Drug repositioning: a machine-learning approach through data integration View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

Francesco Napolitano, Yan Zhao, Vânia M Moreira, Roberto Tagliaferri, Juha Kere, Mauro D’Amato, Dario Greco

ABSTRACT

: Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines after treatment, or on drug-to-disease relationships, merging several information levels. However, the noisy nature of the gene expression and the scarcity of genomic data for many diseases are important limitations to such approaches. Here we focused on a drug-centered approach by predicting the therapeutic class of FDA-approved compounds, not considering data concerning the diseases. We propose a novel computational approach to predict drug repositioning based on state-of-the-art machine-learning algorithms. We have integrated multiple layers of information: i) on the distances of the drugs based on how similar are their chemical structures, ii) on how close are their targets within the protein-protein interaction network, and iii) on how correlated are the gene expression patterns after treatment. Our classifier reaches high accuracy levels (78%), allowing us to re-interpret the top misclassifications as re-classifications, after rigorous statistical evaluation. Efficient drug repurposing has the potential to significantly impact the whole field of drug development. The results presented here can significantly accelerate the translation into the clinics of known compounds for novel therapeutic uses. More... »

PAGES

30

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1758-2946-5-30

DOI

http://dx.doi.org/10.1186/1758-2946-5-30

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010845049

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23800010


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Telethon Institute Of Genetics And Medicine", 
          "id": "https://www.grid.ac/institutes/grid.410439.b", 
          "name": [
            "Department of Computer Science, University of Salerno, Salerno, Italy", 
            "Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Napolitano", 
        "givenName": "Francesco", 
        "id": "sg:person.0724034664.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724034664.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Helsinki", 
          "id": "https://www.grid.ac/institutes/grid.7737.4", 
          "name": [
            "Research Unit of Molecular Medicine, University of Helsinki, Helsinki, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Yan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Helsinki", 
          "id": "https://www.grid.ac/institutes/grid.7737.4", 
          "name": [
            "Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moreira", 
        "givenName": "V\u00e2nia M", 
        "id": "sg:person.01354627165.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354627165.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Salerno", 
          "id": "https://www.grid.ac/institutes/grid.11780.3f", 
          "name": [
            "Department of Computer Science, University of Salerno, Salerno, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tagliaferri", 
        "givenName": "Roberto", 
        "id": "sg:person.012023065404.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012023065404.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karolinska Institute", 
          "id": "https://www.grid.ac/institutes/grid.4714.6", 
          "name": [
            "Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kere", 
        "givenName": "Juha", 
        "id": "sg:person.01011310263.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011310263.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karolinska Institute", 
          "id": "https://www.grid.ac/institutes/grid.4714.6", 
          "name": [
            "Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u2019Amato", 
        "givenName": "Mauro", 
        "id": "sg:person.013034560020.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013034560020.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karolinska Institute", 
          "id": "https://www.grid.ac/institutes/grid.4714.6", 
          "name": [
            "Research Unit of Molecular Medicine, University of Helsinki, Helsinki, Finland", 
            "Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Greco", 
        "givenName": "Dario", 
        "id": "sg:person.0610365574.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610365574.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/nar/gkl1031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000047019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5483/bmbrep.2011.44.8.517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000446473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00280-007-0538-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001407993", 
          "https://doi.org/10.1007/s00280-007-0538-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00280-007-0538-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001407993", 
          "https://doi.org/10.1007/s00280-007-0538-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003878496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008122954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0029290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009579521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m112.359638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012943041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1132939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013321903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014122364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxj037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016217055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0035254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016277496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018616103", 
          "https://doi.org/10.1038/nbt.2151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-09-3950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020757200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-29362-0_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025432622", 
          "https://doi.org/10.1007/0-387-29362-0_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0035-9203(89)90508-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026439094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/neuonc/nor077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028117985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd1900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028441029", 
          "https://doi.org/10.1038/nrd1900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd1900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028441029", 
          "https://doi.org/10.1038/nrd1900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4158/ep10390.cr", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028535282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bcj.2011.38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029886023", 
          "https://doi.org/10.1038/bcj.2011.38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030081329", 
          "https://doi.org/10.1038/nmeth.1282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/4.2.249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037543114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2011.26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037906040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2011.26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037906040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1541-7786.mcr-07-2159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039080582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gni179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040526112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/djr190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041128427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jm200504p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041935260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jm200504p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041935260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1535-7163.mct-12-0002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042415616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042567722", 
          "https://doi.org/10.1038/nrmicro1048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042567722", 
          "https://doi.org/10.1038/nrmicro1048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00280-009-1157-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043007508", 
          "https://doi.org/10.1007/s00280-009-1157-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00280-009-1157-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043007508", 
          "https://doi.org/10.1007/s00280-009-1157-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00280-009-1157-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043007508", 
          "https://doi.org/10.1007/s00280-009-1157-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043603670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.3002648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050185322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1000138107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053118853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi9009677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055209975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi9009677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055209975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ml100146z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056211037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v018.i05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075123987", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": ": Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines after treatment, or on drug-to-disease relationships, merging several information levels. However, the noisy nature of the gene expression and the scarcity of genomic data for many diseases are important limitations to such approaches. Here we focused on a drug-centered approach by predicting the therapeutic class of FDA-approved compounds, not considering data concerning the diseases. We propose a novel computational approach to predict drug repositioning based on state-of-the-art machine-learning algorithms. We have integrated multiple layers of information: i) on the distances of the drugs based on how similar are their chemical structures, ii) on how close are their targets within the protein-protein interaction network, and iii) on how correlated are the gene expression patterns after treatment. Our classifier reaches high accuracy levels (78%), allowing us to re-interpret the top misclassifications as re-classifications, after rigorous statistical evaluation. Efficient drug repurposing has the potential to significantly impact the whole field of drug development. The results presented here can significantly accelerate the translation into the clinics of known compounds for novel therapeutic uses. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1758-2946-5-30", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5145671", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3795223", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1042252", 
        "issn": [
          "1758-2946"
        ], 
        "name": "Journal of Cheminformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Drug repositioning: a machine-learning approach through data integration", 
    "pagination": "30", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "33aaffabe4117e8ee2661d083f8c0feae1bd0ad96953bee0afbfb7211c85f6e8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23800010"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101516718"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1758-2946-5-30"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010845049"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1758-2946-5-30", 
      "https://app.dimensions.ai/details/publication/pub.1010845049"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000549.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1758-2946-5-30"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1758-2946-5-30'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1758-2946-5-30'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1758-2946-5-30'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1758-2946-5-30'


