Accurate, rapid and high-throughput detection of strain-specific polymorphisms in Bacillus anthracis and Yersinia pestis by next-generation sequencing View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-12

AUTHORS

Craig A Cummings, Christina A Bormann Chung, Rixun Fang, Melissa Barker, Pius Brzoska, Phillip C Williamson, Jodi Beaudry, Molly Matthews, James Schupp, David M Wagner, Dawn Birdsell, Amy J Vogler, Manohar R Furtado, Paul Keim, Bruce Budowle

ABSTRACT

BACKGROUND: In the event of biocrimes or infectious disease outbreaks, high-resolution genetic characterization for identifying the agent and attributing it to a specific source can be crucial for an effective response. Until recently, in-depth genetic characterization required expensive and time-consuming Sanger sequencing of a few strains, followed by genotyping of a small number of marker loci in a panel of isolates at or by gel-based approaches such as pulsed field gel electrophoresis, which by necessity ignores most of the genome. Next-generation, massively parallel sequencing (MPS) technology (specifically the Applied Biosystems sequencing by oligonucleotide ligation and detection (SOLiD™) system) is a powerful investigative tool for rapid, cost-effective and parallel microbial whole-genome characterization. RESULTS: To demonstrate the utility of MPS for whole-genome typing of monomorphic pathogens, four Bacillus anthracis and four Yersinia pestis strains were sequenced in parallel. Reads were aligned to complete reference genomes, and genomic variations were identified. Resequencing of the B. anthracis Ames ancestor strain detected no false-positive single-nucleotide polymorphisms (SNPs), and mapping of reads to the Sterne strain correctly identified 98% of the 133 SNPs that are not clustered or associated with repeats. Three geographically distinct B. anthracis strains from the A branch lineage were found to have between 352 and 471 SNPs each, relative to the Ames genome, and one strain harbored a genomic amplification. Sequencing of four Y. pestis strains from the Orientalis lineage identified between 20 and 54 SNPs per strain relative to the CO92 genome, with the single Bolivian isolate having approximately twice as many SNPs as the three more closely related North American strains. Coverage plotting also revealed a common deletion in two strains and an amplification in the Bolivian strain that appear to be due to insertion element-mediated recombination events. Most private SNPs (that is, a, variant found in only one strain in this set) selected for validation by Sanger sequencing were confirmed, although rare false-positive SNPs were associated with variable nucleotide tandem repeats. CONCLUSIONS: The high-throughput, multiplexing capability, and accuracy of this system make it suitable for rapid whole-genome typing of microbial pathogens during a forensic or epidemiological investigation. By interrogating nearly every base of the genome, rare polymorphisms can be reliably discovered, thus facilitating high-resolution strain tracking and strengthening forensic attribution. More... »

PAGES

5

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/2041-2223-1-5

DOI

http://dx.doi.org/10.1186/2041-2223-1-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029075459

