Inference of human continental origin and admixture proportions using a highly discriminative ancestry informative 41-SNP panel View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

Caroline M Nievergelt, Adam X Maihofer, Tatyana Shekhtman, Ondrej Libiger, Xudong Wang, Kenneth K Kidd, Judith R Kidd

ABSTRACT

BACKGROUND: Accurate determination of genetic ancestry is of high interest for many areas such as biomedical research, personal genomics and forensics. It remains an important topic in genetic association studies, as it has been shown that population stratification, if not appropriately considered, can lead to false-positive and -negative results. While large association studies typically extract ancestry information from available genome-wide SNP genotypes, many important clinical data sets on rare phenotypes and historical collections assembled before the GWAS area are in need of a feasible method (i.e., ease of genotyping, small number of markers) to infer the geographic origin and potential admixture of the study subjects. Here we report on the development, application and limitations of a small, multiplexable ancestry informative marker (AIM) panel of SNPs (or AISNP) developed specifically for this purpose. RESULTS: Based on worldwide populations from the HGDP, a 41-AIM AISNP panel for multiplex application with the ABI SNPlex and a subset with 31 AIMs for the Sequenome iPLEX system were selected and found to be highly informative for inferring ancestry among the seven continental regions Africa, the Middle East, Europe, Central/South Asia, East Asia, the Americas and Oceania. The panel was found to be least informative for Eurasian populations, and additional AIMs for a higher resolution are suggested. A large reference set including over 4,000 subjects collected from 120 global populations was assembled to facilitate accurate ancestry determination. We show practical applications of this AIM panel, discuss its limitations for admixed individuals and suggest ways to incorporate ancestry information into genetic association studies. CONCLUSION: We demonstrated the utility of a small AISNP panel specifically developed to discern global ancestry. We believe that it will find wide application because of its feasibility and potential for a wide range of applications. More... »

PAGES

13

References to SciGraph publications

  • 2004-11. Implications of biogeography of human populations for 'race' and medicine in NATURE GENETICS
  • 2010-07. New approaches to population stratification in genome-wide association studies in NATURE REVIEWS GENETICS
  • 2010-09. Integrating common and rare genetic variation in diverse human populations in NATURE
  • 2009-12. An ancestry informative marker set for determining continental origin: validation and extension using human genome diversity panels in BMC GENETICS
  • 2011-12. Analyses of a set of 128 ancestry informative single-nucleotide polymorphisms in a global set of 119 population samples in INVESTIGATIVE GENETICS
  • 2009-11. European Population Genetic Substructure: Further Definition of Ancestry Informative Markers for Distinguishing among Diverse European Ethnic Groups in MOLECULAR MEDICINE
  • 2004-02. Mexican American ancestry-informative markers: examination of population structure and marker characteristics in European Americans, Mexican Americans, Amerindians and Asians in HUMAN GENETICS
  • 2005-01. Admixture mapping as a gene discovery approach for complex human traits and diseases in CURRENT HYPERTENSION REPORTS
  • 2005-12. Geography is a better determinant of human genetic differentiation than ethnicity in HUMAN GENETICS
  • 2009-12. Characterizing the admixed African ancestry of African Americans in GENOME BIOLOGY
  • 2003-08. Markers informative for ancestry demonstrate consistent megabase-length linkage disequilibrium in the African American population in HUMAN GENETICS
  • 2010-12. Matrix metalloproteinase haplotypes associated with coronary artery aneurysm formation in patients with Kawasaki disease in JOURNAL OF HUMAN GENETICS
  • 2006-08. Principal components analysis corrects for stratification in genome-wide association studies in NATURE GENETICS
  • 2012-12. Introducing the Forensic Research/Reference on Genetics knowledge base, FROG-kb in INVESTIGATIVE GENETICS
  • 2004-05. The effects of human population structure on large genetic association studies in NATURE GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/2041-2223-4-13

