Representing physiological processes and their participants with PhysioMaps View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-04

AUTHORS

Daniel L. Cook, Maxwell L. Neal, Robert Hoehndorf, Georgios V. Gkoutos, John H. Gennari

ABSTRACT

BACKGROUND: As the number and size of biological knowledge resources for physiology grows, researchers need improved tools for searching and integrating knowledge and physiological models. Unfortunately, current resources-databases, simulation models, and knowledge bases, for example-are only occasionally and idiosyncratically explicit about the semantics of the biological entities and processes that they describe. RESULTS: We present a formal approach, based on the semantics of biophysics as represented in the Ontology of Physics for Biology, that divides physiological knowledge into three partitions: structural knowledge, process knowledge and biophysical knowledge. We then computationally integrate these partitions across multiple structural and biophysical domains as computable ontologies by which such knowledge can be archived, reused, and displayed. Our key result is the semi-automatic parsing of biosimulation model code into PhysioMaps that can be displayed and interrogated for qualitative responses to hypothetical perturbations. CONCLUSIONS: Strong, explicit semantics of biophysics can provide a formal, computational basis for integrating physiological knowledge in a manner that supports visualization of the physiological content of biosimulation models across spatial scales and biophysical domains. More... »

PAGES

s2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/2041-1480-4-s1-s2

DOI

http://dx.doi.org/10.1186/2041-1480-4-s1-s2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039938227

