Building a biomedical ontology recommender web service View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-06

AUTHORS

Clement Jonquet, Mark A Musen, Nigam H Shah

ABSTRACT

BACKGROUND: Researchers in biomedical informatics use ontologies and terminologies to annotate their data in order to facilitate data integration and translational discoveries. As the use of ontologies for annotation of biomedical datasets has risen, a common challenge is to identify ontologies that are best suited to annotating specific datasets. The number and variety of biomedical ontologies is large, and it is cumbersome for a researcher to figure out which ontology to use. METHODS: We present the Biomedical Ontology Recommender web service. The system uses textual metadata or a set of keywords describing a domain of interest and suggests appropriate ontologies for annotating or representing the data. The service makes a decision based on three criteria. The first one is coverage, or the ontologies that provide most terms covering the input text. The second is connectivity, or the ontologies that are most often mapped to by other ontologies. The final criterion is size, or the number of concepts in the ontologies. The service scores the ontologies as a function of scores of the annotations created using the National Center for Biomedical Ontology (NCBO) Annotator web service. We used all the ontologies from the UMLS Metathesaurus and the NCBO BioPortal. RESULTS: We compare and contrast our Recommender by an exhaustive functional comparison to previously published efforts. We evaluate and discuss the results of several recommendation heuristics in the context of three real world use cases. The best recommendations heuristics, rated 'very relevant' by expert evaluators, are the ones based on coverage and connectivity criteria. The Recommender service (alpha version) is available to the community and is embedded into BioPortal. More... »

PAGES

s1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/2041-1480-1-s1-s1

DOI

http://dx.doi.org/10.1186/2041-1480-1-s1-s1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023230432

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20626921


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Center for Biomedical Informatics Research, Stanford University, 94305, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jonquet", 
        "givenName": "Clement", 
        "id": "sg:person.01066556571.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066556571.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Center for Biomedical Informatics Research, Stanford University, 94305, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Musen", 
        "givenName": "Mark A", 
        "id": "sg:person.01356117464.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356117464.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Center for Biomedical Informatics Research, Stanford University, 94305, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shah", 
        "givenName": "Nigam H", 
        "id": "sg:person.016713300752.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016713300752.98"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bib/bbl027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002564469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/956699.956712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003082114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003604257", 
          "https://doi.org/10.1186/1471-2105-7-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003604257", 
          "https://doi.org/10.1186/1471-2105-7-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11762256_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005773922", 
          "https://doi.org/10.1007/11762256_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11762256_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005773922", 
          "https://doi.org/10.1007/11762256_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010962830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11891451_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013013911", 
          "https://doi.org/10.1007/11891451_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11891451_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013013911", 
          "https://doi.org/10.1007/11891451_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-10-s2-s1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015890425", 
          "https://doi.org/10.1186/1471-2105-10-s2-s1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1088622.1088633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016161917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0609-508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016499067", 
          "https://doi.org/10.1038/nbt0609-508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0609-508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016499067", 
          "https://doi.org/10.1038/nbt0609-508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020507393", 
          "https://doi.org/10.1186/1471-2105-7-97"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020507393", 
          "https://doi.org/10.1186/1471-2105-7-97"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028001312", 
          "https://doi.org/10.1038/nbt1346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4018/jdm.2004040101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030855539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/npre.2009.3868.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033880916", 
          "https://doi.org/10.1038/npre.2009.3868.1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/1-84628-102-4_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036695855", 
          "https://doi.org/10.1007/1-84628-102-4_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11554028_56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037321117", 
          "https://doi.org/10.1007/11554028_56"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11554028_56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037321117", 
          "https://doi.org/10.1007/11554028_56"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042802800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-04930-9_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042924255", 
          "https://doi.org/10.1007/978-3-642-04930-9_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1298406.1298418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045705308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ietisy/e91-d.11.2616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059672380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077353910", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078353946", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cscwd.2008.4537026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095123544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cscwd.2008.4537026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095123544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1572364.1572372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099140267"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-06", 
    "datePublishedReg": "2010-06-01", 
    "description": "BACKGROUND: Researchers in biomedical informatics use ontologies and terminologies to annotate their data in order to facilitate data integration and translational discoveries. As the use of ontologies for annotation of biomedical datasets has risen, a common challenge is to identify ontologies that are best suited to annotating specific datasets. The number and variety of biomedical ontologies is large, and it is cumbersome for a researcher to figure out which ontology to use.\nMETHODS: We present the Biomedical Ontology Recommender web service. The system uses textual metadata or a set of keywords describing a domain of interest and suggests appropriate ontologies for annotating or representing the data. The service makes a decision based on three criteria. The first one is coverage, or the ontologies that provide most terms covering the input text. The second is connectivity, or the ontologies that are most often mapped to by other ontologies. The final criterion is size, or the number of concepts in the ontologies. The service scores the ontologies as a function of scores of the annotations created using the National Center for Biomedical Ontology (NCBO) Annotator web service. We used all the ontologies from the UMLS Metathesaurus and the NCBO BioPortal.\nRESULTS: We compare and contrast our Recommender by an exhaustive functional comparison to previously published efforts. We evaluate and discuss the results of several recommendation heuristics in the context of three real world use cases. The best recommendations heuristics, rated 'very relevant' by expert evaluators, are the ones based on coverage and connectivity criteria. The Recommender service (alpha version) is available to the community and is embedded into BioPortal.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/2041-1480-1-s1-s1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2699337", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043573", 
        "issn": [
          "2041-1480"
        ], 
        "name": "Journal of Biomedical Semantics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "Building a biomedical ontology recommender web service", 
    "pagination": "s1", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6eacc9a102eba1c4bd7732a73cf2e191974b79f4174e68f4134e76bf3e025fa4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20626921"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101531992"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/2041-1480-1-s1-s1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023230432"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/2041-1480-1-s1-s1", 
      "https://app.dimensions.ai/details/publication/pub.1023230432"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000550.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F2041-1480-1-S1-S1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/2041-1480-1-s1-s1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/2041-1480-1-s1-s1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/2041-1480-1-s1-s1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/2041-1480-1-s1-s1'