    DOI

    http://dx.doi.org/10.1186/2041-2223-4-13

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1051127186

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/23815888


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of San Diego", 
              "id": "https://www.grid.ac/institutes/grid.267102.0", 
              "name": [
                "Department of Psychiatry, School of Medicine, University of San Diego California, 92093, La Jolla, CA,, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nievergelt", 
            "givenName": "Caroline M", 
            "id": "sg:person.01337445507.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337445507.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of San Diego", 
              "id": "https://www.grid.ac/institutes/grid.267102.0", 
              "name": [
                "Department of Psychiatry, School of Medicine, University of San Diego California, 92093, La Jolla, CA,, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Maihofer", 
            "givenName": "Adam X", 
            "id": "sg:person.01311066410.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311066410.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of San Diego", 
              "id": "https://www.grid.ac/institutes/grid.267102.0", 
              "name": [
                "Department of Psychiatry, School of Medicine, University of San Diego California, 92093, La Jolla, CA,, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shekhtman", 
            "givenName": "Tatyana", 
            "id": "sg:person.0705166102.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705166102.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Scripps Research Institute", 
              "id": "https://www.grid.ac/institutes/grid.214007.0", 
              "name": [
                "Department of Molecular and Experiment Medicine, The Scripps Research Institute, 92037, La Jolla, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Libiger", 
            "givenName": "Ondrej", 
            "id": "sg:person.0700023704.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700023704.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Chongqing Medical University, Chongqing, Sichuan, China", 
                "Genetics Dept, Yale University School of Medicine, 06520, New Haven, CT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Xudong", 
            "id": "sg:person.0701710710.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701710710.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Genetics Dept, Yale University School of Medicine, 06520, New Haven, CT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kidd", 
            "givenName": "Kenneth K", 
            "id": "sg:person.01264224741.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264224741.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Genetics Dept, Yale University School of Medicine, 06520, New Haven, CT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kidd", 
            "givenName": "Judith R", 
            "id": "sg:person.01216111541.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216111541.41"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/jhg.2010.109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001697629", 
              "https://doi.org/10.1038/jhg.2010.109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/jhg.2010.109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001697629", 
              "https://doi.org/10.1038/jhg.2010.109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1337", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002008100", 
              "https://doi.org/10.1038/ng1337"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1337", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002008100", 
              "https://doi.org/10.1038/ng1337"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btm233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002660002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2041-2223-2-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003973386", 
              "https://doi.org/10.1186/2041-2223-2-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2010.08.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005110833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1078311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005962126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1002554", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009453604"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1069424", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010139737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.0040004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010302217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2041-2223-3-18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010352801", 
              "https://doi.org/10.1186/2041-2223-3-18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.0020215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010472226"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.094052.109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010760027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0471142905.hg0212s60", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015101202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/hjh.0b013e328356b86a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016416233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/hjh.0b013e328356b86a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016416233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bth250", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016574435"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/519795", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019061180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-003-1058-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020456125", 
              "https://doi.org/10.1007/s00439-003-1058-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-003-1058-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020456125", 
              "https://doi.org/10.1007/s00439-003-1058-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1755-0998.2010.02847.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020645983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1755-0998.2010.02847.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020645983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/jmg.2010.078212", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020711846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1438", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020735175", 
              "https://doi.org/10.1038/ng1438"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1438", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020735175", 
              "https://doi.org/10.1038/ng1438"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fsigen.2007.06.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021496347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1471-8286.2003.00566.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021870721"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkr924", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023763915"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11906-005-0052-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024294384", 
              "https://doi.org/10.1007/s11906-005-0052-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5888/pcd9.110134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025265093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fgene.2012.00322", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026329211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.0030236", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027655636"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2009-10-12-r141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028375419", 
              "https://doi.org/10.1186/gb-2009-10-12-r141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.0010070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028401011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.0010070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028401011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1847", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031429813", 
