Representing physiological processes and their participants with PhysioMaps View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-04

AUTHORS

Daniel L. Cook, Maxwell L. Neal, Robert Hoehndorf, Georgios V. Gkoutos, John H. Gennari

ABSTRACT

BACKGROUND: As the number and size of biological knowledge resources for physiology grows, researchers need improved tools for searching and integrating knowledge and physiological models. Unfortunately, current resources-databases, simulation models, and knowledge bases, for example-are only occasionally and idiosyncratically explicit about the semantics of the biological entities and processes that they describe. RESULTS: We present a formal approach, based on the semantics of biophysics as represented in the Ontology of Physics for Biology, that divides physiological knowledge into three partitions: structural knowledge, process knowledge and biophysical knowledge. We then computationally integrate these partitions across multiple structural and biophysical domains as computable ontologies by which such knowledge can be archived, reused, and displayed. Our key result is the semi-automatic parsing of biosimulation model code into PhysioMaps that can be displayed and interrogated for qualitative responses to hypothetical perturbations. CONCLUSIONS: Strong, explicit semantics of biophysics can provide a formal, computational basis for integrating physiological knowledge in a manner that supports visualization of the physiological content of biosimulation models across spatial scales and biophysical domains. More... »

PAGES

s2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/2041-1480-4-s1-s2

DOI

http://dx.doi.org/10.1186/2041-1480-4-s1-s2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039938227

