Modeling of molecular atomization energies using machine learning View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12

AUTHORS

Matthias Rupp, Alexandre Tkatchenko, Klaus-Robert Müller, O Anatole von Lilienfeld

ABSTRACT

N/A

PAGES

p33

Journal

TITLE

Journal of Cheminformatics

ISSUE

Suppl 1

VOLUME

4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1758-2946-4-s1-p33

DOI

http://dx.doi.org/10.1186/1758-2946-4-s1-p33

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038500776


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "name": [
            "Machine Learning Group, Technical University, 10587, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rupp", 
        "givenName": "Matthias", 
        "id": "sg:person.01001426332.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001426332.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Society", 
          "id": "https://www.grid.ac/institutes/grid.4372.2", 
          "name": [
            "Fritz-Haber-Institute, Max-Planck Society, 14195, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tkatchenko", 
        "givenName": "Alexandre", 
        "id": "sg:person.01233627233.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233627233.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Machine Learning Group, Technical University, 10587, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00fcller", 
        "givenName": "Klaus-Robert", 
        "id": "sg:person.01066211757.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066211757.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Argonne National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.187073.a", 
          "name": [
            "Argonne National Laboratory, 60439, Argonne, Illinois, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "von Lilienfeld", 
        "givenName": "O Anatole", 
        "id": "sg:person.0663222203.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663222203.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.108.058301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010339771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.058301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010339771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.472933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020195458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja902302h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055861101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja902302h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055861101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.136.b864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060429813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.136.b864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060429813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.140.a1133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060431417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.140.a1133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060431417"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-12", 
    "datePublishedReg": "2012-12-01", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1186/1758-2946-4-s1-p33", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1042252", 
        "issn": [
          "1758-2946"
        ], 
        "name": "Journal of Cheminformatics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Modeling of molecular atomization energies using machine learning", 
    "pagination": "p33", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b766b0b4aa12a1ffbf46eeb2ff9194f25ece56e1d052bea52d4ea044b66582cd"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1758-2946-4-s1-p33"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038500776"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1758-2946-4-s1-p33", 
      "https://app.dimensions.ai/details/publication/pub.1038500776"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1758-2946-4-S1-P33"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1758-2946-4-s1-p33'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1758-2946-4-s1-p33'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1758-2946-4-s1-p33'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1758-2946-4-s1-p33'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      19 PREDICATES      29 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1758-2946-4-s1-p33 schema:author Nad5122ece54943498406e0339a9d7aaf
2 schema:citation https://doi.org/10.1021/ja902302h
3 https://doi.org/10.1063/1.472933
4 https://doi.org/10.1103/physrev.136.b864
5 https://doi.org/10.1103/physrev.140.a1133
6 https://doi.org/10.1103/physrevlett.108.058301
7 schema:datePublished 2012-12
8 schema:datePublishedReg 2012-12-01
9 schema:genre non_research_article
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf N5c9afe39b6ed40f983ebf4e91cc59fec
13 Ndf9160468a534152bb8852d680ec5835
14 sg:journal.1042252
15 schema:name Modeling of molecular atomization energies using machine learning
16 schema:pagination p33
17 schema:productId N3e9f8637555c4d0fa9abae19e91e05ae
18 N5335fdead1b143caaac7a32a0c73a5eb
19 N67835a1f2e974724abb33fdc57cfef0c
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038500776
21 https://doi.org/10.1186/1758-2946-4-s1-p33
22 schema:sdDatePublished 2019-04-11T01:07
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N6781fecf432944dbbf6e99e6aef81f56
25 schema:url http://link.springer.com/10.1186%2F1758-2946-4-S1-P33
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N109e52df09cf429d8e6e0c9f6f2cd9a8 schema:name Machine Learning Group, Technical University, 10587, Berlin, Germany
30 rdf:type schema:Organization
31 N3e9f8637555c4d0fa9abae19e91e05ae schema:name doi
32 schema:value 10.1186/1758-2946-4-s1-p33
33 rdf:type schema:PropertyValue
34 N42906407758e46b0b0f6f4d291cb6ba0 rdf:first sg:person.01233627233.36
35 rdf:rest N5e459a1950c4494b8d3b02ed4557accc
36 N5335fdead1b143caaac7a32a0c73a5eb schema:name dimensions_id
37 schema:value pub.1038500776
38 rdf:type schema:PropertyValue
39 N5c9afe39b6ed40f983ebf4e91cc59fec schema:volumeNumber 4
40 rdf:type schema:PublicationVolume
41 N5e459a1950c4494b8d3b02ed4557accc rdf:first sg:person.01066211757.29
42 rdf:rest Nb95823f0eb1c4a208521cc9215ca3c37
43 N6781fecf432944dbbf6e99e6aef81f56 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N67835a1f2e974724abb33fdc57cfef0c schema:name readcube_id
46 schema:value b766b0b4aa12a1ffbf46eeb2ff9194f25ece56e1d052bea52d4ea044b66582cd
47 rdf:type schema:PropertyValue
48 N7df63bd1e9d74b69a1ae4f31bbb143e8 schema:name Machine Learning Group, Technical University, 10587, Berlin, Germany
49 rdf:type schema:Organization
50 Nad5122ece54943498406e0339a9d7aaf rdf:first sg:person.01001426332.12
51 rdf:rest N42906407758e46b0b0f6f4d291cb6ba0
52 Nb95823f0eb1c4a208521cc9215ca3c37 rdf:first sg:person.0663222203.25
53 rdf:rest rdf:nil
54 Ndf9160468a534152bb8852d680ec5835 schema:issueNumber Suppl 1
55 rdf:type schema:PublicationIssue
56 sg:journal.1042252 schema:issn 1758-2946
57 schema:name Journal of Cheminformatics
58 rdf:type schema:Periodical
59 sg:person.01001426332.12 schema:affiliation N7df63bd1e9d74b69a1ae4f31bbb143e8
60 schema:familyName Rupp
61 schema:givenName Matthias
62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001426332.12
63 rdf:type schema:Person
64 sg:person.01066211757.29 schema:affiliation N109e52df09cf429d8e6e0c9f6f2cd9a8
65 schema:familyName Müller
66 schema:givenName Klaus-Robert
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066211757.29
68 rdf:type schema:Person
69 sg:person.01233627233.36 schema:affiliation https://www.grid.ac/institutes/grid.4372.2
70 schema:familyName Tkatchenko
71 schema:givenName Alexandre
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233627233.36
73 rdf:type schema:Person
74 sg:person.0663222203.25 schema:affiliation https://www.grid.ac/institutes/grid.187073.a
75 schema:familyName von Lilienfeld
76 schema:givenName O Anatole
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663222203.25
78 rdf:type schema:Person
79 https://doi.org/10.1021/ja902302h schema:sameAs https://app.dimensions.ai/details/publication/pub.1055861101
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1063/1.472933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020195458
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1103/physrev.136.b864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060429813
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1103/physrev.140.a1133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060431417
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1103/physrevlett.108.058301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010339771
88 rdf:type schema:CreativeWork
89 https://www.grid.ac/institutes/grid.187073.a schema:alternateName Argonne National Laboratory
90 schema:name Argonne National Laboratory, 60439, Argonne, Illinois, USA
91 rdf:type schema:Organization
92 https://www.grid.ac/institutes/grid.4372.2 schema:alternateName Max Planck Society
93 schema:name Fritz-Haber-Institute, Max-Planck Society, 14195, Berlin, Germany
94 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...