              "https://doi.org/10.1038/ng1847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1847", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031429813", 
              "https://doi.org/10.1038/ng1847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/humu.20822", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037984997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0011892", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039308525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-005-0039-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039742568", 
              "https://doi.org/10.1007/s00439-005-0039-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-005-0039-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039742568", 
              "https://doi.org/10.1007/s00439-005-0039-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-005-0039-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039742568", 
              "https://doi.org/10.1007/s00439-005-0039-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ajpa.21560", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039909698"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1469-1809.2006.00285.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041306509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1469-1809.2006.00285.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041306509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2156-10-39", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042414109", 
              "https://doi.org/10.1186/1471-2156-10-39"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2813", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043354004", 
              "https://doi.org/10.1038/nrg2813"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2813", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043354004", 
              "https://doi.org/10.1038/nrg2813"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-003-0961-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044807617", 
              "https://doi.org/10.1007/s00439-003-0961-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-003-0961-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044807617", 
              "https://doi.org/10.1007/s00439-003-0961-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.2529604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048125828"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0909559107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048731176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/380416", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050483221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1055-9965.epi-07-2505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051171624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09298", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052674054", 
              "https://doi.org/10.1038/nature09298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09298", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052674054", 
              "https://doi.org/10.1038/nature09298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/302148", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058609734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/507954", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058786076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/513477", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058789003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/518564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058791825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1153717", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062457378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.296.5566.261b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062576868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.2119/molmed.2009.00094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068965212", 
              "https://doi.org/10.2119/molmed.2009.00094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.2119/molmed.2009.00094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068965212", 
              "https://doi.org/10.2119/molmed.2009.00094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074647594", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1075335894", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077198955", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-12", 
        "datePublishedReg": "2013-12-01", 
        "description": "BACKGROUND: Accurate determination of genetic ancestry is of high interest for many areas such as biomedical research, personal genomics and forensics. It remains an important topic in genetic association studies, as it has been shown that population stratification, if not appropriately considered, can lead to false-positive and -negative results. While large association studies typically extract ancestry information from available genome-wide SNP genotypes, many important clinical data sets on rare phenotypes and historical collections assembled before the GWAS area are in need of a feasible method (i.e., ease of genotyping, small number of markers) to infer the geographic origin and potential admixture of the study subjects. Here we report on the development, application and limitations of a small, multiplexable ancestry informative marker (AIM) panel of SNPs (or AISNP) developed specifically for this purpose.\nRESULTS: Based on worldwide populations from the HGDP, a 41-AIM AISNP panel for multiplex application with the ABI SNPlex and a subset with 31 AIMs for the Sequenome iPLEX system were selected and found to be highly informative for inferring ancestry among the seven continental regions Africa, the Middle East, Europe, Central/South Asia, East Asia, the Americas and Oceania. The panel was found to be least informative for Eurasian populations, and additional AIMs for a higher resolution are suggested. A large reference set including over 4,000 subjects collected from 120 global populations was assembled to facilitate accurate ancestry determination. We show practical applications of this AIM panel, discuss its limitations for admixed individuals and suggest ways to incorporate ancestry information into genetic association studies.\nCONCLUSION: We demonstrated the utility of a small AISNP panel specifically developed to discern global ancestry. We believe that it will find wide application because of its feasibility and potential for a wide range of applications.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/2041-2223-4-13", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7602849", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2691147", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3106850", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7602850", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2448284", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2692520", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2552398", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1044399", 
            "issn": [
              "2041-2223"
            ], 
            "name": "Investigative Genetics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "name": "Inference of human continental origin and admixture proportions using a highly discriminative ancestry informative 41-SNP panel", 
        "pagination": "13", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f38d0ad90f59b04bdc38bb61aed290856d1739f755bee4f5438d2a7766df0884"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "23815888"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101546908"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/2041-2223-4-13"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1051127186"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/2041-2223-4-13", 
          "https://app.dimensions.ai/details/publication/pub.1051127186"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T00:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000537.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2F2041-2223-4-13"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/2041-2223-4-13'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/2041-2223-4-13'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/2041-2223-4-13'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/2041-2223-4-13'