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21092340


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Thermo Fisher Scientific (United States)", 
          "id": "https://www.grid.ac/institutes/grid.418190.5", 
          "name": [
            "Life Technologies Corporation, Foster City, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cummings", 
        "givenName": "Craig A", 
        "id": "sg:person.0754134575.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754134575.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Thermo Fisher Scientific (United States)", 
          "id": "https://www.grid.ac/institutes/grid.418190.5", 
          "name": [
            "Life Technologies Corporation, Foster City, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bormann Chung", 
        "givenName": "Christina A", 
        "id": "sg:person.014366234441.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014366234441.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Thermo Fisher Scientific (United States)", 
          "id": "https://www.grid.ac/institutes/grid.418190.5", 
          "name": [
            "Life Technologies Corporation, Foster City, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fang", 
        "givenName": "Rixun", 
        "id": "sg:person.0653240566.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653240566.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Thermo Fisher Scientific (United States)", 
          "id": "https://www.grid.ac/institutes/grid.418190.5", 
          "name": [
            "Life Technologies Corporation, Foster City, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barker", 
        "givenName": "Melissa", 
        "id": "sg:person.0575737335.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575737335.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Thermo Fisher Scientific (United States)", 
          "id": "https://www.grid.ac/institutes/grid.418190.5", 
          "name": [
            "Life Technologies Corporation, Foster City, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brzoska", 
        "givenName": "Pius", 
        "id": "sg:person.01067242657.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067242657.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Texas Health Science Center", 
          "id": "https://www.grid.ac/institutes/grid.266871.c", 
          "name": [
            "University of North Texas Health Science Center, Fort Worth, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Williamson", 
        "givenName": "Phillip C", 
        "id": "sg:person.012355215157.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012355215157.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northern Arizona University", 
          "id": "https://www.grid.ac/institutes/grid.261120.6", 
          "name": [
            "Northern Arizona University, Flagstaff, Arizona, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beaudry", 
        "givenName": "Jodi", 
        "id": "sg:person.0766454314.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766454314.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northern Arizona University", 
          "id": "https://www.grid.ac/institutes/grid.261120.6", 
          "name": [
            "Northern Arizona University, Flagstaff, Arizona, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matthews", 
        "givenName": "Molly", 
        "id": "sg:person.01047701661.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047701661.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northern Arizona University", 
          "id": "https://www.grid.ac/institutes/grid.261120.6", 
          "name": [
            "Northern Arizona University, Flagstaff, Arizona, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schupp", 
        "givenName": "James", 
        "id": "sg:person.013516202057.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013516202057.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northern Arizona University", 
          "id": "https://www.grid.ac/institutes/grid.261120.6", 
          "name": [
            "Northern Arizona University, Flagstaff, Arizona, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wagner", 
        "givenName": "David M", 
        "id": "sg:person.0623653057.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623653057.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northern Arizona University", 
          "id": "https://www.grid.ac/institutes/grid.261120.6", 
          "name": [
            "Northern Arizona University, Flagstaff, Arizona, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Birdsell", 
        "givenName": "Dawn", 
        "id": "sg:person.01327162545.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327162545.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northern Arizona University", 
          "id": "https://www.grid.ac/institutes/grid.261120.6", 
          "name": [
            "Northern Arizona University, Flagstaff, Arizona, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vogler", 
        "givenName": "Amy J", 
        "id": "sg:person.0615146646.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615146646.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Thermo Fisher Scientific (United States)", 
          "id": "https://www.grid.ac/institutes/grid.418190.5", 
          "name": [
            "Life Technologies Corporation, Foster City, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Furtado", 
        "givenName": "Manohar R", 
        "id": "sg:person.011141750517.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011141750517.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Translational Genomics Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.250942.8", 
          "name": [
            "Northern Arizona University, Flagstaff, Arizona, USA", 
            "Translational Genomics Research Institute, Phoenix, Arizona, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keim", 
        "givenName": "Paul", 
        "id": "sg:person.01105606454.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105606454.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Texas Health Science Center", 
          "id": "https://www.grid.ac/institutes/grid.266871.c", 
          "name": [
            "University of North Texas Health Science Center, Fort Worth, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Budowle", 
        "givenName": "Bruce", 
        "id": "sg:person.07405671764.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07405671764.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1128/jb.182.10.2928-2936.2000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004622614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0000461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005915272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro2219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006787109", 
          "https://doi.org/10.1038/nrmicro2219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro2219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006787109", 
          "https://doi.org/10.1038/nrmicro2219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008340720", 
          "https://doi.org/10.1038/nature08480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008340720", 
          "https://doi.org/10.1038/nature08480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.71.5.2209-2213.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009755444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0000220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011915111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.01347-08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015643822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016010992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1472-765x.2008.02353.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017366743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro2122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017693818", 
