Annotation of SBML models through rule-based semantic integration View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-06

AUTHORS

Allyson L Lister, Phillip Lord, Matthew Pocock, Anil Wipat

ABSTRACT

BACKGROUND: The creation of accurate quantitative Systems Biology Markup Language (SBML) models is a time-intensive, manual process often complicated by the many data sources and formats required to annotate even a small and well-scoped model. Ideally, the retrieval and integration of biological knowledge for model annotation should be performed quickly, precisely, and with a minimum of manual effort. RESULTS: Here we present rule-based mediation, a method of semantic data integration applied to systems biology model annotation. The heterogeneous data sources are first syntactically converted into ontologies, which are then aligned to a small domain ontology by applying a rule base. We demonstrate proof-of-principle of this application of rule-based mediation using off-the-shelf semantic web technology through two use cases for SBML model annotation. Existing tools and technology provide a framework around which the system is built, reducing development time and increasing usability. CONCLUSIONS: Integrating resources in this way accommodates multiple formats with different semantics, and provides richly-modelled biological knowledge suitable for annotation of SBML models. This initial work establishes the feasibility of rule-based mediation as part of an automated SBML model annotation system. AVAILABILITY: Detailed information on the project files as well as further information on and comparisons with similar projects is available from the project page at http://cisban-silico.cs.ncl.ac.uk/RBM/. More... »

PAGES

s3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/2041-1480-1-s1-s3

DOI

http://dx.doi.org/10.1186/2041-1480-1-s1-s3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023001150

