Representation of probabilistic scientific knowledge View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-04

AUTHORS

Larisa N. Soldatova, Andrey Rzhetsky, Kurt De Grave, Ross D King

ABSTRACT

The theory of probability is widely used in biomedical research for data analysis and modelling. In previous work the probabilities of the research hypotheses have been recorded as experimental metadata. The ontology HELO is designed to support probabilistic reasoning, and provides semantic descriptors for reporting on research that involves operations with probabilities. HELO explicitly links research statements such as hypotheses, models, laws, conclusions, etc. to the associated probabilities of these statements being true. HELO enables the explicit semantic representation and accurate recording of probabilities in hypotheses, as well as the inference methods used to generate and update those hypotheses. We demonstrate the utility of HELO on three worked examples: changes in the probability of the hypothesis that sirtuins regulate human life span; changes in the probability of hypotheses about gene functions in the S. cerevisiae aromatic amino acid pathway; and the use of active learning in drug design (quantitative structure activity relation learning), where a strategy for the selection of compounds with the highest probability of improving on the best known compound was used. HELO is open source and available at https://github.com/larisa-soldatova/HELO. More... »

PAGES

s7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/2041-1480-4-s1-s7

DOI

http://dx.doi.org/10.1186/2041-1480-4-s1-s7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002907971

