useful estimates of the relative change in abundance of specific genes and taxa between environments or over time, this does not investigate the relative changes in the production or consumption of different metabolites.\nRESULTS: We propose a methodology, Predicted Relative Metabolic Turnover (PRMT) that defines and enables exploration of metabolite-space inferred from the metagenome. Our analysis of metagenomic data from a time-series study in the Western English Channel demonstrated considerable correlations between predicted relative metabolic turnover and seasonal changes in abundance of measured environmental parameters as well as with observed seasonal changes in bacterial population structure.\nCONCLUSIONS: The PRMT method was successfully applied to metagenomic data to explore the Western English Channel microbial metabalome to generate specific, biologically testable hypotheses. Generated hypotheses linked organic phosphate utilization to Gammaproteobactaria, Plantcomycetes, and Betaproteobacteria, chitin degradation to Actinomycetes, and potential small molecule biosynthesis pathways for Lentisphaerae, Chlamydiae, and Crenarchaeota. The PRMT method can be applied as a general tool for the analysis of additional metagenomic or transcriptomic datasets.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/2042-5783-1-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2784621", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1046362", 
        "issn": [
          "2042-5783"
        ], 
        "name": "Microbial Informatics and Experimentation", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset", 
    "pagination": "4", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "91f9e18422c1b2d141d1bdcde30290aee34521ff0d369f18f40b83fe69f025db"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22587810"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101577812"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/2042-5783-1-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030642249"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/2042-5783-1-4", 
      "https://app.dimensions.ai/details/publication/pub.1030642249"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F2042-5783-1-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/2042-5783-1-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/2042-5783-1-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/2042-5783-1-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/2042-5783-1-4'


 

This table displays all metadata directly associated to this object as RDF triples.

293 TRIPLES      21 PREDICATES      79 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/2042-5783-1-4 schema:about anzsrc-for:06
2 anzsrc-for:0605
3 schema:author N647a82fa55f94f8eab108e44e64d21e8
4 schema:citation sg:pub.10.1007/s11306-008-0152-0
5 sg:pub.10.1038/331341a0
6 sg:pub.10.1038/371123a0
7 sg:pub.10.1038/ismej.2010.51
8 sg:pub.10.1038/ja.2008.113
9 sg:pub.10.1038/nature05700
10 sg:pub.10.1038/nbt1360
11 sg:pub.10.1038/nrmicro1745
12 sg:pub.10.1186/1471-2105-9-386
13 sg:pub.10.4056/sigs.1202536
14 https://app.dimensions.ai/details/publication/pub.1074466889
15 https://app.dimensions.ai/details/publication/pub.1074484667
16 https://doi.org/10.1016/0305-1978(91)90051-z
17 https://doi.org/10.1016/s0065-2881(04)47001-1
18 https://doi.org/10.1016/s0304-4165(99)00172-5
19 https://doi.org/10.1021/cr0503613
20 https://doi.org/10.1021/ol060630r
21 https://doi.org/10.1029/pa005i001p00001
22 https://doi.org/10.1039/b805354e
23 https://doi.org/10.1073/pnas.0808022106
24 https://doi.org/10.1073/pnas.1431443100
25 https://doi.org/10.1074/jbc.m301871200
26 https://doi.org/10.1080/10629361003771009
27 https://doi.org/10.1093/bioinformatics/19.2.270
28 https://doi.org/10.1093/nar/28.1.27
29 https://doi.org/10.1093/nar/gki025
30 https://doi.org/10.1093/nar/gki866
31 https://doi.org/10.1093/nar/gkl1043
32 https://doi.org/10.1093/nar/gkl842
33 https://doi.org/10.1093/nar/gkm960
34 https://doi.org/10.1093/nar/gkp951
35 https://doi.org/10.1099/00221287-144-5-1299
36 https://doi.org/10.1101/gr.1239303
37 https://doi.org/10.1111/j.1462-2920.2007.01397.x
38 https://doi.org/10.1111/j.1462-2920.2008.01745.x
39 https://doi.org/10.1111/j.1462-2920.2009.02017.x
40 https://doi.org/10.1111/j.1751-7915.2010.00193.x
41 https://doi.org/10.1126/science.1108925
42 https://doi.org/10.1126/science.1137959
43 https://doi.org/10.1126/science.1153213
44 https://doi.org/10.1128/aem.66.3.1195-1201.2000
45 https://doi.org/10.1128/aem.66.4.1692-1697.2000
46 https://doi.org/10.1128/mmbr.00004-06
47 https://doi.org/10.1146/annurev-marine-120709-142811
48 https://doi.org/10.1201/9780824751999.ch7
49 https://doi.org/10.1371/journal.pcbi.1000667
50 https://doi.org/10.1371/journal.pone.0015545
51 https://doi.org/10.1584/jpestics.31.245
52 https://doi.org/10.2202/1544-6115.1287
53 https://doi.org/10.3354/meps332301
54 schema:datePublished 2011-12
55 schema:datePublishedReg 2011-12-01