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20626923


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Newcastle University", 
          "id": "https://www.grid.ac/institutes/grid.1006.7", 
          "name": [
            "Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, NE4 5PL, Newcastle upon Tyne, UK", 
            "School of Computing Science, Newcastle University, NE1 7RU, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lister", 
        "givenName": "Allyson L", 
        "id": "sg:person.0712640214.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712640214.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Newcastle University", 
          "id": "https://www.grid.ac/institutes/grid.1006.7", 
          "name": [
            "School of Computing Science, Newcastle University, NE1 7RU, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lord", 
        "givenName": "Phillip", 
        "id": "sg:person.0776355561.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776355561.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Newcastle University", 
          "id": "https://www.grid.ac/institutes/grid.1006.7", 
          "name": [
            "School of Computing Science, Newcastle University, NE1 7RU, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pocock", 
        "givenName": "Matthew", 
        "id": "sg:person.01127365333.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127365333.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Newcastle University", 
          "id": "https://www.grid.ac/institutes/grid.1006.7", 
          "name": [
            "Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, NE4 5PL, Newcastle upon Tyne, UK", 
            "School of Computing Science, Newcastle University, NE1 7RU, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wipat", 
        "givenName": "Anil", 
        "id": "sg:person.01017463460.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017463460.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nrg1872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000415494", 
          "https://doi.org/10.1038/nrg1872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000415494", 
          "https://doi.org/10.1038/nrg1872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002611903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0269888903000651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007233036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-76298-0_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007349211", 
          "https://doi.org/10.1007/978-3-540-76298-0_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-76298-0_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007349211", 
          "https://doi.org/10.1007/978-3-540-76298-0_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007734343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009998691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/16.2.184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013140962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0306-4379(03)00032-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013335902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0306-4379(03)00032-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013335902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013367542", 
          "https://doi.org/10.1038/nbt926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013367542", 
          "https://doi.org/10.1038/nbt926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013476461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2006.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020226276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1013367.1013381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020287584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cfg.407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020300056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021638513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021686288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024306518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2006.0148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027559801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028001312", 
          "https://doi.org/10.1038/nbt1346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-1-58", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029186612", 
          "https://doi.org/10.1186/1752-0509-1-58"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0002946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030737678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.inffus.2007.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034459866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037837492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp392", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040048284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2008.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041223857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jbin.2001.1024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042933071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047203354", 
          "https://doi.org/10.1038/nbt1156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047203354", 
          "https://doi.org/10.1038/nbt1156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-syb.2009.0007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056838936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-syb.2009.0007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056838936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-syb:20080092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056839240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/jib-2007-80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099768070"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-06", 
    "datePublishedReg": "2010-06-01", 
    "description": "BACKGROUND: The creation of accurate quantitative Systems Biology Markup Language (SBML) models is a time-intensive, manual process often complicated by the many data sources and formats required to annotate even a small and well-scoped model. Ideally, the retrieval and integration of biological knowledge for model annotation should be performed quickly, precisely, and with a minimum of manual effort.\nRESULTS: Here we present rule-based mediation, a method of semantic data integration applied to systems biology model annotation. The heterogeneous data sources are first syntactically converted into ontologies, which are then aligned to a small domain ontology by applying a rule base. We demonstrate proof-of-principle of this application of rule-based mediation using off-the-shelf semantic web technology through two use cases for SBML model annotation. Existing tools and technology provide a framework around which the system is built, reducing development time and increasing usability.\nCONCLUSIONS: Integrating resources in this way accommodates multiple formats with different semantics, and provides richly-modelled biological knowledge suitable for annotation of SBML models. This initial work establishes the feasibility of rule-based mediation as part of an automated SBML model annotation system.\nAVAILABILITY: Detailed information on the project files as well as further information on and comparisons with similar projects is available from the project page at http://cisban-silico.cs.ncl.ac.uk/RBM/.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/2041-1480-1-s1-s3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2757296", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043573", 
        "issn": [
          "2041-1480"
        ], 
        "name": "Journal of Biomedical Semantics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "Annotation of SBML models through rule-based semantic integration", 
    "pagination": "s3", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6d953c39ffcc3f0c992d74c5c3ec478776984487bbc98fd605e2221588e0fb84"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20626923"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101531992"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/2041-1480-1-s1-s3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023001150"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/2041-1480-1-s1-s3", 
      "https://app.dimensions.ai/details/publication/pub.1023001150"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000550.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F2041-1480-1-S1-S3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/2041-1480-1-s1-s3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/2041-1480-1-s1-s3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/2041-1480-1-s1-s3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/2041-1480-1-s1-s3'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      21 PREDICATES      58 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/2041-1480-1-s1-s3 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N26704c492e7a45a4a598a631b46daceb
4 schema:citation sg:pub.10.1007/978-3-540-76298-0_13
5 sg:pub.10.1038/nbt1156
6 sg:pub.10.1038/nbt1346
7 sg:pub.10.1038/nbt926
8 sg:pub.10.1038/nrg1872
9 sg:pub.10.1186/1752-0509-1-58
10 https://doi.org/10.1002/cfg.407
11 https://doi.org/10.1006/jbin.2001.1024
12 https://doi.org/10.1016/j.inffus.2007.04.002
13 https://doi.org/10.1016/j.jbi.2006.02.014
14 https://doi.org/10.1016/j.jbi.2008.02.006
15 https://doi.org/10.1016/s0306-4379(03)00032-2
16 https://doi.org/10.1017/s0269888903000651
17 https://doi.org/10.1049/iet-syb.2009.0007
18 https://doi.org/10.1049/iet-syb:20080092
19 https://doi.org/10.1093/bioinformatics/16.2.184
20 https://doi.org/10.1093/bioinformatics/btg015
21 https://doi.org/10.1093/bioinformatics/btm578
22 https://doi.org/10.1093/bioinformatics/btn390
23 https://doi.org/10.1093/bioinformatics/btp392