     

    This table displays all metadata directly associated to this object as RDF triples.

    302 TRIPLES      21 PREDICATES      82 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/2041-2223-4-13 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author N7c722127b8c64df2b3c52eeb54df2fb4
    4 schema:citation sg:pub.10.1007/s00439-003-0961-1
    5 sg:pub.10.1007/s00439-003-1058-6
    6 sg:pub.10.1007/s00439-005-0039-3
    7 sg:pub.10.1007/s11906-005-0052-x
    8 sg:pub.10.1038/jhg.2010.109
    9 sg:pub.10.1038/nature09298
    10 sg:pub.10.1038/ng1337
    11 sg:pub.10.1038/ng1438
    12 sg:pub.10.1038/ng1847
    13 sg:pub.10.1038/nrg2813
    14 sg:pub.10.1186/1471-2156-10-39
    15 sg:pub.10.1186/2041-2223-2-1
    16 sg:pub.10.1186/2041-2223-3-18
    17 sg:pub.10.1186/gb-2009-10-12-r141
    18 sg:pub.10.2119/molmed.2009.00094
    19 https://app.dimensions.ai/details/publication/pub.1074647594
    20 https://app.dimensions.ai/details/publication/pub.1075335894
    21 https://app.dimensions.ai/details/publication/pub.1077198955
    22 https://doi.org/10.1002/0471142905.hg0212s60
    23 https://doi.org/10.1002/ajpa.21560
    24 https://doi.org/10.1002/humu.20822
    25 https://doi.org/10.1016/j.ajhg.2010.08.014
    26 https://doi.org/10.1016/j.fsigen.2007.06.008
    27 https://doi.org/10.1046/j.1471-8286.2003.00566.x
    28 https://doi.org/10.1073/pnas.0909559107
    29 https://doi.org/10.1086/302148
    30 https://doi.org/10.1086/380416
    31 https://doi.org/10.1086/507954
    32 https://doi.org/10.1086/513477
    33 https://doi.org/10.1086/518564
    34 https://doi.org/10.1086/519795
    35 https://doi.org/10.1093/bioinformatics/bth250
    36 https://doi.org/10.1093/bioinformatics/btm233
    37 https://doi.org/10.1093/nar/gkr924
    38 https://doi.org/10.1097/hjh.0b013e328356b86a
    39 https://doi.org/10.1101/gr.094052.109
    40 https://doi.org/10.1101/gr.2529604
    41 https://doi.org/10.1111/j.1469-1809.2006.00285.x
    42 https://doi.org/10.1111/j.1755-0998.2010.02847.x
    43 https://doi.org/10.1126/science.1069424
    44 https://doi.org/10.1126/science.1078311
    45 https://doi.org/10.1126/science.1153717
    46 https://doi.org/10.1126/science.296.5566.261b
    47 https://doi.org/10.1136/jmg.2010.078212
    48 https://doi.org/10.1158/1055-9965.epi-07-2505
    49 https://doi.org/10.1371/journal.pgen.0010070
    50 https://doi.org/10.1371/journal.pgen.0020215
    51 https://doi.org/10.1371/journal.pgen.0030236
    52 https://doi.org/10.1371/journal.pgen.0040004
    53 https://doi.org/10.1371/journal.pgen.1002554
    54 https://doi.org/10.1371/journal.pone.0011892
    55 https://doi.org/10.3389/fgene.2012.00322
    56 https://doi.org/10.5888/pcd9.110134
    57 schema:datePublished 2013-12
    58 schema:datePublishedReg 2013-12-01
    59 schema:description BACKGROUND: Accurate determination of genetic ancestry is of high interest for many areas such as biomedical research, personal genomics and forensics. It remains an important topic in genetic association studies, as it has been shown that population stratification, if not appropriately considered, can lead to false-positive and -negative results. While large association studies typically extract ancestry information from available genome-wide SNP genotypes, many important clinical data sets on rare phenotypes and historical collections assembled before the GWAS area are in need of a feasible method (i.e., ease of genotyping, small number of markers) to infer the geographic origin and potential admixture of the study subjects. Here we report on the development, application and limitations of a small, multiplexable ancestry informative marker (AIM) panel of SNPs (or AISNP) developed specifically for this purpose. RESULTS: Based on worldwide populations from the HGDP, a 41-AIM AISNP panel for multiplex application with the ABI SNPlex and a subset with 31 AIMs for the Sequenome iPLEX system were selected and found to be highly informative for inferring ancestry among the seven continental regions Africa, the Middle East, Europe, Central/South Asia, East Asia, the Americas and Oceania. The panel was found to be least informative for Eurasian populations, and additional AIMs for a higher resolution are suggested. A large reference set including over 4,000 subjects collected from 120 global populations was assembled to facilitate accurate ancestry determination. We show practical applications of this AIM panel, discuss its limitations for admixed individuals and suggest ways to incorporate ancestry information into genetic association studies. CONCLUSION: We demonstrated the utility of a small AISNP panel specifically developed to discern global ancestry. We believe that it will find wide application because of its feasibility and potential for a wide range of applications.
    60 schema:genre research_article