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23735231


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Biomedical & Health Informatics, Univ. of Washington, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cook", 
        "givenName": "Daniel L.", 
        "id": "sg:person.01204757164.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204757164.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Bioengineering, Univ. of Washington, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neal", 
        "givenName": "Maxwell L.", 
        "id": "sg:person.0640004704.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640004704.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aberystwyth University", 
          "id": "https://www.grid.ac/institutes/grid.8186.7", 
          "name": [
            "Dep\u2019t of Physiology, Development & Neuroscience, Univ. of Cambridge, UK", 
            "Computer Science Dept, Univ. of Aberystwyth, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoehndorf", 
        "givenName": "Robert", 
        "id": "sg:person.01300743466.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300743466.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aberystwyth University", 
          "id": "https://www.grid.ac/institutes/grid.8186.7", 
          "name": [
            "Computer Science Dept, Univ. of Aberystwyth, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gkoutos", 
        "givenName": "Georgios V.", 
        "id": "sg:person.01211760721.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211760721.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Biomedical & Health Informatics, Univ. of Washington, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gennari", 
        "givenName": "John H.", 
        "id": "sg:person.01104735655.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104735655.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/gb-2005-6-5-r46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015285227", 
          "https://doi.org/10.1186/gb-2005-6-5-r46"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2001-2-4-research0012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021493892", 
          "https://doi.org/10.1186/gb-2001-2-4-research0012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-006-9212-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023446162", 
          "https://doi.org/10.1007/s10439-006-9212-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-006-9212-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023446162", 
          "https://doi.org/10.1007/s10439-006-9212-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm1054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025276283", 
          "https://doi.org/10.1038/nrm1054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm1054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025276283", 
          "https://doi.org/10.1038/nrm1054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025620867", 
          "https://doi.org/10.1038/nbt.1666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025620867", 
          "https://doi.org/10.1038/nbt.1666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-012-0611-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036085476", 
          "https://doi.org/10.1007/s10439-012-0611-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0028708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042571689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/ijhc.1996.0096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043034132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044212913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0033583500000081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053879676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0033583500000081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053879676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077514997", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077599356", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2009.5333362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077993601"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-04", 
    "datePublishedReg": "2013-04-01", 
    "description": "BACKGROUND: As the number and size of biological knowledge resources for physiology grows, researchers need improved tools for searching and integrating knowledge and physiological models. Unfortunately, current resources-databases, simulation models, and knowledge bases, for example-are only occasionally and idiosyncratically explicit about the semantics of the biological entities and processes that they describe.\nRESULTS: We present a formal approach, based on the semantics of biophysics as represented in the Ontology of Physics for Biology, that divides physiological knowledge into three partitions: structural knowledge, process knowledge and biophysical knowledge. We then computationally integrate these partitions across multiple structural and biophysical domains as computable ontologies by which such knowledge can be archived, reused, and displayed. Our key result is the semi-automatic parsing of biosimulation model code into PhysioMaps that can be displayed and interrogated for qualitative responses to hypothetical perturbations.\nCONCLUSIONS: Strong, explicit semantics of biophysics can provide a formal, computational basis for integrating physiological knowledge in a manner that supports visualization of the physiological content of biosimulation models across spatial scales and biophysical domains.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/2041-1480-4-s1-s2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3798953", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043573", 
        "issn": [
          "2041-1480"
        ], 
        "name": "Journal of Biomedical Semantics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Representing physiological processes and their participants with PhysioMaps", 
    "pagination": "s2", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "be3ff577559eae93a17662e0af3229244a2576dc341ee88f134e909940779789"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23735231"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101531992"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/2041-1480-4-s1-s2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039938227"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/2041-1480-4-s1-s2", 
      "https://app.dimensions.ai/details/publication/pub.1039938227"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000537.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F2041-1480-4-S1-S2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/2041-1480-4-s1-s2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/2041-1480-4-s1-s2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/2041-1480-4-s1-s2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/2041-1480-4-s1-s2'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      21 PREDICATES      42 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/2041-1480-4-s1-s2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nc9d839332f7e49b5a4ea930a9b5eb544
4 schema:citation sg:pub.10.1007/s10439-006-9212-7
5 sg:pub.10.1007/s10439-012-0611-7
6 sg:pub.10.1038/nbt.1666
7 sg:pub.10.1038/nrm1054
8 sg:pub.10.1186/gb-2001-2-4-research0012
9 sg:pub.10.1186/gb-2005-6-5-r46
10 https://app.dimensions.ai/details/publication/pub.1077514997
11 https://app.dimensions.ai/details/publication/pub.1077599356
12 https://doi.org/10.1006/ijhc.1996.0096
13 https://doi.org/10.1017/s0033583500000081
14 https://doi.org/10.1093/bioinformatics/btp665
15 https://doi.org/10.1109/iembs.2009.5333362
16 https://doi.org/10.1371/journal.pone.0028708
17 schema:datePublished 2013-04
18 schema:datePublishedReg 2013-04-01