24 https://doi.org/10.1093/bioinformatics/btp523
25 https://doi.org/10.1093/bioinformatics/btp642
26 https://doi.org/10.1093/nar/gkj092
27 https://doi.org/10.1093/nar/gkj109
28 https://doi.org/10.1093/nar/gkm895
29 https://doi.org/10.1098/rsif.2006.0148
30 https://doi.org/10.1145/1013367.1013381
31 https://doi.org/10.1371/journal.pone.0002946
32 https://doi.org/10.1515/jib-2007-80
33 schema:datePublished 2010-06
34 schema:datePublishedReg 2010-06-01
35 schema:description BACKGROUND: The creation of accurate quantitative Systems Biology Markup Language (SBML) models is a time-intensive, manual process often complicated by the many data sources and formats required to annotate even a small and well-scoped model. Ideally, the retrieval and integration of biological knowledge for model annotation should be performed quickly, precisely, and with a minimum of manual effort. RESULTS: Here we present rule-based mediation, a method of semantic data integration applied to systems biology model annotation. The heterogeneous data sources are first syntactically converted into ontologies, which are then aligned to a small domain ontology by applying a rule base. We demonstrate proof-of-principle of this application of rule-based mediation using off-the-shelf semantic web technology through two use cases for SBML model annotation. Existing tools and technology provide a framework around which the system is built, reducing development time and increasing usability. CONCLUSIONS: Integrating resources in this way accommodates multiple formats with different semantics, and provides richly-modelled biological knowledge suitable for annotation of SBML models. This initial work establishes the feasibility of rule-based mediation as part of an automated SBML model annotation system. AVAILABILITY: Detailed information on the project files as well as further information on and comparisons with similar projects is available from the project page at http://cisban-silico.cs.ncl.ac.uk/RBM/.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N497260cc17ed4eecad5ddc8414fd0963
40 Ncfe43d0244ae42cea979a75e4048f1e0
41 sg:journal.1043573
42 schema:name Annotation of SBML models through rule-based semantic integration
43 schema:pagination s3
44 schema:productId N36d18b201c4a494aa25691058aac0892
45 N37dbdb9a81174c57a7ac458451b4ab75
46 N4758d2096ab24e108a4d02be2c3ad16b
47 N6f76c32816e94b9bbee852234123d64c
48 N95f309de61984de2a7246a4c21dbeb0e
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023001150
50 https://doi.org/10.1186/2041-1480-1-s1-s3
51 schema:sdDatePublished 2019-04-10T20:53
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nb7043a2b20a04322812a87e44d097bfe
54 schema:url http://link.springer.com/10.1186%2F2041-1480-1-S1-S3
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N1f8c68164f714e57a5ad1475bc1f3279 rdf:first sg:person.01017463460.18
59 rdf:rest rdf:nil
60 N26704c492e7a45a4a598a631b46daceb rdf:first sg:person.0712640214.48
61 rdf:rest N90269c7c4f3145ed8a49e91b0cf4d7e2
62 N36d18b201c4a494aa25691058aac0892 schema:name doi
63 schema:value 10.1186/2041-1480-1-s1-s3
64 rdf:type schema:PropertyValue
65 N37dbdb9a81174c57a7ac458451b4ab75 schema:name pubmed_id
66 schema:value 20626923
67 rdf:type schema:PropertyValue
68 N4758d2096ab24e108a4d02be2c3ad16b schema:name readcube_id
69 schema:value 6d953c39ffcc3f0c992d74c5c3ec478776984487bbc98fd605e2221588e0fb84
70 rdf:type schema:PropertyValue
71 N497260cc17ed4eecad5ddc8414fd0963 schema:issueNumber Suppl 1
72 rdf:type schema:PublicationIssue
73 N6f76c32816e94b9bbee852234123d64c schema:name nlm_unique_id
74 schema:value 101531992
75 rdf:type schema:PropertyValue
76 N90269c7c4f3145ed8a49e91b0cf4d7e2 rdf:first sg:person.0776355561.43
77 rdf:rest Nb35996a5b1854ea99248108c0521476c
78 N95f309de61984de2a7246a4c21dbeb0e schema:name dimensions_id
79 schema:value pub.1023001150
80 rdf:type schema:PropertyValue
81 Nb35996a5b1854ea99248108c0521476c rdf:first sg:person.01127365333.61
82 rdf:rest N1f8c68164f714e57a5ad1475bc1f3279
83 Nb7043a2b20a04322812a87e44d097bfe schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Ncfe43d0244ae42cea979a75e4048f1e0 schema:volumeNumber 1
86 rdf:type schema:PublicationVolume
87 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
88 schema:name Information and Computing Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
91 schema:name Information Systems
92 rdf:type schema:DefinedTerm
93 sg:grant.2757296 http://pending.schema.org/fundedItem sg:pub.10.1186/2041-1480-1-s1-s3
94 rdf:type schema:MonetaryGrant
95 sg:journal.1043573 schema:issn 2041-1480
96 schema:name Journal of Biomedical Semantics
97 rdf:type schema:Periodical
98 sg:person.01017463460.18 schema:affiliation https://www.grid.ac/institutes/grid.1006.7
99 schema:familyName Wipat
100 schema:givenName Anil
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017463460.18
102 rdf:type schema:Person
103 sg:person.01127365333.61 schema:affiliation https://www.grid.ac/institutes/grid.1006.7
104 schema:familyName Pocock
105 schema:givenName Matthew
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127365333.61
107 rdf:type schema:Person
108 sg:person.0712640214.48 schema:affiliation https://www.grid.ac/institutes/grid.1006.7
109 schema:familyName Lister
110 schema:givenName Allyson L
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712640214.48
112 rdf:type schema:Person
113 sg:person.0776355561.43 schema:affiliation https://www.grid.ac/institutes/grid.1006.7
114 schema:familyName Lord
115 schema:givenName Phillip
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776355561.43
117 rdf:type schema:Person
118 sg:pub.10.1007/978-3-540-76298-0_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007349211
119 https://doi.org/10.1007/978-3-540-76298-0_13
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/nbt1156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047203354
122 https://doi.org/10.1038/nbt1156
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nbt1346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028001312
125 https://doi.org/10.1038/nbt1346
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nbt926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013367542
128 https://doi.org/10.1038/nbt926
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/nrg1872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000415494
131 https://doi.org/10.1038/nrg1872
132 rdf:type schema:CreativeWork
133 sg:pub.10.1186/1752-0509-1-58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029186612
134 https://doi.org/10.1186/1752-0509-1-58
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1002/cfg.407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020300056
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1006/jbin.2001.1024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042933071
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.inffus.2007.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034459866
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.jbi.2006.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020226276
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.jbi.2008.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041223857
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/s0306-4379(03)00032-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013335902
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1017/s0269888903000651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007233036
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1049/iet-syb.2009.0007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056838936
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1049/iet-syb:20080092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056839240
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1093/bioinformatics/16.2.184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013140962
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1093/bioinformatics/btg015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037837492
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1093/bioinformatics/btm578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024306518
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1093/bioinformatics/btn390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009998691
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1093/bioinformatics/btp392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040048284
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1093/bioinformatics/btp523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013476461
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1093/bioinformatics/btp642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021638513
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1093/nar/gkj092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002611903
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1093/nar/gkj109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007734343
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1093/nar/gkm895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021686288
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1098/rsif.2006.0148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027559801
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1145/1013367.1013381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020287584
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1371/journal.pone.0002946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030737678
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1515/jib-2007-80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099768070
181 rdf:type schema:CreativeWork
182 https://www.grid.ac/institutes/grid.1006.7 schema:alternateName Newcastle University
183 schema:name Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, NE4 5PL, Newcastle upon Tyne, UK
184 School of Computing Science, Newcastle University, NE1 7RU, UK
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...