56 schema:description BACKGROUND: The world's oceans are home to a diverse array of microbial life whose metabolic activity helps to drive the earth's biogeochemical cycles. Metagenomic analysis has revolutionized our access to these communities, providing a system-scale perspective of microbial community interactions. However, while metagenome sequencing can provide useful estimates of the relative change in abundance of specific genes and taxa between environments or over time, this does not investigate the relative changes in the production or consumption of different metabolites. RESULTS: We propose a methodology, Predicted Relative Metabolic Turnover (PRMT) that defines and enables exploration of metabolite-space inferred from the metagenome. Our analysis of metagenomic data from a time-series study in the Western English Channel demonstrated considerable correlations between predicted relative metabolic turnover and seasonal changes in abundance of measured environmental parameters as well as with observed seasonal changes in bacterial population structure. CONCLUSIONS: The PRMT method was successfully applied to metagenomic data to explore the Western English Channel microbial metabalome to generate specific, biologically testable hypotheses. Generated hypotheses linked organic phosphate utilization to Gammaproteobactaria, Plantcomycetes, and Betaproteobacteria, chitin degradation to Actinomycetes, and potential small molecule biosynthesis pathways for Lentisphaerae, Chlamydiae, and Crenarchaeota. The PRMT method can be applied as a general tool for the analysis of additional metagenomic or transcriptomic datasets.
57 schema:genre research_article
58 schema:inLanguage en
59 schema:isAccessibleForFree true
60 schema:isPartOf N4e3f4fa53d154b76a60ce53070fe341c
61 N73c1c9b13f9b48c9b045c9397646a3d5
62 sg:journal.1046362
63 schema:name Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset
64 schema:pagination 4
65 schema:productId N3c98469a4a004e9681c2d2f76e8dea96
66 N43696890ade54beeb54a613f3bf27a5e
67 N74666252420540099bb71998757afbc6
68 N7db6c3aa573e41be957ab866f5e6469e
69 N922229d0a0a74e8e9fa261c72f092c5b
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030642249
71 https://doi.org/10.1186/2042-5783-1-4
72 schema:sdDatePublished 2019-04-11T00:16
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher Nca5c6345c31d483d99f5f99aa9c2290c
75 schema:url http://link.springer.com/10.1186%2F2042-5783-1-4
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N241eae76e98f4c8a977a9089e0944527 schema:name School of Biological Science, Queens University, Medical Biology Centre, 97 Lisburn Road, BT9 7BL, Belfast, Northern Ireland, UK
80 rdf:type schema:Organization
81 N364f72b200904441bc2618fcdbe7fdfa rdf:first sg:person.01047770551.55
82 rdf:rest N51f704435b9747db8b33cd01a205875c
83 N3c98469a4a004e9681c2d2f76e8dea96 schema:name nlm_unique_id
84 schema:value 101577812
85 rdf:type schema:PropertyValue
86 N43696890ade54beeb54a613f3bf27a5e schema:name dimensions_id
87 schema:value pub.1030642249
88 rdf:type schema:PropertyValue
89 N4e3f4fa53d154b76a60ce53070fe341c schema:issueNumber 1
90 rdf:type schema:PublicationIssue
91 N51f704435b9747db8b33cd01a205875c rdf:first sg:person.01134232120.92
92 rdf:rest Ndf96e6bb9bf3462a860c4773768cacd6
93 N61c43519652a4726bd4794fc6e0eb66a rdf:first sg:person.01027235003.24
94 rdf:rest N9b55283b8d2f4a00943e199bad8da310
95 N647a82fa55f94f8eab108e44e64d21e8 rdf:first sg:person.01073775742.05
96 rdf:rest N61c43519652a4726bd4794fc6e0eb66a
97 N73c1c9b13f9b48c9b045c9397646a3d5 schema:volumeNumber 1
98 rdf:type schema:PublicationVolume
99 N74666252420540099bb71998757afbc6 schema:name readcube_id
100 schema:value 91f9e18422c1b2d141d1bdcde30290aee34521ff0d369f18f40b83fe69f025db
101 rdf:type schema:PropertyValue
102 N7db6c3aa573e41be957ab866f5e6469e schema:name doi
103 schema:value 10.1186/2042-5783-1-4
104 rdf:type schema:PropertyValue
105 N922229d0a0a74e8e9fa261c72f092c5b schema:name pubmed_id
106 schema:value 22587810
107 rdf:type schema:PropertyValue
108 N94828d74dea54cbca7ce4dd17dce0e35 rdf:first sg:person.0727626545.37
109 rdf:rest rdf:nil
110 N9b55283b8d2f4a00943e199bad8da310 rdf:first sg:person.01223211445.99
111 rdf:rest Nc83f37f8ae814d50859d4f4010ba93a8
112 Nc83f37f8ae814d50859d4f4010ba93a8 rdf:first sg:person.0623154651.88
113 rdf:rest N364f72b200904441bc2618fcdbe7fdfa
114 Nca5c6345c31d483d99f5f99aa9c2290c schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 Ndf96e6bb9bf3462a860c4773768cacd6 rdf:first sg:person.0651461220.28
117 rdf:rest Ne0d6679a566841d4a212f2eb7de2a38a
118 Ne0d6679a566841d4a212f2eb7de2a38a rdf:first sg:person.016466536062.09
119 rdf:rest N94828d74dea54cbca7ce4dd17dce0e35
120 Ne775227075cd4712a45277b13896864c schema:name School of Biological Science, Queens University, Medical Biology Centre, 97 Lisburn Road, BT9 7BL, Belfast, Northern Ireland, UK
121 rdf:type schema:Organization
122 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
123 schema:name Biological Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
126 schema:name Microbiology
127 rdf:type schema:DefinedTerm