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23734675


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Brunel University London", 
          "id": "https://www.grid.ac/institutes/grid.7728.a", 
          "name": [
            "Department of Information Systems and Computing, Brunel University, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Soldatova", 
        "givenName": "Larisa N.", 
        "id": "sg:person.01350623742.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350623742.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Medicine & Department of Human Genetics, the University of Chicago, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rzhetsky", 
        "givenName": "Andrey", 
        "id": "sg:person.01167210140.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167210140.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "KU Leuven", 
          "id": "https://www.grid.ac/institutes/grid.5596.f", 
          "name": [
            "Department of Computer Science, KU Leuven, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Grave", 
        "givenName": "Kurt", 
        "id": "sg:person.01275643473.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275643473.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Manchester", 
          "id": "https://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "Manchester Institute of Biotechnology, the University of Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "King", 
        "givenName": "Ross D", 
        "id": "sg:person.010110035052.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010110035052.65"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002773180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88411-8_19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006421895", 
          "https://doi.org/10.1007/978-3-540-88411-8_19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88411-8_19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006421895", 
          "https://doi.org/10.1007/978-3-540-88411-8_19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrclinonc.2012.22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006866865", 
          "https://doi.org/10.1038/nrclinonc.2012.22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj20070140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008696131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj20070140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008696131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2041-1480-2-s2-s9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013981920", 
          "https://doi.org/10.1186/2041-1480-2-s2-s9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023597601", 
          "https://doi.org/10.1038/nature10296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.2331323100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024111583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1165620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027153137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027371319", 
          "https://doi.org/10.1038/nature10815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/483531a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032733014", 
          "https://doi.org/10.1038/483531a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/npre.2009.3623.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037357678", 
          "https://doi.org/10.1038/npre.2009.3623.1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051745976", 
          "https://doi.org/10.1038/nature02236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051745976", 
          "https://doi.org/10.1038/nature02236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052667333", 
          "https://doi.org/10.1038/35065638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052667333", 
          "https://doi.org/10.1038/35065638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053488336", 
          "https://doi.org/10.1038/nrc1951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc1951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053488336", 
          "https://doi.org/10.1038/nrc1951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3653121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062136659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1165893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062459011"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-04", 
    "datePublishedReg": "2013-04-01", 
    "description": "The theory of probability is widely used in biomedical research for data analysis and modelling. In previous work the probabilities of the research hypotheses have been recorded as experimental metadata. The ontology HELO is designed to support probabilistic reasoning, and provides semantic descriptors for reporting on research that involves operations with probabilities. HELO explicitly links research statements such as hypotheses, models, laws, conclusions, etc. to the associated probabilities of these statements being true. HELO enables the explicit semantic representation and accurate recording of probabilities in hypotheses, as well as the inference methods used to generate and update those hypotheses. We demonstrate the utility of HELO on three worked examples: changes in the probability of the hypothesis that sirtuins regulate human life span; changes in the probability of hypotheses about gene functions in the S. cerevisiae aromatic amino acid pathway; and the use of active learning in drug design (quantitative structure activity relation learning), where a strategy for the selection of compounds with the highest probability of improving on the best known compound was used. HELO is open source and available at https://github.com/larisa-soldatova/HELO.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/2041-1480-4-s1-s7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2516629", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3777439", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2545609", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043573", 
        "issn": [
          "2041-1480"
        ], 
        "name": "Journal of Biomedical Semantics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Representation of probabilistic scientific knowledge", 
    "pagination": "s7", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0dd9bd9b9037e65d490510cb2c2e47f1b811f8095243881e032a665fc0d2942d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23734675"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101531992"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/2041-1480-4-s1-s7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002907971"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/2041-1480-4-s1-s7", 
      "https://app.dimensions.ai/details/publication/pub.1002907971"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000536.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F2041-1480-4-S1-S7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/2041-1480-4-s1-s7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/2041-1480-4-s1-s7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/2041-1480-4-s1-s7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/2041-1480-4-s1-s7'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      21 PREDICATES      45 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/2041-1480-4-s1-s7 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N797a161fbc2140b9b296327f30761e86
4 schema:citation sg:pub.10.1007/978-3-540-88411-8_19
5 sg:pub.10.1038/35065638
6 sg:pub.10.1038/483531a
7 sg:pub.10.1038/nature02236
8 sg:pub.10.1038/nature10296
9 sg:pub.10.1038/nature10815
10 sg:pub.10.1038/npre.2009.3623.1
11 sg:pub.10.1038/nrc1951
12 sg:pub.10.1038/nrclinonc.2012.22
13 sg:pub.10.1186/2041-1480-2-s2-s9
14 https://doi.org/10.1042/bj20070140
15 https://doi.org/10.1073/pnas.2331323100
16 https://doi.org/10.1115/1.3653121
17 https://doi.org/10.1126/science.1165620
18 https://doi.org/10.1126/science.1165893
19 https://doi.org/10.1371/journal.pcbi.1000559
20 schema:datePublished 2013-04
21 schema:datePublishedReg 2013-04-01