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23735231


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Biomedical & Health Informatics, Univ. of Washington, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cook", 
        "givenName": "Daniel L.", 
        "id": "sg:person.01204757164.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204757164.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Bioengineering, Univ. of Washington, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neal", 
        "givenName": "Maxwell L.", 
        "id": "sg:person.0640004704.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640004704.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aberystwyth University", 
          "id": "https://www.grid.ac/institutes/grid.8186.7", 
          "name": [
            "Dep\u2019t of Physiology, Development & Neuroscience, Univ. of Cambridge, UK", 
            "Computer Science Dept, Univ. of Aberystwyth, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoehndorf", 
        "givenName": "Robert", 
        "id": "sg:person.01300743466.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300743466.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aberystwyth University", 
          "id": "https://www.grid.ac/institutes/grid.8186.7", 
          "name": [
            "Computer Science Dept, Univ. of Aberystwyth, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gkoutos", 
        "givenName": "Georgios V.", 
        "id": "sg:person.01211760721.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211760721.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Biomedical & Health Informatics, Univ. of Washington, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gennari", 
        "givenName": "John H.", 
        "id": "sg:person.01104735655.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104735655.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/gb-2005-6-5-r46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015285227", 
          "https://doi.org/10.1186/gb-2005-6-5-r46"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2001-2-4-research0012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021493892", 
          "https://doi.org/10.1186/gb-2001-2-4-research0012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-006-9212-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023446162", 
          "https://doi.org/10.1007/s10439-006-9212-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-006-9212-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023446162", 
          "https://doi.org/10.1007/s10439-006-9212-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm1054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025276283", 
          "https://doi.org/10.1038/nrm1054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm1054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025276283", 
          "https://doi.org/10.1038/nrm1054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025620867", 
          "https://doi.org/10.1038/nbt.1666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025620867", 
          "https://doi.org/10.1038/nbt.1666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-012-0611-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036085476", 
          "https://doi.org/10.1007/s10439-012-0611-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0028708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042571689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/ijhc.1996.0096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043034132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044212913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0033583500000081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053879676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0033583500000081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053879676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077514997", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077599356", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2009.5333362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077993601"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-04", 
    "datePublishedReg": "2013-04-01", 
    "description": "BACKGROUND: As the number and size of biological knowledge resources for physiology grows, researchers need improved tools for searching and integrating knowledge and physiological models. Unfortunately, current resources-databases, simulation models, and knowledge bases, for example-are only occasionally and idiosyncratically explicit about the semantics of the biological entities and processes that they describe.\nRESULTS: We present a formal approach, based on the semantics of biophysics as represented in the Ontology of Physics for Biology, that divides physiological knowledge into three partitions: structural knowledge, process knowledge and biophysical knowledge. We then computationally integrate these partitions across multiple structural and biophysical domains as computable ontologies by which such knowledge can be archived, reused, and displayed. Our key result is the semi-automatic parsing of biosimulation model code into PhysioMaps that can be displayed and interrogated for qualitative responses to hypothetical perturbations.\nCONCLUSIONS: Strong, explicit semantics of biophysics can provide a formal, computational basis for integrating physiological knowledge in a manner that supports visualization of the physiological content of biosimulation models across spatial scales and biophysical domains.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/2041-1480-4-s1-s2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3798953", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043573", 
        "issn": [
          "2041-1480"
        ], 
        "name": "Journal of Biomedical Semantics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Representing physiological processes and their participants with PhysioMaps", 
    "pagination": "s2", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "be3ff577559eae93a17662e0af3229244a2576dc341ee88f134e909940779789"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23735231"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101531992"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/2041-1480-4-s1-s2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039938227"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/2041-1480-4-s1-s2", 
      "https://app.dimensions.ai/details/publication/pub.1039938227"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000537.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F2041-1480-4-S1-S2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/2041-1480-4-s1-s2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/2041-1480-4-s1-s2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/2041-1480-4-s1-s2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/2041-1480-4-s1-s2'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      21 PREDICATES      42 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/2041-1480-4-s1-s2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N8e0579e5b4454bf5a2a45978780d4d89
4 schema:citation sg:pub.10.1007/s10439-006-9212-7
5 sg:pub.10.1007/s10439-012-0611-7
6 sg:pub.10.1038/nbt.1666
7 sg:pub.10.1038/nrm1054
8 sg:pub.10.1186/gb-2001-2-4-research0012
9 sg:pub.10.1186/gb-2005-6-5-r46
10 https://app.dimensions.ai/details/publication/pub.1077514997
11 https://app.dimensions.ai/details/publication/pub.1077599356
12 https://doi.org/10.1006/ijhc.1996.0096
13 https://doi.org/10.1017/s0033583500000081
14 https://doi.org/10.1093/bioinformatics/btp665
15 https://doi.org/10.1109/iembs.2009.5333362
16 https://doi.org/10.1371/journal.pone.0028708
17 schema:datePublished 2013-04
18 schema:datePublishedReg 2013-04-01