 

This table displays all metadata directly associated to this object as RDF triples.

162 TRIPLES      21 PREDICATES      52 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/2041-1480-1-s1-s1 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nb73021687d5047728917e857dbf1dab1
4 schema:citation sg:pub.10.1007/1-84628-102-4_5
5 sg:pub.10.1007/11554028_56
6 sg:pub.10.1007/11762256_13
7 sg:pub.10.1007/11891451_12
8 sg:pub.10.1007/978-3-642-04930-9_15
9 sg:pub.10.1038/nbt0609-508
10 sg:pub.10.1038/nbt1346
11 sg:pub.10.1038/npre.2009.3868.1
12 sg:pub.10.1186/1471-2105-10-s2-s1
13 sg:pub.10.1186/1471-2105-7-7
14 sg:pub.10.1186/1471-2105-7-97
15 https://app.dimensions.ai/details/publication/pub.1077353910
16 https://app.dimensions.ai/details/publication/pub.1078353946
17 https://doi.org/10.1093/bib/bbl027
18 https://doi.org/10.1093/ietisy/e91-d.11.2616
19 https://doi.org/10.1093/nar/gkh061
20 https://doi.org/10.1093/nar/gkp440
21 https://doi.org/10.1109/cscwd.2008.4537026
22 https://doi.org/10.1145/1088622.1088633
23 https://doi.org/10.1145/1298406.1298418
24 https://doi.org/10.1145/956699.956712
25 https://doi.org/10.3115/1572364.1572372
26 https://doi.org/10.4018/jdm.2004040101
27 schema:datePublished 2010-06
28 schema:datePublishedReg 2010-06-01
29 schema:description BACKGROUND: Researchers in biomedical informatics use ontologies and terminologies to annotate their data in order to facilitate data integration and translational discoveries. As the use of ontologies for annotation of biomedical datasets has risen, a common challenge is to identify ontologies that are best suited to annotating specific datasets. The number and variety of biomedical ontologies is large, and it is cumbersome for a researcher to figure out which ontology to use. METHODS: We present the Biomedical Ontology Recommender web service. The system uses textual metadata or a set of keywords describing a domain of interest and suggests appropriate ontologies for annotating or representing the data. The service makes a decision based on three criteria. The first one is coverage, or the ontologies that provide most terms covering the input text. The second is connectivity, or the ontologies that are most often mapped to by other ontologies. The final criterion is size, or the number of concepts in the ontologies. The service scores the ontologies as a function of scores of the annotations created using the National Center for Biomedical Ontology (NCBO) Annotator web service. We used all the ontologies from the UMLS Metathesaurus and the NCBO BioPortal. RESULTS: We compare and contrast our Recommender by an exhaustive functional comparison to previously published efforts. We evaluate and discuss the results of several recommendation heuristics in the context of three real world use cases. The best recommendations heuristics, rated 'very relevant' by expert evaluators, are the ones based on coverage and connectivity criteria. The Recommender service (alpha version) is available to the community and is embedded into BioPortal.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N5f9e2d6de15d4e7e8a32f755bd8a9807
34 N8c789bddf1f447a0a94e5761a38d97ad
35 sg:journal.1043573
36 schema:name Building a biomedical ontology recommender web service
37 schema:pagination s1
38 schema:productId N8032cf37f51c4cc8bbaed5a4da96a66c
39 N8e1112d13d61416b9ba44fea48e744e6
40 Na5797844f81c4cb899043ec4e5789ae4
41 Nb937a1790a1641d68324f197621bdacf
42 Ne9ecef7c0db743c0957f981949c865f9
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023230432
44 https://doi.org/10.1186/2041-1480-1-s1-s1
45 schema:sdDatePublished 2019-04-10T20:53
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N74437eff10204c01838d67a9d0dc067c
48 schema:url http://link.springer.com/10.1186%2F2041-1480-1-S1-S1
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N196612bcabd4425d872195a1f83b32c3 rdf:first sg:person.016713300752.98
53 rdf:rest rdf:nil
54 N5f9e2d6de15d4e7e8a32f755bd8a9807 schema:volumeNumber 1
55 rdf:type schema:PublicationVolume
56 N74437eff10204c01838d67a9d0dc067c schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N7dbba2b487364a95b04910d4d9e9967a rdf:first sg:person.01356117464.07
59 rdf:rest N196612bcabd4425d872195a1f83b32c3
60 N8032cf37f51c4cc8bbaed5a4da96a66c schema:name doi
61 schema:value 10.1186/2041-1480-1-s1-s1
62 rdf:type schema:PropertyValue
63 N8c789bddf1f447a0a94e5761a38d97ad schema:issueNumber Suppl 1
64 rdf:type schema:PublicationIssue
65 N8e1112d13d61416b9ba44fea48e744e6 schema:name nlm_unique_id
66 schema:value 101531992
67 rdf:type schema:PropertyValue
68 Na5797844f81c4cb899043ec4e5789ae4 schema:name pubmed_id
69 schema:value 20626921
70 rdf:type schema:PropertyValue
71 Nb73021687d5047728917e857dbf1dab1 rdf:first sg:person.01066556571.33
72 rdf:rest N7dbba2b487364a95b04910d4d9e9967a
73 Nb937a1790a1641d68324f197621bdacf schema:name dimensions_id
74 schema:value pub.1023230432
75 rdf:type schema:PropertyValue