          "https://doi.org/10.1038/nrmicro2122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jcm.01233-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020815978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2004-5-2-r12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022585853", 
          "https://doi.org/10.1186/gb-2004-5-2-r12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2007.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027335183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/meth.2001.1262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027621591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/meth.2001.1262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027621591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031106868", 
          "https://doi.org/10.1038/ng.195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.meegid.2004.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032194203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid1404.070984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032215404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.meegid.2009.05.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034313683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2958.1994.tb00463.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035615883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2958.1992.tb01446.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035874803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1507303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036444151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.96.24.14043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036744418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.077776.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040737496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.071266.107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040791551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044426221", 
          "https://doi.org/10.1038/nature01586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044426221", 
          "https://doi.org/10.1038/nature01586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/sqb.2009.74.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047605782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0403844101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049166268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0000770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053061091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1071837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062446551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1073125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062446659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.3000372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062686495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.3000372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062686495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/000112815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069095813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083255171", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12", 
    "datePublishedReg": "2010-12-01", 
    "description": "BACKGROUND: In the event of biocrimes or infectious disease outbreaks, high-resolution genetic characterization for identifying the agent and attributing it to a specific source can be crucial for an effective response. Until recently, in-depth genetic characterization required expensive and time-consuming Sanger sequencing of a few strains, followed by genotyping of a small number of marker loci in a panel of isolates at or by gel-based approaches such as pulsed field gel electrophoresis, which by necessity ignores most of the genome. Next-generation, massively parallel sequencing (MPS) technology (specifically the Applied Biosystems sequencing by oligonucleotide ligation and detection (SOLiD\u2122) system) is a powerful investigative tool for rapid, cost-effective and parallel microbial whole-genome characterization.\nRESULTS: To demonstrate the utility of MPS for whole-genome typing of monomorphic pathogens, four Bacillus anthracis and four Yersinia pestis strains were sequenced in parallel. Reads were aligned to complete reference genomes, and genomic variations were identified. Resequencing of the B. anthracis Ames ancestor strain detected no false-positive single-nucleotide polymorphisms (SNPs), and mapping of reads to the Sterne strain correctly identified 98% of the 133 SNPs that are not clustered or associated with repeats. Three geographically distinct B. anthracis strains from the A branch lineage were found to have between 352 and 471 SNPs each, relative to the Ames genome, and one strain harbored a genomic amplification. Sequencing of four Y. pestis strains from the Orientalis lineage identified between 20 and 54 SNPs per strain relative to the CO92 genome, with the single Bolivian isolate having approximately twice as many SNPs as the three more closely related North American strains. Coverage plotting also revealed a common deletion in two strains and an amplification in the Bolivian strain that appear to be due to insertion element-mediated recombination events. Most private SNPs (that is, a, variant found in only one strain in this set) selected for validation by Sanger sequencing were confirmed, although rare false-positive SNPs were associated with variable nucleotide tandem repeats.\nCONCLUSIONS: The high-throughput, multiplexing capability, and accuracy of this system make it suitable for rapid whole-genome typing of microbial pathogens during a forensic or epidemiological investigation. By interrogating nearly every base of the genome, rare polymorphisms can be reliably discovered, thus facilitating high-resolution strain tracking and strengthening forensic attribution.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/2041-2223-1-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4394227", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1044399", 
        "issn": [
          "2041-2223"
        ], 
        "name": "Investigative Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "Accurate, rapid and high-throughput detection of strain-specific polymorphisms in Bacillus anthracis and Yersinia pestis by next-generation sequencing", 
    "pagination": "5", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8a824efe591e644e1b1d7433574f73cd8db28f649b67950630130af8ed7c271a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21092340"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101546908"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/2041-2223-1-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029075459"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/2041-2223-1-5", 
      "https://app.dimensions.ai/details/publication/pub.1029075459"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000537.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F2041-2223-1-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/2041-2223-1-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/2041-2223-1-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/2041-2223-1-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/2041-2223-1-5'