19 schema:description BACKGROUND: As the number and size of biological knowledge resources for physiology grows, researchers need improved tools for searching and integrating knowledge and physiological models. Unfortunately, current resources-databases, simulation models, and knowledge bases, for example-are only occasionally and idiosyncratically explicit about the semantics of the biological entities and processes that they describe. RESULTS: We present a formal approach, based on the semantics of biophysics as represented in the Ontology of Physics for Biology, that divides physiological knowledge into three partitions: structural knowledge, process knowledge and biophysical knowledge. We then computationally integrate these partitions across multiple structural and biophysical domains as computable ontologies by which such knowledge can be archived, reused, and displayed. Our key result is the semi-automatic parsing of biosimulation model code into PhysioMaps that can be displayed and interrogated for qualitative responses to hypothetical perturbations. CONCLUSIONS: Strong, explicit semantics of biophysics can provide a formal, computational basis for integrating physiological knowledge in a manner that supports visualization of the physiological content of biosimulation models across spatial scales and biophysical domains.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf Na37a40f2574442bd8854dc47d9af5328
24 Nbf6d3024ecd74f9793595250572857e5
25 sg:journal.1043573
26 schema:name Representing physiological processes and their participants with PhysioMaps
27 schema:pagination s2
28 schema:productId N088607a5086545e9a9b7521427865534
29 N235888db8eef4ca49154993f4c933e97
30 N67c9deb6dd9f46468bf08d4ad043a2cb
31 Nbbd91dd5e8a14c11b7d7c81ae0fc0369
32 Nd999ff00fc984c14864a30d94003186e
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039938227
34 https://doi.org/10.1186/2041-1480-4-s1-s2
35 schema:sdDatePublished 2019-04-10T17:36
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N7c1c69a851de4586adb4fa4798f6d0cf
38 schema:url http://link.springer.com/10.1186%2F2041-1480-4-S1-S2
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N088607a5086545e9a9b7521427865534 schema:name doi
43 schema:value 10.1186/2041-1480-4-s1-s2
44 rdf:type schema:PropertyValue
45 N235888db8eef4ca49154993f4c933e97 schema:name readcube_id
46 schema:value be3ff577559eae93a17662e0af3229244a2576dc341ee88f134e909940779789
47 rdf:type schema:PropertyValue
48 N5e4d48e1a1464936ab7972e56735b681 rdf:first sg:person.01104735655.58
49 rdf:rest rdf:nil
50 N67c9deb6dd9f46468bf08d4ad043a2cb schema:name dimensions_id
51 schema:value pub.1039938227
52 rdf:type schema:PropertyValue
53 N7a10c247369244128a4b6324a7a9685a rdf:first sg:person.01211760721.03
54 rdf:rest N5e4d48e1a1464936ab7972e56735b681
55 N7c1c69a851de4586adb4fa4798f6d0cf schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N8e0579e5b4454bf5a2a45978780d4d89 rdf:first sg:person.01204757164.29
58 rdf:rest Naa43f16f74b6458bbafadbcafd0341e9
59 Na37a40f2574442bd8854dc47d9af5328 schema:volumeNumber 4
60 rdf:type schema:PublicationVolume
61 Naa43f16f74b6458bbafadbcafd0341e9 rdf:first sg:person.0640004704.00
62 rdf:rest Ne0c6a74cd0214f2fa95b45b5868bace3
63 Nb7857d77c8af44b4bf49e098345777c5 schema:name Bioengineering, Univ. of Washington, USA
64 rdf:type schema:Organization
65 Nb950c69feded412e87e567ba019126cb schema:name Biomedical & Health Informatics, Univ. of Washington, USA
66 rdf:type schema:Organization
67 Nbbd91dd5e8a14c11b7d7c81ae0fc0369 schema:name pubmed_id
68 schema:value 23735231
69 rdf:type schema:PropertyValue
70 Nbf6d3024ecd74f9793595250572857e5 schema:issueNumber Suppl 1
71 rdf:type schema:PublicationIssue
72 Nd999ff00fc984c14864a30d94003186e schema:name nlm_unique_id
73 schema:value 101531992
74 rdf:type schema:PropertyValue
75 Nd9de946830dd41a4b2ed60649b2f08a0 schema:name Biomedical & Health Informatics, Univ. of Washington, USA
76 rdf:type schema:Organization
77 Ne0c6a74cd0214f2fa95b45b5868bace3 rdf:first sg:person.01300743466.43
78 rdf:rest N7a10c247369244128a4b6324a7a9685a
79 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
80 schema:name Information and Computing Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
83 schema:name Artificial Intelligence and Image Processing
84 rdf:type schema:DefinedTerm
85 sg:grant.3798953 http://pending.schema.org/fundedItem sg:pub.10.1186/2041-1480-4-s1-s2
86 rdf:type schema:MonetaryGrant
87 sg:journal.1043573 schema:issn 2041-1480
88 schema:name Journal of Biomedical Semantics
89 rdf:type schema:Periodical
90 sg:person.01104735655.58 schema:affiliation Nd9de946830dd41a4b2ed60649b2f08a0
91 schema:familyName Gennari
92 schema:givenName John H.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104735655.58
94 rdf:type schema:Person
95 sg:person.01204757164.29 schema:affiliation Nb950c69feded412e87e567ba019126cb
96 schema:familyName Cook
97 schema:givenName Daniel L.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204757164.29
99 rdf:type schema:Person
100 sg:person.01211760721.03 schema:affiliation https://www.grid.ac/institutes/grid.8186.7
101 schema:familyName Gkoutos
102 schema:givenName Georgios V.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211760721.03
104 rdf:type schema:Person
105 sg:person.01300743466.43 schema:affiliation https://www.grid.ac/institutes/grid.8186.7
106 schema:familyName Hoehndorf
107 schema:givenName Robert
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300743466.43
109 rdf:type schema:Person
110 sg:person.0640004704.00 schema:affiliation Nb7857d77c8af44b4bf49e098345777c5
111 schema:familyName Neal
112 schema:givenName Maxwell L.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640004704.00
114 rdf:type schema:Person
115 sg:pub.10.1007/s10439-006-9212-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023446162
116 https://doi.org/10.1007/s10439-006-9212-7
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s10439-012-0611-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036085476
119 https://doi.org/10.1007/s10439-012-0611-7
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/nbt.1666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025620867
122 https://doi.org/10.1038/nbt.1666
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nrm1054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025276283
125 https://doi.org/10.1038/nrm1054
126 rdf:type schema:CreativeWork
127 sg:pub.10.1186/gb-2001-2-4-research0012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021493892
128 https://doi.org/10.1186/gb-2001-2-4-research0012
129 rdf:type schema:CreativeWork
130 sg:pub.10.1186/gb-2005-6-5-r46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015285227
131 https://doi.org/10.1186/gb-2005-6-5-r46
132 rdf:type schema:CreativeWork
133 https://app.dimensions.ai/details/publication/pub.1077514997 schema:CreativeWork
134 https://app.dimensions.ai/details/publication/pub.1077599356 schema:CreativeWork
135 https://doi.org/10.1006/ijhc.1996.0096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043034132
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1017/s0033583500000081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053879676
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1093/bioinformatics/btp665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044212913
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/iembs.2009.5333362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077993601
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1371/journal.pone.0028708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042571689
144 rdf:type schema:CreativeWork
145 https://www.grid.ac/institutes/grid.8186.7 schema:alternateName Aberystwyth University
146 schema:name Computer Science Dept, Univ. of Aberystwyth, UK
147 Dep’t of Physiology, Development & Neuroscience, Univ. of Cambridge, UK
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...