    61 schema:inLanguage en
    62 schema:isAccessibleForFree true
    63 schema:isPartOf Naec5e773ab7d4adcbb036e99278c4343
    64 Ne9a1f22cb524439c99cc71c2ffe8deab
    65 sg:journal.1044399
    66 schema:name Inference of human continental origin and admixture proportions using a highly discriminative ancestry informative 41-SNP panel
    67 schema:pagination 13
    68 schema:productId N1d3c59b0703245f1b3efb38b6bb11733
    69 N3dcb4b61693f49378c90bc5a536ab378
    70 N452ef521f7b24c899e4eb35db116c37d
    71 N6ee3c1fac32f43f997500d9ae2633a44
    72 N8d7c1773a134459583c68cf671c6fde6
    73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051127186
    74 https://doi.org/10.1186/2041-2223-4-13
    75 schema:sdDatePublished 2019-04-11T00:21
    76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    77 schema:sdPublisher N9d14e5d31982428fb62916670cea4563
    78 schema:url http://link.springer.com/10.1186%2F2041-2223-4-13
    79 sgo:license sg:explorer/license/
    80 sgo:sdDataset articles
    81 rdf:type schema:ScholarlyArticle
    82 N17fd3d8bffd4400a82e14fd6e892d9e3 rdf:first sg:person.0700023704.45
    83 rdf:rest N2d3699037b334f5eb4a9b8044da0f3eb
    84 N1d3c59b0703245f1b3efb38b6bb11733 schema:name dimensions_id
    85 schema:value pub.1051127186
    86 rdf:type schema:PropertyValue
    87 N2d3699037b334f5eb4a9b8044da0f3eb rdf:first sg:person.0701710710.31
    88 rdf:rest N48e951f1d72f40698eb85fd285699d04
    89 N2ec6adc3eef943a0b33fb403af911718 rdf:first sg:person.01311066410.27
    90 rdf:rest N2f85c892b93b48909a695c0a6723a4f8
    91 N2f85c892b93b48909a695c0a6723a4f8 rdf:first sg:person.0705166102.62
    92 rdf:rest N17fd3d8bffd4400a82e14fd6e892d9e3
    93 N3dcb4b61693f49378c90bc5a536ab378 schema:name pubmed_id
    94 schema:value 23815888
    95 rdf:type schema:PropertyValue
    96 N452ef521f7b24c899e4eb35db116c37d schema:name doi
    97 schema:value 10.1186/2041-2223-4-13
    98 rdf:type schema:PropertyValue
    99 N48e951f1d72f40698eb85fd285699d04 rdf:first sg:person.01264224741.31
    100 rdf:rest Nfe9c8a24f12848e2b6b1cf123104171f
    101 N6ee3c1fac32f43f997500d9ae2633a44 schema:name readcube_id
    102 schema:value f38d0ad90f59b04bdc38bb61aed290856d1739f755bee4f5438d2a7766df0884
    103 rdf:type schema:PropertyValue
    104 N7c722127b8c64df2b3c52eeb54df2fb4 rdf:first sg:person.01337445507.41
    105 rdf:rest N2ec6adc3eef943a0b33fb403af911718
    106 N8d7c1773a134459583c68cf671c6fde6 schema:name nlm_unique_id
    107 schema:value 101546908
    108 rdf:type schema:PropertyValue
    109 N9d14e5d31982428fb62916670cea4563 schema:name Springer Nature - SN SciGraph project
    110 rdf:type schema:Organization
    111 Naec5e773ab7d4adcbb036e99278c4343 schema:issueNumber 1
    112 rdf:type schema:PublicationIssue
    113 Ne9a1f22cb524439c99cc71c2ffe8deab schema:volumeNumber 4
    114 rdf:type schema:PublicationVolume
    115 Nfe9c8a24f12848e2b6b1cf123104171f rdf:first sg:person.01216111541.41
    116 rdf:rest rdf:nil
    117 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    118 schema:name Biological Sciences
    119 rdf:type schema:DefinedTerm
    120 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    121 schema:name Genetics
    122 rdf:type schema:DefinedTerm
    123 sg:grant.2448284 http://pending.schema.org/fundedItem sg:pub.10.1186/2041-2223-4-13
    124 rdf:type schema:MonetaryGrant
    125 sg:grant.2552398 http://pending.schema.org/fundedItem sg:pub.10.1186/2041-2223-4-13
    126 rdf:type schema:MonetaryGrant
    127 sg:grant.2691147 http://pending.schema.org/fundedItem sg:pub.10.1186/2041-2223-4-13
    128 rdf:type schema:MonetaryGrant
    129 sg:grant.2692520 http://pending.schema.org/fundedItem sg:pub.10.1186/2041-2223-4-13
    130 rdf:type schema:MonetaryGrant
    131 sg:grant.3106850 http://pending.schema.org/fundedItem sg:pub.10.1186/2041-2223-4-13
    132 rdf:type schema:MonetaryGrant
    133 sg:grant.7602849 http://pending.schema.org/fundedItem sg:pub.10.1186/2041-2223-4-13
    134 rdf:type schema:MonetaryGrant
    135 sg:grant.7602850 http://pending.schema.org/fundedItem sg:pub.10.1186/2041-2223-4-13
    136 rdf:type schema:MonetaryGrant
    137 sg:journal.1044399 schema:issn 2041-2223
    138 schema:name Investigative Genetics
    139 rdf:type schema:Periodical
    140 sg:person.01216111541.41 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    141 schema:familyName Kidd
    142 schema:givenName Judith R
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216111541.41
    144 rdf:type schema:Person
    145 sg:person.01264224741.31 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    146 schema:familyName Kidd
    147 schema:givenName Kenneth K
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264224741.31
    149 rdf:type schema:Person
    150 sg:person.01311066410.27 schema:affiliation https://www.grid.ac/institutes/grid.267102.0