128 sg:grant.2784621 http://pending.schema.org/fundedItem sg:pub.10.1186/2042-5783-1-4
129 rdf:type schema:MonetaryGrant
130 sg:journal.1046362 schema:issn 2042-5783
131 schema:name Microbial Informatics and Experimentation
132 rdf:type schema:Periodical
133 sg:person.01027235003.24 schema:affiliation https://www.grid.ac/institutes/grid.187073.a
134 schema:familyName Collart
135 schema:givenName Frank R
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027235003.24
137 rdf:type schema:Person
138 sg:person.01047770551.55 schema:affiliation https://www.grid.ac/institutes/grid.187073.a
139 schema:familyName Keegan
140 schema:givenName Kevin P
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047770551.55
142 rdf:type schema:Person
143 sg:person.01073775742.05 schema:affiliation https://www.grid.ac/institutes/grid.187073.a
144 schema:familyName Larsen
145 schema:givenName Peter E
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073775742.05
147 rdf:type schema:Person
148 sg:person.01134232120.92 schema:affiliation https://www.grid.ac/institutes/grid.187073.a
149 schema:familyName Henry
150 schema:givenName Christopher S
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134232120.92
152 rdf:type schema:Person
153 sg:person.01223211445.99 schema:affiliation https://www.grid.ac/institutes/grid.494924.6
154 schema:familyName Field
155 schema:givenName Dawn
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223211445.99
157 rdf:type schema:Person
158 sg:person.016466536062.09 schema:affiliation N241eae76e98f4c8a977a9089e0944527
159 schema:familyName Quinn
160 schema:givenName John
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016466536062.09
162 rdf:type schema:Person
163 sg:person.0623154651.88 schema:affiliation https://www.grid.ac/institutes/grid.187073.a
164 schema:familyName Meyer
165 schema:givenName Folker
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623154651.88
167 rdf:type schema:Person
168 sg:person.0651461220.28 schema:affiliation Ne775227075cd4712a45277b13896864c
169 schema:familyName McGrath
170 schema:givenName John
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651461220.28
172 rdf:type schema:Person
173 sg:person.0727626545.37 schema:affiliation https://www.grid.ac/institutes/grid.187073.a
174 schema:familyName Gilbert
175 schema:givenName Jack A
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727626545.37
177 rdf:type schema:Person
178 sg:pub.10.1007/s11306-008-0152-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003660520
179 https://doi.org/10.1007/s11306-008-0152-0
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/331341a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002094778
182 https://doi.org/10.1038/331341a0
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/371123a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036593404
185 https://doi.org/10.1038/371123a0
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/ismej.2010.51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000387248
188 https://doi.org/10.1038/ismej.2010.51
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/ja.2008.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043238533
191 https://doi.org/10.1038/ja.2008.113
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/nature05700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023691117
194 https://doi.org/10.1038/nature05700
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/nbt1360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038439506
197 https://doi.org/10.1038/nbt1360
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/nrmicro1745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031380945
200 https://doi.org/10.1038/nrmicro1745
201 rdf:type schema:CreativeWork
202 sg:pub.10.1186/1471-2105-9-386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006083026
203 https://doi.org/10.1186/1471-2105-9-386
204 rdf:type schema:CreativeWork
205 sg:pub.10.4056/sigs.1202536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011257048
206 https://doi.org/10.4056/sigs.1202536
207 rdf:type schema:CreativeWork
208 https://app.dimensions.ai/details/publication/pub.1074466889 schema:CreativeWork
209 https://app.dimensions.ai/details/publication/pub.1074484667 schema:CreativeWork
210 https://doi.org/10.1016/0305-1978(91)90051-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1013423289
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/s0065-2881(04)47001-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002742928
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/s0304-4165(99)00172-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009839500
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1021/cr0503613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037277119
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1021/ol060630r schema:sameAs https://app.dimensions.ai/details/publication/pub.1056247773
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1029/pa005i001p00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038371683