 

This table displays all metadata directly associated to this object as RDF triples.

240 TRIPLES      21 PREDICATES      65 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1758-2946-5-30 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N50411ac30c5a4b888b2bbf2dc428aac1
4 schema:citation sg:pub.10.1007/0-387-29362-0_23
5 sg:pub.10.1007/s00280-007-0538-0
6 sg:pub.10.1007/s00280-009-1157-8
7 sg:pub.10.1038/bcj.2011.38
8 sg:pub.10.1038/nbt.2151
9 sg:pub.10.1038/nmeth.1282
10 sg:pub.10.1038/nrd1900
11 sg:pub.10.1038/nrmicro1048
12 https://app.dimensions.ai/details/publication/pub.1075123987
13 https://doi.org/10.1016/0035-9203(89)90508-7
14 https://doi.org/10.1021/bi9009677
15 https://doi.org/10.1021/jm200504p
16 https://doi.org/10.1021/ml100146z
17 https://doi.org/10.1038/msb.2011.26
18 https://doi.org/10.1073/pnas.1000138107
19 https://doi.org/10.1074/jbc.m112.359638
20 https://doi.org/10.1093/bioinformatics/btg405
21 https://doi.org/10.1093/biostatistics/4.2.249
22 https://doi.org/10.1093/biostatistics/kxj037
23 https://doi.org/10.1093/jnci/djr190
24 https://doi.org/10.1093/nar/gkl1031
25 https://doi.org/10.1093/nar/gkm958
26 https://doi.org/10.1093/nar/gkr967
27 https://doi.org/10.1093/nar/gni179
28 https://doi.org/10.1093/neuonc/nor077
29 https://doi.org/10.1126/science.1132939
30 https://doi.org/10.1126/scitranslmed.3002648
31 https://doi.org/10.1158/0008-5472.can-09-3950
32 https://doi.org/10.1158/1535-7163.mct-12-0002
33 https://doi.org/10.1158/1541-7786.mcr-07-2159
34 https://doi.org/10.1371/journal.pcbi.1000925
35 https://doi.org/10.1371/journal.pone.0029290
36 https://doi.org/10.1371/journal.pone.0035254
37 https://doi.org/10.18637/jss.v018.i05
38 https://doi.org/10.4158/ep10390.cr
39 https://doi.org/10.5483/bmbrep.2011.44.8.517
40 schema:datePublished 2013-12
41 schema:datePublishedReg 2013-12-01
42 schema:description : Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines after treatment, or on drug-to-disease relationships, merging several information levels. However, the noisy nature of the gene expression and the scarcity of genomic data for many diseases are important limitations to such approaches. Here we focused on a drug-centered approach by predicting the therapeutic class of FDA-approved compounds, not considering data concerning the diseases. We propose a novel computational approach to predict drug repositioning based on state-of-the-art machine-learning algorithms. We have integrated multiple layers of information: i) on the distances of the drugs based on how similar are their chemical structures, ii) on how close are their targets within the protein-protein interaction network, and iii) on how correlated are the gene expression patterns after treatment. Our classifier reaches high accuracy levels (78%), allowing us to re-interpret the top misclassifications as re-classifications, after rigorous statistical evaluation. Efficient drug repurposing has the potential to significantly impact the whole field of drug development. The results presented here can significantly accelerate the translation into the clinics of known compounds for novel therapeutic uses.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree true
46 schema:isPartOf N9771973e40f3493a88188bcaa8cbb996
47 Nd7e38944163b4275987500d0b1bb8f47
48 sg:journal.1042252
49 schema:name Drug repositioning: a machine-learning approach through data integration
50 schema:pagination 30
51 schema:productId N35cc3da2fafd4eb1960f0fb54b0fdb5b
52 N3c3290bc84914becbb85e3c3ec8dfa8e
53 N9a6b9420b93f479f9c7a21dea81e1fa8
54 Nd2ca2e1ca9204a03b54ae6a495ac04fe
55 Nf636cb556eea4e39882b1fb65341deaf
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010845049
57 https://doi.org/10.1186/1758-2946-5-30
58 schema:sdDatePublished 2019-04-10T16:48
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N1b8150ece60344e5b72bf6a2cff10732
61 schema:url http://link.springer.com/10.1186%2F1758-2946-5-30
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N118bfaffe3e347498623ca9177a5f14e rdf:first sg:person.013034560020.81
66 rdf:rest N7e5a888bcbc049059810ccc012992009
67 N1b8150ece60344e5b72bf6a2cff10732 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N35cc3da2fafd4eb1960f0fb54b0fdb5b schema:name dimensions_id
70 schema:value pub.1010845049
71 rdf:type schema:PropertyValue
72 N3c3290bc84914becbb85e3c3ec8dfa8e schema:name nlm_unique_id
73 schema:value 101516718
74 rdf:type schema:PropertyValue
75 N50411ac30c5a4b888b2bbf2dc428aac1 rdf:first sg:person.0724034664.83
76 rdf:rest Na1e8951ea9774045ad0f071a975f849e
77 N6135d752a14e4e1d9b5d76e67392816d rdf:first sg:person.01011310263.28
78 rdf:rest N118bfaffe3e347498623ca9177a5f14e
79 N7e5a888bcbc049059810ccc012992009 rdf:first sg:person.0610365574.43