 

This table displays all metadata directly associated to this object as RDF triples.

282 TRIPLES      21 PREDICATES      62 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/2041-2223-1-5 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N75db3dc49d03458288d13a1e66949e45
4 schema:citation sg:pub.10.1038/nature01586
5 sg:pub.10.1038/nature08480
6 sg:pub.10.1038/ng.195
7 sg:pub.10.1038/nrmicro2122
8 sg:pub.10.1038/nrmicro2219
9 sg:pub.10.1186/gb-2004-5-2-r12
10 https://app.dimensions.ai/details/publication/pub.1083255171
11 https://doi.org/10.1006/meth.2001.1262
12 https://doi.org/10.1016/j.meegid.2004.02.005
13 https://doi.org/10.1016/j.meegid.2009.05.014
14 https://doi.org/10.1016/j.tig.2007.12.007
15 https://doi.org/10.1073/pnas.0403844101
16 https://doi.org/10.1073/pnas.96.24.14043
17 https://doi.org/10.1093/bioinformatics/btp344
18 https://doi.org/10.1101/gr.071266.107
19 https://doi.org/10.1101/gr.077776.108
20 https://doi.org/10.1101/gr.1507303
21 https://doi.org/10.1101/sqb.2009.74.018
22 https://doi.org/10.1111/j.1365-2958.1992.tb01446.x
23 https://doi.org/10.1111/j.1365-2958.1994.tb00463.x
24 https://doi.org/10.1111/j.1472-765x.2008.02353.x
25 https://doi.org/10.1126/science.1071837
26 https://doi.org/10.1126/science.1073125
27 https://doi.org/10.1126/scitranslmed.3000372
28 https://doi.org/10.1128/aem.71.5.2209-2213.2005
29 https://doi.org/10.1128/jb.01347-08
30 https://doi.org/10.1128/jb.182.10.2928-2936.2000
31 https://doi.org/10.1128/jcm.01233-06
32 https://doi.org/10.1371/journal.pone.0000220
33 https://doi.org/10.1371/journal.pone.0000461
34 https://doi.org/10.1371/journal.pone.0000770
35 https://doi.org/10.2144/000112815
36 https://doi.org/10.3201/eid1404.070984
37 schema:datePublished 2010-12
38 schema:datePublishedReg 2010-12-01
39 schema:description BACKGROUND: In the event of biocrimes or infectious disease outbreaks, high-resolution genetic characterization for identifying the agent and attributing it to a specific source can be crucial for an effective response. Until recently, in-depth genetic characterization required expensive and time-consuming Sanger sequencing of a few strains, followed by genotyping of a small number of marker loci in a panel of isolates at or by gel-based approaches such as pulsed field gel electrophoresis, which by necessity ignores most of the genome. Next-generation, massively parallel sequencing (MPS) technology (specifically the Applied Biosystems sequencing by oligonucleotide ligation and detection (SOLiD™) system) is a powerful investigative tool for rapid, cost-effective and parallel microbial whole-genome characterization. RESULTS: To demonstrate the utility of MPS for whole-genome typing of monomorphic pathogens, four Bacillus anthracis and four Yersinia pestis strains were sequenced in parallel. Reads were aligned to complete reference genomes, and genomic variations were identified. Resequencing of the B. anthracis Ames ancestor strain detected no false-positive single-nucleotide polymorphisms (SNPs), and mapping of reads to the Sterne strain correctly identified 98% of the 133 SNPs that are not clustered or associated with repeats. Three geographically distinct B. anthracis strains from the A branch lineage were found to have between 352 and 471 SNPs each, relative to the Ames genome, and one strain harbored a genomic amplification. Sequencing of four Y. pestis strains from the Orientalis lineage identified between 20 and 54 SNPs per strain relative to the CO92 genome, with the single Bolivian isolate having approximately twice as many SNPs as the three more closely related North American strains. Coverage plotting also revealed a common deletion in two strains and an amplification in the Bolivian strain that appear to be due to insertion element-mediated recombination events. Most private SNPs (that is, a, variant found in only one strain in this set) selected for validation by Sanger sequencing were confirmed, although rare false-positive SNPs were associated with variable nucleotide tandem repeats. CONCLUSIONS: The high-throughput, multiplexing capability, and accuracy of this system make it suitable for rapid whole-genome typing of microbial pathogens during a forensic or epidemiological investigation. By interrogating nearly every base of the genome, rare polymorphisms can be reliably discovered, thus facilitating high-resolution strain tracking and strengthening forensic attribution.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N3a5968f3eecd479ead5e33c0d96ad124