76 Ne9ecef7c0db743c0957f981949c865f9 schema:name readcube_id
77 schema:value 6eacc9a102eba1c4bd7732a73cf2e191974b79f4174e68f4134e76bf3e025fa4
78 rdf:type schema:PropertyValue
79 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
80 schema:name Information and Computing Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
83 schema:name Information Systems
84 rdf:type schema:DefinedTerm
85 sg:grant.2699337 http://pending.schema.org/fundedItem sg:pub.10.1186/2041-1480-1-s1-s1
86 rdf:type schema:MonetaryGrant
87 sg:journal.1043573 schema:issn 2041-1480
88 schema:name Journal of Biomedical Semantics
89 rdf:type schema:Periodical
90 sg:person.01066556571.33 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
91 schema:familyName Jonquet
92 schema:givenName Clement
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066556571.33
94 rdf:type schema:Person
95 sg:person.01356117464.07 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
96 schema:familyName Musen
97 schema:givenName Mark A
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356117464.07
99 rdf:type schema:Person
100 sg:person.016713300752.98 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
101 schema:familyName Shah
102 schema:givenName Nigam H
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016713300752.98
104 rdf:type schema:Person
105 sg:pub.10.1007/1-84628-102-4_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036695855
106 https://doi.org/10.1007/1-84628-102-4_5
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/11554028_56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037321117
109 https://doi.org/10.1007/11554028_56
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/11762256_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005773922
112 https://doi.org/10.1007/11762256_13
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/11891451_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013013911
115 https://doi.org/10.1007/11891451_12
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/978-3-642-04930-9_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042924255
118 https://doi.org/10.1007/978-3-642-04930-9_15
119 rdf:type schema:CreativeWork
120 sg:pub.10.1038/nbt0609-508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016499067
121 https://doi.org/10.1038/nbt0609-508
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/nbt1346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028001312
124 https://doi.org/10.1038/nbt1346
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/npre.2009.3868.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033880916
127 https://doi.org/10.1038/npre.2009.3868.1
128 rdf:type schema:CreativeWork
129 sg:pub.10.1186/1471-2105-10-s2-s1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015890425
130 https://doi.org/10.1186/1471-2105-10-s2-s1
131 rdf:type schema:CreativeWork
132 sg:pub.10.1186/1471-2105-7-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003604257
133 https://doi.org/10.1186/1471-2105-7-7
134 rdf:type schema:CreativeWork
135 sg:pub.10.1186/1471-2105-7-97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020507393
136 https://doi.org/10.1186/1471-2105-7-97
137 rdf:type schema:CreativeWork
138 https://app.dimensions.ai/details/publication/pub.1077353910 schema:CreativeWork
139 https://app.dimensions.ai/details/publication/pub.1078353946 schema:CreativeWork
140 https://doi.org/10.1093/bib/bbl027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002564469
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1093/ietisy/e91-d.11.2616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059672380
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1093/nar/gkh061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042802800
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1093/nar/gkp440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010962830
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/cscwd.2008.4537026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095123544
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1145/1088622.1088633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016161917
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1145/1298406.1298418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045705308
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1145/956699.956712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003082114
155 rdf:type schema:CreativeWork
156 https://doi.org/10.3115/1572364.1572372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099140267
157 rdf:type schema:CreativeWork
158 https://doi.org/10.4018/jdm.2004040101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030855539
159 rdf:type schema:CreativeWork
160 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
161 schema:name Center for Biomedical Informatics Research, Stanford University, 94305, CA, USA
162 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...