80 rdf:rest rdf:nil
81 N9771973e40f3493a88188bcaa8cbb996 schema:issueNumber 1
82 rdf:type schema:PublicationIssue
83 N9a6b9420b93f479f9c7a21dea81e1fa8 schema:name doi
84 schema:value 10.1186/1758-2946-5-30
85 rdf:type schema:PropertyValue
86 Na1e8951ea9774045ad0f071a975f849e rdf:first Nfbc39f7d442249598939db8395eac9e8
87 rdf:rest Nfb0e93ce32b64641af4784b9a53c9e96
88 Nd2ca2e1ca9204a03b54ae6a495ac04fe schema:name pubmed_id
89 schema:value 23800010
90 rdf:type schema:PropertyValue
91 Nd7e38944163b4275987500d0b1bb8f47 schema:volumeNumber 5
92 rdf:type schema:PublicationVolume
93 Ne5fb0fd9bb224efa975f19f6f427959f rdf:first sg:person.012023065404.60
94 rdf:rest N6135d752a14e4e1d9b5d76e67392816d
95 Nf636cb556eea4e39882b1fb65341deaf schema:name readcube_id
96 schema:value 33aaffabe4117e8ee2661d083f8c0feae1bd0ad96953bee0afbfb7211c85f6e8
97 rdf:type schema:PropertyValue
98 Nfb0e93ce32b64641af4784b9a53c9e96 rdf:first sg:person.01354627165.11
99 rdf:rest Ne5fb0fd9bb224efa975f19f6f427959f
100 Nfbc39f7d442249598939db8395eac9e8 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
101 schema:familyName Zhao
102 schema:givenName Yan
103 rdf:type schema:Person
104 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
105 schema:name Information and Computing Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
108 schema:name Artificial Intelligence and Image Processing
109 rdf:type schema:DefinedTerm
110 sg:grant.3795223 http://pending.schema.org/fundedItem sg:pub.10.1186/1758-2946-5-30
111 rdf:type schema:MonetaryGrant
112 sg:grant.5145671 http://pending.schema.org/fundedItem sg:pub.10.1186/1758-2946-5-30
113 rdf:type schema:MonetaryGrant
114 sg:journal.1042252 schema:issn 1758-2946
115 schema:name Journal of Cheminformatics
116 rdf:type schema:Periodical
117 sg:person.01011310263.28 schema:affiliation https://www.grid.ac/institutes/grid.4714.6
118 schema:familyName Kere
119 schema:givenName Juha
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011310263.28
121 rdf:type schema:Person
122 sg:person.012023065404.60 schema:affiliation https://www.grid.ac/institutes/grid.11780.3f
123 schema:familyName Tagliaferri
124 schema:givenName Roberto
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012023065404.60
126 rdf:type schema:Person
127 sg:person.013034560020.81 schema:affiliation https://www.grid.ac/institutes/grid.4714.6
128 schema:familyName D’Amato
129 schema:givenName Mauro
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013034560020.81
131 rdf:type schema:Person
132 sg:person.01354627165.11 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
133 schema:familyName Moreira
134 schema:givenName Vânia M
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354627165.11
136 rdf:type schema:Person
137 sg:person.0610365574.43 schema:affiliation https://www.grid.ac/institutes/grid.4714.6
138 schema:familyName Greco
139 schema:givenName Dario
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610365574.43
141 rdf:type schema:Person
142 sg:person.0724034664.83 schema:affiliation https://www.grid.ac/institutes/grid.410439.b
143 schema:familyName Napolitano
144 schema:givenName Francesco
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724034664.83
146 rdf:type schema:Person
147 sg:pub.10.1007/0-387-29362-0_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025432622
148 https://doi.org/10.1007/0-387-29362-0_23
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s00280-007-0538-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001407993
151 https://doi.org/10.1007/s00280-007-0538-0
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s00280-009-1157-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043007508
154 https://doi.org/10.1007/s00280-009-1157-8
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/bcj.2011.38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029886023
157 https://doi.org/10.1038/bcj.2011.38
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/nbt.2151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018616103
160 https://doi.org/10.1038/nbt.2151
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nmeth.1282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030081329
163 https://doi.org/10.1038/nmeth.1282
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nrd1900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028441029
166 https://doi.org/10.1038/nrd1900
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nrmicro1048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042567722
169 https://doi.org/10.1038/nrmicro1048
170 rdf:type schema:CreativeWork
171 https://app.dimensions.ai/details/publication/pub.1075123987 schema:CreativeWork
172 https://doi.org/10.1016/0035-9203(89)90508-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026439094