44 Nc815b581effa43a6ab4dc22a90c0eefb
45 sg:journal.1044399
46 schema:name Accurate, rapid and high-throughput detection of strain-specific polymorphisms in Bacillus anthracis and Yersinia pestis by next-generation sequencing
47 schema:pagination 5
48 schema:productId N224265ade4cb43c5b0fb0ef4238ead80
49 N5235c49c30df47be85c1ff49bac9c7a4
50 N72f2d242d9814e5bae02789e49bb1613
51 Nb302090130be42d3b8b034552f255ba4
52 Nf74ee9279a7a498ab61cee5512dbebb1
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029075459
54 https://doi.org/10.1186/2041-2223-1-5
55 schema:sdDatePublished 2019-04-10T15:56
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N5b55a5c16bde49a69cf2ae6ffea7c9e2
58 schema:url http://link.springer.com/10.1186%2F2041-2223-1-5
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N082595d9337943f59f78d4b803fb40b7 rdf:first sg:person.01047701661.31
63 rdf:rest N30f6a7e5b6504e8ba8f285a9116c69cf
64 N1bcf241507f34a12aab1acb87980723d rdf:first sg:person.07405671764.25
65 rdf:rest rdf:nil
66 N1c38ff5f6ef74dc3ae8685a81d3f7b6b rdf:first sg:person.011141750517.35
67 rdf:rest N6caa2ccbdd254f8d83fb4064f5be18e4
68 N212653d6f22c4fee9e1a6b5623965661 rdf:first sg:person.0615146646.35
69 rdf:rest N1c38ff5f6ef74dc3ae8685a81d3f7b6b
70 N224265ade4cb43c5b0fb0ef4238ead80 schema:name nlm_unique_id
71 schema:value 101546908
72 rdf:type schema:PropertyValue
73 N30f6a7e5b6504e8ba8f285a9116c69cf rdf:first sg:person.013516202057.39
74 rdf:rest Ne9b82e6e47e742fab7283f2fa653b1f2
75 N357ade3213dd4ce4b76f9d59a5a523ed rdf:first sg:person.0575737335.11
76 rdf:rest Nd2459bc16cff45c1bfbd43a707820376
77 N3a5968f3eecd479ead5e33c0d96ad124 schema:volumeNumber 1
78 rdf:type schema:PublicationVolume
79 N3c4b180d774f4689a4e28da009fe8fe0 rdf:first sg:person.01327162545.45
80 rdf:rest N212653d6f22c4fee9e1a6b5623965661
81 N49d2e6b3026d4012b6d81f7466414e28 rdf:first sg:person.0653240566.29
82 rdf:rest N357ade3213dd4ce4b76f9d59a5a523ed
83 N5235c49c30df47be85c1ff49bac9c7a4 schema:name doi
84 schema:value 10.1186/2041-2223-1-5
85 rdf:type schema:PropertyValue
86 N5b55a5c16bde49a69cf2ae6ffea7c9e2 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 N6caa2ccbdd254f8d83fb4064f5be18e4 rdf:first sg:person.01105606454.11
89 rdf:rest N1bcf241507f34a12aab1acb87980723d
90 N72f2d242d9814e5bae02789e49bb1613 schema:name readcube_id
91 schema:value 8a824efe591e644e1b1d7433574f73cd8db28f649b67950630130af8ed7c271a
92 rdf:type schema:PropertyValue
93 N75db3dc49d03458288d13a1e66949e45 rdf:first sg:person.0754134575.08
94 rdf:rest N972209d640c944a29e96d310bc730655
95 N961df356889a4a23a7606c9795cce60a rdf:first sg:person.012355215157.04
96 rdf:rest Nb4d0b747486f48ea93052fee516b40a4
97 N972209d640c944a29e96d310bc730655 rdf:first sg:person.014366234441.14
98 rdf:rest N49d2e6b3026d4012b6d81f7466414e28
99 Nb302090130be42d3b8b034552f255ba4 schema:name dimensions_id
100 schema:value pub.1029075459
101 rdf:type schema:PropertyValue
102 Nb4d0b747486f48ea93052fee516b40a4 rdf:first sg:person.0766454314.32
103 rdf:rest N082595d9337943f59f78d4b803fb40b7
104 Nc815b581effa43a6ab4dc22a90c0eefb schema:issueNumber 1
105 rdf:type schema:PublicationIssue
106 Nd2459bc16cff45c1bfbd43a707820376 rdf:first sg:person.01067242657.99
107 rdf:rest N961df356889a4a23a7606c9795cce60a
108 Ne9b82e6e47e742fab7283f2fa653b1f2 rdf:first sg:person.0623653057.77
109 rdf:rest N3c4b180d774f4689a4e28da009fe8fe0
110 Nf74ee9279a7a498ab61cee5512dbebb1 schema:name pubmed_id
111 schema:value 21092340
112 rdf:type schema:PropertyValue
113 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
114 schema:name Biological Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
117 schema:name Genetics
118 rdf:type schema:DefinedTerm
119 sg:grant.4394227 http://pending.schema.org/fundedItem sg:pub.10.1186/2041-2223-1-5
120 rdf:type schema:MonetaryGrant
121 sg:journal.1044399 schema:issn 2041-2223
122 schema:name Investigative Genetics
123 rdf:type schema:Periodical
124 sg:person.01047701661.31 schema:affiliation https://www.grid.ac/institutes/grid.261120.6
125 schema:familyName Matthews
126 schema:givenName Molly
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047701661.31
128 rdf:type schema:Person
129 sg:person.01067242657.99 schema:affiliation https://www.grid.ac/institutes/grid.418190.5
130 schema:familyName Brzoska
131 schema:givenName Pius