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1039/b805354e schema:sameAs https://app.dimensions.ai/details/publication/pub.1031149559
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1073/pnas.0808022106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043068456
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1073/pnas.1431443100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012873272
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1074/jbc.m301871200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022883536
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1080/10629361003771009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047467381
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1093/bioinformatics/19.2.270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028650634
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1093/nar/28.1.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017305614
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1093/nar/gki025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038073766
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1093/nar/gki866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009961531
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1093/nar/gkl1043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005543336
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1093/nar/gkl842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008035809
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1093/nar/gkm960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050102057
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1093/nar/gkp951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005758392
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1099/00221287-144-5-1299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060369854
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1101/gr.1239303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052744398
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1111/j.1462-2920.2007.01397.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016239118
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1111/j.1462-2920.2008.01745.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004594116
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1111/j.1462-2920.2009.02017.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021785415
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1111/j.1751-7915.2010.00193.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046610331
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1126/science.1108925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062451530
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1126/science.1137959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062455161
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1126/science.1153213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053637244
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1128/aem.66.3.1195-1201.2000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019238495
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1128/aem.66.4.1692-1697.2000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000909157
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1128/mmbr.00004-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006482005
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1146/annurev-marine-120709-142811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020377040
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1201/9780824751999.ch7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052384467
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1371/journal.pcbi.1000667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003696513
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1371/journal.pone.0015545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044682001
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1584/jpestics.31.245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051701601
281 rdf:type schema:CreativeWork
282 https://doi.org/10.2202/1544-6115.1287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053273840
283 rdf:type schema:CreativeWork
284 https://doi.org/10.3354/meps332301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071178941
285 rdf:type schema:CreativeWork
286 https://www.grid.ac/institutes/grid.187073.a schema:alternateName Argonne National Laboratory
287 schema:name Argonne National Laboratory, 9700, S. Cass Ave, Argonne, Illinois, USA
288 Computation Institute, University of Chicago, 5735 South Ellis Avenue, 60637, Chicago, IL, USA
289 Department of Ecology and Evolution, University of Chicago, 5640 South Ellis Avenue, 60637, Chicago, IL, USA
290 rdf:type schema:Organization
291 https://www.grid.ac/institutes/grid.494924.6 schema:alternateName Centre for Ecology and Hydrology
292 schema:name NERC Centre for Ecology and Hydrology, CEH Oxford, Mansfield Road, OX1 3SR, Oxford, UK
293 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...