22 schema:description The theory of probability is widely used in biomedical research for data analysis and modelling. In previous work the probabilities of the research hypotheses have been recorded as experimental metadata. The ontology HELO is designed to support probabilistic reasoning, and provides semantic descriptors for reporting on research that involves operations with probabilities. HELO explicitly links research statements such as hypotheses, models, laws, conclusions, etc. to the associated probabilities of these statements being true. HELO enables the explicit semantic representation and accurate recording of probabilities in hypotheses, as well as the inference methods used to generate and update those hypotheses. We demonstrate the utility of HELO on three worked examples: changes in the probability of the hypothesis that sirtuins regulate human life span; changes in the probability of hypotheses about gene functions in the S. cerevisiae aromatic amino acid pathway; and the use of active learning in drug design (quantitative structure activity relation learning), where a strategy for the selection of compounds with the highest probability of improving on the best known compound was used. HELO is open source and available at https://github.com/larisa-soldatova/HELO.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N893316490f514a62bddc4e2f7b95f10d
27 Nc4aa67e0e71a443cac399392ff64abdf
28 sg:journal.1043573
29 schema:name Representation of probabilistic scientific knowledge
30 schema:pagination s7
31 schema:productId N0a6c5d8800ce4a21894d0e11ceeab64b
32 N4908d32e2b934790bac1dd7503024603
33 N5622ee0cc50c4c869963eab08b582843
34 N5c3104048e45424389b3843adb8d8ef3
35 Nfa33bb3827c2454a88f8eea95b687e76
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002907971
37 https://doi.org/10.1186/2041-1480-4-s1-s7
38 schema:sdDatePublished 2019-04-10T13:22
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Na3970c8dce514822aee0c7c68fe5cd93
41 schema:url http://link.springer.com/10.1186%2F2041-1480-4-S1-S7
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N0a6c5d8800ce4a21894d0e11ceeab64b schema:name nlm_unique_id
46 schema:value 101531992
47 rdf:type schema:PropertyValue
48 N3cbd0e5505a5448ab2ebdb95043b0b76 schema:name Department of Medicine & Department of Human Genetics, the University of Chicago, USA
49 rdf:type schema:Organization
50 N4908d32e2b934790bac1dd7503024603 schema:name readcube_id
51 schema:value 0dd9bd9b9037e65d490510cb2c2e47f1b811f8095243881e032a665fc0d2942d
52 rdf:type schema:PropertyValue
53 N5622ee0cc50c4c869963eab08b582843 schema:name dimensions_id
54 schema:value pub.1002907971
55 rdf:type schema:PropertyValue
56 N5c3104048e45424389b3843adb8d8ef3 schema:name doi
57 schema:value 10.1186/2041-1480-4-s1-s7
58 rdf:type schema:PropertyValue
59 N719e2f30580f4abbbf05e5b8a0e45c06 rdf:first sg:person.010110035052.65
60 rdf:rest rdf:nil
61 N797a161fbc2140b9b296327f30761e86 rdf:first sg:person.01350623742.14
62 rdf:rest N983ea154335a489ba9785ae4a5138fa7
63 N893316490f514a62bddc4e2f7b95f10d schema:issueNumber Suppl 1
64 rdf:type schema:PublicationIssue
65 N983ea154335a489ba9785ae4a5138fa7 rdf:first sg:person.01167210140.32
66 rdf:rest N9e999d651473442a840916a6ed326f98
67 N9e999d651473442a840916a6ed326f98 rdf:first sg:person.01275643473.86
68 rdf:rest N719e2f30580f4abbbf05e5b8a0e45c06
69 Na3970c8dce514822aee0c7c68fe5cd93 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Nc4aa67e0e71a443cac399392ff64abdf schema:volumeNumber 4
72 rdf:type schema:PublicationVolume
73 Nfa33bb3827c2454a88f8eea95b687e76 schema:name pubmed_id
74 schema:value 23734675
75 rdf:type schema:PropertyValue
76 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
77 schema:name Mathematical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
80 schema:name Statistics
81 rdf:type schema:DefinedTerm
82 sg:grant.2516629 http://pending.schema.org/fundedItem sg:pub.10.1186/2041-1480-4-s1-s7
83 rdf:type schema:MonetaryGrant
84 sg:grant.2545609 http://pending.schema.org/fundedItem sg:pub.10.1186/2041-1480-4-s1-s7
85 rdf:type schema:MonetaryGrant
86 sg:grant.3777439 http://pending.schema.org/fundedItem sg:pub.10.1186/2041-1480-4-s1-s7
87 rdf:type schema:MonetaryGrant
88 sg:journal.1043573 schema:issn 2041-1480
89 schema:name Journal of Biomedical Semantics
90 rdf:type schema:Periodical
91 sg:person.010110035052.65 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
92 schema:familyName King
93 schema:givenName Ross D
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010110035052.65
95 rdf:type schema:Person
96 sg:person.01167210140.32 schema:affiliation N3cbd0e5505a5448ab2ebdb95043b0b76
97 schema:familyName Rzhetsky
98 schema:givenName Andrey
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167210140.32
100 rdf:type schema:Person
101 sg:person.01275643473.86 schema:affiliation https://www.grid.ac/institutes/grid.5596.f
102 schema:familyName De Grave
103 schema:givenName Kurt
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275643473.86
105 rdf:type schema:Person
106 sg:person.01350623742.14 schema:affiliation https://www.grid.ac/institutes/grid.7728.a
107 schema:familyName Soldatova
108 schema:givenName Larisa N.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350623742.14
110 rdf:type schema:Person
111 sg:pub.10.1007/978-3-540-88411-8_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006421895
112 https://doi.org/10.1007/978-3-540-88411-8_19
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/35065638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052667333
115 https://doi.org/10.1038/35065638
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/483531a schema:sameAs https://app.dimensions.ai/details/publication/pub.1032733014
118 https://doi.org/10.1038/483531a
119 rdf:type schema:CreativeWork
120 sg:pub.10.1038/nature02236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051745976
121 https://doi.org/10.1038/nature02236
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/nature10296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023597601
124 https://doi.org/10.1038/nature10296
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/nature10815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027371319
127 https://doi.org/10.1038/nature10815
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/npre.2009.3623.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037357678
130 https://doi.org/10.1038/npre.2009.3623.1
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/nrc1951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053488336
133 https://doi.org/10.1038/nrc1951
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/nrclinonc.2012.22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006866865
136 https://doi.org/10.1038/nrclinonc.2012.22
137 rdf:type schema:CreativeWork
138 sg:pub.10.1186/2041-1480-2-s2-s9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013981920
139 https://doi.org/10.1186/2041-1480-2-s2-s9
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1042/bj20070140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008696131
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1073/pnas.2331323100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024111583
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1115/1.3653121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062136659
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1126/science.1165620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027153137
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1126/science.1165893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062459011
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1371/journal.pcbi.1000559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002773180
152 rdf:type schema:CreativeWork
153 https://www.grid.ac/institutes/grid.5379.8 schema:alternateName University of Manchester
154 schema:name Manchester Institute of Biotechnology, the University of Manchester, UK
155 rdf:type schema:Organization
156 https://www.grid.ac/institutes/grid.5596.f schema:alternateName KU Leuven
157 schema:name Department of Computer Science, KU Leuven, Belgium
158 rdf:type schema:Organization
159 https://www.grid.ac/institutes/grid.7728.a schema:alternateName Brunel University London
160 schema:name Department of Information Systems and Computing, Brunel University, London, UK
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...