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067242657.99
133 rdf:type schema:Person
134 sg:person.01105606454.11 schema:affiliation https://www.grid.ac/institutes/grid.250942.8
135 schema:familyName Keim
136 schema:givenName Paul
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105606454.11
138 rdf:type schema:Person
139 sg:person.011141750517.35 schema:affiliation https://www.grid.ac/institutes/grid.418190.5
140 schema:familyName Furtado
141 schema:givenName Manohar R
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011141750517.35
143 rdf:type schema:Person
144 sg:person.012355215157.04 schema:affiliation https://www.grid.ac/institutes/grid.266871.c
145 schema:familyName Williamson
146 schema:givenName Phillip C
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012355215157.04
148 rdf:type schema:Person
149 sg:person.01327162545.45 schema:affiliation https://www.grid.ac/institutes/grid.261120.6
150 schema:familyName Birdsell
151 schema:givenName Dawn
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327162545.45
153 rdf:type schema:Person
154 sg:person.013516202057.39 schema:affiliation https://www.grid.ac/institutes/grid.261120.6
155 schema:familyName Schupp
156 schema:givenName James
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013516202057.39
158 rdf:type schema:Person
159 sg:person.014366234441.14 schema:affiliation https://www.grid.ac/institutes/grid.418190.5
160 schema:familyName Bormann Chung
161 schema:givenName Christina A
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014366234441.14
163 rdf:type schema:Person
164 sg:person.0575737335.11 schema:affiliation https://www.grid.ac/institutes/grid.418190.5
165 schema:familyName Barker
166 schema:givenName Melissa
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575737335.11
168 rdf:type schema:Person
169 sg:person.0615146646.35 schema:affiliation https://www.grid.ac/institutes/grid.261120.6
170 schema:familyName Vogler
171 schema:givenName Amy J
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615146646.35
173 rdf:type schema:Person
174 sg:person.0623653057.77 schema:affiliation https://www.grid.ac/institutes/grid.261120.6
175 schema:familyName Wagner
176 schema:givenName David M
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623653057.77
178 rdf:type schema:Person
179 sg:person.0653240566.29 schema:affiliation https://www.grid.ac/institutes/grid.418190.5
180 schema:familyName Fang
181 schema:givenName Rixun
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653240566.29
183 rdf:type schema:Person
184 sg:person.07405671764.25 schema:affiliation https://www.grid.ac/institutes/grid.266871.c
185 schema:familyName Budowle
186 schema:givenName Bruce
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07405671764.25
188 rdf:type schema:Person
189 sg:person.0754134575.08 schema:affiliation https://www.grid.ac/institutes/grid.418190.5
190 schema:familyName Cummings
191 schema:givenName Craig A
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754134575.08
193 rdf:type schema:Person
194 sg:person.0766454314.32 schema:affiliation https://www.grid.ac/institutes/grid.261120.6
195 schema:familyName Beaudry
196 schema:givenName Jodi
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766454314.32
198 rdf:type schema:Person
199 sg:pub.10.1038/nature01586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044426221
200 https://doi.org/10.1038/nature01586
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nature08480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008340720
203 https://doi.org/10.1038/nature08480
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/ng.195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031106868
206 https://doi.org/10.1038/ng.195
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/nrmicro2122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017693818
209 https://doi.org/10.1038/nrmicro2122
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/nrmicro2219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006787109
212 https://doi.org/10.1038/nrmicro2219
213 rdf:type schema:CreativeWork
214 sg:pub.10.1186/gb-2004-5-2-r12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022585853
215 https://doi.org/10.1186/gb-2004-5-2-r12
216 rdf:type schema:CreativeWork
217 https://app.dimensions.ai/details/publication/pub.1083255171 schema:CreativeWork
218 https://doi.org/10.1006/meth.2001.1262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027621591