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1021/bi9009677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055209975
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1021/jm200504p schema:sameAs https://app.dimensions.ai/details/publication/pub.1041935260
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1021/ml100146z schema:sameAs https://app.dimensions.ai/details/publication/pub.1056211037
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1038/msb.2011.26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037906040
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1073/pnas.1000138107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053118853
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1074/jbc.m112.359638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012943041
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1093/bioinformatics/btg405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003878496
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1093/biostatistics/4.2.249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037543114
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1093/biostatistics/kxj037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016217055
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1093/jnci/djr190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041128427
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1093/nar/gkl1031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000047019
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1093/nar/gkm958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043603670
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1093/nar/gkr967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008122954
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1093/nar/gni179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040526112
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1093/neuonc/nor077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028117985
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1126/science.1132939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013321903
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1126/scitranslmed.3002648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050185322
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1158/0008-5472.can-09-3950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020757200
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1158/1535-7163.mct-12-0002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042415616
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1158/1541-7786.mcr-07-2159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039080582
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1371/journal.pcbi.1000925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014122364
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1371/journal.pone.0029290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009579521
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1371/journal.pone.0035254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016277496
219 rdf:type schema:CreativeWork
220 https://doi.org/10.18637/jss.v018.i05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672278
221 rdf:type schema:CreativeWork
222 https://doi.org/10.4158/ep10390.cr schema:sameAs https://app.dimensions.ai/details/publication/pub.1028535282
223 rdf:type schema:CreativeWork
224 https://doi.org/10.5483/bmbrep.2011.44.8.517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000446473
225 rdf:type schema:CreativeWork
226 https://www.grid.ac/institutes/grid.11780.3f schema:alternateName University of Salerno
227 schema:name Department of Computer Science, University of Salerno, Salerno, Italy
228 rdf:type schema:Organization
229 https://www.grid.ac/institutes/grid.410439.b schema:alternateName Telethon Institute Of Genetics And Medicine
230 schema:name Department of Computer Science, University of Salerno, Salerno, Italy
231 Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
232 rdf:type schema:Organization
233 https://www.grid.ac/institutes/grid.4714.6 schema:alternateName Karolinska Institute
234 schema:name Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
235 Research Unit of Molecular Medicine, University of Helsinki, Helsinki, Finland
236 rdf:type schema:Organization
237 https://www.grid.ac/institutes/grid.7737.4 schema:alternateName University of Helsinki
238 schema:name Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
239 Research Unit of Molecular Medicine, University of Helsinki, Helsinki, Finland
240 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...