    151 schema:familyName Maihofer
    152 schema:givenName Adam X
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311066410.27
    154 rdf:type schema:Person
    155 sg:person.01337445507.41 schema:affiliation https://www.grid.ac/institutes/grid.267102.0
    156 schema:familyName Nievergelt
    157 schema:givenName Caroline M
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337445507.41
    159 rdf:type schema:Person
    160 sg:person.0700023704.45 schema:affiliation https://www.grid.ac/institutes/grid.214007.0
    161 schema:familyName Libiger
    162 schema:givenName Ondrej
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700023704.45
    164 rdf:type schema:Person
    165 sg:person.0701710710.31 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    166 schema:familyName Wang
    167 schema:givenName Xudong
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701710710.31
    169 rdf:type schema:Person
    170 sg:person.0705166102.62 schema:affiliation https://www.grid.ac/institutes/grid.267102.0
    171 schema:familyName Shekhtman
    172 schema:givenName Tatyana
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705166102.62
    174 rdf:type schema:Person
    175 sg:pub.10.1007/s00439-003-0961-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044807617
    176 https://doi.org/10.1007/s00439-003-0961-1
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s00439-003-1058-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020456125
    179 https://doi.org/10.1007/s00439-003-1058-6
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s00439-005-0039-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039742568
    182 https://doi.org/10.1007/s00439-005-0039-3
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s11906-005-0052-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024294384
    185 https://doi.org/10.1007/s11906-005-0052-x
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/jhg.2010.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001697629
    188 https://doi.org/10.1038/jhg.2010.109
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/nature09298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052674054
    191 https://doi.org/10.1038/nature09298
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/ng1337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002008100
    194 https://doi.org/10.1038/ng1337
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/ng1438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020735175
    197 https://doi.org/10.1038/ng1438
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/ng1847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031429813
    200 https://doi.org/10.1038/ng1847
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/nrg2813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043354004
    203 https://doi.org/10.1038/nrg2813
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1186/1471-2156-10-39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042414109
    206 https://doi.org/10.1186/1471-2156-10-39
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1186/2041-2223-2-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003973386
    209 https://doi.org/10.1186/2041-2223-2-1
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1186/2041-2223-3-18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010352801
    212 https://doi.org/10.1186/2041-2223-3-18
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1186/gb-2009-10-12-r141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028375419
    215 https://doi.org/10.1186/gb-2009-10-12-r141
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.2119/molmed.2009.00094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068965212
    218 https://doi.org/10.2119/molmed.2009.00094
    219 rdf:type schema:CreativeWork
    220 https://app.dimensions.ai/details/publication/pub.1074647594 schema:CreativeWork
    221 https://app.dimensions.ai/details/publication/pub.1075335894 schema:CreativeWork
    222 https://app.dimensions.ai/details/publication/pub.1077198955 schema:CreativeWork
    223 https://doi.org/10.1002/0471142905.hg0212s60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015101202
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1002/ajpa.21560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039909698
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1002/humu.20822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037984997
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1016/j.ajhg.2010.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005110833
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1016/j.fsigen.2007.06.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021496347
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1046/j.1471-8286.2003.00566.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021870721