19 schema:description BACKGROUND: As the number and size of biological knowledge resources for physiology grows, researchers need improved tools for searching and integrating knowledge and physiological models. Unfortunately, current resources-databases, simulation models, and knowledge bases, for example-are only occasionally and idiosyncratically explicit about the semantics of the biological entities and processes that they describe. RESULTS: We present a formal approach, based on the semantics of biophysics as represented in the Ontology of Physics for Biology, that divides physiological knowledge into three partitions: structural knowledge, process knowledge and biophysical knowledge. We then computationally integrate these partitions across multiple structural and biophysical domains as computable ontologies by which such knowledge can be archived, reused, and displayed. Our key result is the semi-automatic parsing of biosimulation model code into PhysioMaps that can be displayed and interrogated for qualitative responses to hypothetical perturbations. CONCLUSIONS: Strong, explicit semantics of biophysics can provide a formal, computational basis for integrating physiological knowledge in a manner that supports visualization of the physiological content of biosimulation models across spatial scales and biophysical domains.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf N3ba6107ebcfb432abd8ced3b16066fca
24 Nc3331bea5f2c4adb9625391fec08ec78
25 sg:journal.1043573
26 schema:name Representing physiological processes and their participants with PhysioMaps
27 schema:pagination s2
28 schema:productId N137697f3afa5488db69306e224f3b340
29 N343f7edcf8cb4e99ab6e65831f45485b
30 N3aaa422bf7bb446598ee5e604b255ecf
31 N6e0691b5261549648b17ab202b2beeda
32 Nae9d0061b1e149a99f138dfea185acd4
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039938227
34 https://doi.org/10.1186/2041-1480-4-s1-s2
35 schema:sdDatePublished 2019-04-10T17:36
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N7d19a892b49640f49e274d2592d57c32
38 schema:url http://link.springer.com/10.1186%2F2041-1480-4-S1-S2
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N137697f3afa5488db69306e224f3b340 schema:name nlm_unique_id
43 schema:value 101531992
44 rdf:type schema:PropertyValue
45 N343f7edcf8cb4e99ab6e65831f45485b schema:name pubmed_id
46 schema:value 23735231
47 rdf:type schema:PropertyValue
48 N3aaa422bf7bb446598ee5e604b255ecf schema:name dimensions_id
49 schema:value pub.1039938227
50 rdf:type schema:PropertyValue
51 N3ba6107ebcfb432abd8ced3b16066fca schema:volumeNumber 4
52 rdf:type schema:PublicationVolume
53 N69b2c7f3171a449480d752d39d890c93 rdf:first sg:person.0640004704.00
54 rdf:rest N7cd86d361e064b9296f513a36ecd4373
55 N6e0691b5261549648b17ab202b2beeda schema:name readcube_id
56 schema:value be3ff577559eae93a17662e0af3229244a2576dc341ee88f134e909940779789
57 rdf:type schema:PropertyValue
58 N7503242564194ab4966b973c0bba8a6a schema:name Biomedical & Health Informatics, Univ. of Washington, USA
59 rdf:type schema:Organization
60 N7c1bbc2df4544f2a8c7ec14cac1099cc schema:name Biomedical & Health Informatics, Univ. of Washington, USA
61 rdf:type schema:Organization
62 N7cd86d361e064b9296f513a36ecd4373 rdf:first sg:person.01300743466.43
63 rdf:rest N913a105405c443b19fe6c42b1a739644
64 N7d19a892b49640f49e274d2592d57c32 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N913a105405c443b19fe6c42b1a739644 rdf:first sg:person.01211760721.03
67 rdf:rest N92c68afa93e94f1baa4d089f80254301
68 N92c68afa93e94f1baa4d089f80254301 rdf:first sg:person.01104735655.58
69 rdf:rest rdf:nil
70 Nae9d0061b1e149a99f138dfea185acd4 schema:name doi
71 schema:value 10.1186/2041-1480-4-s1-s2
72 rdf:type schema:PropertyValue
73 Nc3331bea5f2c4adb9625391fec08ec78 schema:issueNumber Suppl 1
74 rdf:type schema:PublicationIssue
75 Nc9d839332f7e49b5a4ea930a9b5eb544 rdf:first sg:person.01204757164.29
76 rdf:rest N69b2c7f3171a449480d752d39d890c93
77 Nd024600f3a224e31bac0de6e9748f3b3 schema:name Bioengineering, Univ. of Washington, USA
78 rdf:type schema:Organization
79 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
80 schema:name Information and Computing Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
83 schema:name Artificial Intelligence and Image Processing
84 rdf:type schema:DefinedTerm
85 sg:grant.3798953 http://pending.schema.org/fundedItem sg:pub.10.1186/2041-1480-4-s1-s2
86 rdf:type schema:MonetaryGrant
87 sg:journal.1043573 schema:issn 2041-1480
88 schema:name Journal of Biomedical Semantics
89 rdf:type schema:Periodical
90 sg:person.01104735655.58 schema:affiliation N7c1bbc2df4544f2a8c7ec14cac1099cc
91 schema:familyName Gennari
92 schema:givenName John H.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104735655.58
94 rdf:type schema:Person
95 sg:person.01204757164.29 schema:affiliation N7503242564194ab4966b973c0bba8a6a
96 schema:familyName Cook
97 schema:givenName Daniel L.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204757164.29
99 rdf:type schema:Person
100 sg:person.01211760721.03 schema:affiliation https://www.grid.ac/institutes/grid.8186.7
101 schema:familyName Gkoutos
102 schema:givenName Georgios V.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211760721.03
104 rdf:type schema:Person
105 sg:person.01300743466.43 schema:affiliation https://www.grid.ac/institutes/grid.8186.7
106 schema:familyName Hoehndorf
107 schema:givenName Robert
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300743466.43
109 rdf:type schema:Person
110 sg:person.0640004704.00 schema:affiliation Nd024600f3a224e31bac0de6e9748f3b3
111 schema:familyName Neal
112 schema:givenName Maxwell L.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640004704.00
114 rdf:type schema:Person
115 sg:pub.10.1007/s10439-006-9212-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023446162
116 https://doi.org/10.1007/s10439-006-9212-7
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s10439-012-0611-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036085476
119 https://doi.org/10.1007/s10439-012-0611-7
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/nbt.1666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025620867
122 https://doi.org/10.1038/nbt.1666
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nrm1054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025276283
125 https://doi.org/10.1038/nrm1054
126 rdf:type schema:CreativeWork
127 sg:pub.10.1186/gb-2001-2-4-research0012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021493892
128 https://doi.org/10.1186/gb-2001-2-4-research0012
129 rdf:type schema:CreativeWork
130 sg:pub.10.1186/gb-2005-6-5-r46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015285227
131 https://doi.org/10.1186/gb-2005-6-5-r46
132 rdf:type schema:CreativeWork
133 https://app.dimensions.ai/details/publication/pub.1077514997 schema:CreativeWork
134 https://app.dimensions.ai/details/publication/pub.1077599356 schema:CreativeWork
135 https://doi.org/10.1006/ijhc.1996.0096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043034132
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1017/s0033583500000081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053879676
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1093/bioinformatics/btp665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044212913
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/iembs.2009.5333362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077993601
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1371/journal.pone.0028708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042571689
144 rdf:type schema:CreativeWork
145 https://www.grid.ac/institutes/grid.8186.7 schema:alternateName Aberystwyth University
146 schema:name Computer Science Dept, Univ. of Aberystwyth, UK
147 Dep’t of Physiology, Development & Neuroscience, Univ. of Cambridge, UK
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...