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/j.meegid.2004.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032194203
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.meegid.2009.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034313683
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/j.tig.2007.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027335183
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1073/pnas.0403844101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049166268
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1073/pnas.96.24.14043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036744418
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1093/bioinformatics/btp344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016010992
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1101/gr.071266.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040791551
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1101/gr.077776.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040737496
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1101/gr.1507303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036444151
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1101/sqb.2009.74.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047605782
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1111/j.1365-2958.1992.tb01446.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035874803
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1111/j.1365-2958.1994.tb00463.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035615883
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1111/j.1472-765x.2008.02353.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017366743
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1126/science.1071837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062446551
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1126/science.1073125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062446659
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1126/scitranslmed.3000372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062686495
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1128/aem.71.5.2209-2213.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009755444
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1128/jb.01347-08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015643822
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1128/jb.182.10.2928-2936.2000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004622614
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1128/jcm.01233-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020815978
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1371/journal.pone.0000220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011915111
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1371/journal.pone.0000461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005915272
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1371/journal.pone.0000770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053061091
265 rdf:type schema:CreativeWork
266 https://doi.org/10.2144/000112815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069095813
267 rdf:type schema:CreativeWork
268 https://doi.org/10.3201/eid1404.070984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032215404
269 rdf:type schema:CreativeWork
270 https://www.grid.ac/institutes/grid.250942.8 schema:alternateName Translational Genomics Research Institute
271 schema:name Northern Arizona University, Flagstaff, Arizona, USA
272 Translational Genomics Research Institute, Phoenix, Arizona, USA
273 rdf:type schema:Organization
274 https://www.grid.ac/institutes/grid.261120.6 schema:alternateName Northern Arizona University
275 schema:name Northern Arizona University, Flagstaff, Arizona, USA
276 rdf:type schema:Organization
277 https://www.grid.ac/institutes/grid.266871.c schema:alternateName University of North Texas Health Science Center
278 schema:name University of North Texas Health Science Center, Fort Worth, Texas, USA
279 rdf:type schema:Organization
280 https://www.grid.ac/institutes/grid.418190.5 schema:alternateName Thermo Fisher Scientific (United States)
281 schema:name Life Technologies Corporation, Foster City, California, USA
282 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...