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1073/pnas.0909559107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048731176
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1086/302148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058609734
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1086/380416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050483221
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1086/507954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058786076
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1086/513477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058789003
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1086/518564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058791825
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1086/519795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019061180
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1093/bioinformatics/bth250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016574435
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1093/bioinformatics/btm233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002660002
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1093/nar/gkr924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023763915
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1097/hjh.0b013e328356b86a schema:sameAs https://app.dimensions.ai/details/publication/pub.1016416233
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1101/gr.094052.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010760027
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1101/gr.2529604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048125828
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1111/j.1469-1809.2006.00285.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041306509
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1111/j.1755-0998.2010.02847.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020645983
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1126/science.1069424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010139737
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1126/science.1078311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005962126
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1126/science.1153717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062457378
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1126/science.296.5566.261b schema:sameAs https://app.dimensions.ai/details/publication/pub.1062576868
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1136/jmg.2010.078212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020711846
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1158/1055-9965.epi-07-2505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051171624
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1371/journal.pgen.0010070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028401011
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1371/journal.pgen.0020215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010472226
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1371/journal.pgen.0030236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027655636
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1371/journal.pgen.0040004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010302217
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1371/journal.pgen.1002554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009453604
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1371/journal.pone.0011892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039308525
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.3389/fgene.2012.00322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026329211
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.5888/pcd9.110134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025265093
    292 rdf:type schema:CreativeWork
    293 https://www.grid.ac/institutes/grid.214007.0 schema:alternateName Scripps Research Institute
    294 schema:name Department of Molecular and Experiment Medicine, The Scripps Research Institute, 92037, La Jolla, CA, USA
    295 rdf:type schema:Organization
    296 https://www.grid.ac/institutes/grid.267102.0 schema:alternateName University of San Diego
    297 schema:name Department of Psychiatry, School of Medicine, University of San Diego California, 92093, La Jolla, CA,, USA
    298 rdf:type schema:Organization
    299 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
    300 schema:name Chongqing Medical University, Chongqing, Sichuan, China
    301 Genetics Dept, Yale University School of Medicine, 06520, New Haven, CT, USA
    302 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...