Structure-based classification and ontology in chemistry View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-04-05

AUTHORS

Janna Hastings, Despoina Magka, Colin Batchelor, Lian Duan, Robert Stevens, Marcus Ennis, Christoph Steinbeck

ABSTRACT

BACKGROUND: Recent years have seen an explosion in the availability of data in the chemistry domain. With this information explosion, however, retrieving relevant results from the available information, and organising those results, become even harder problems. Computational processing is essential to filter and organise the available resources so as to better facilitate the work of scientists. Ontologies encode expert domain knowledge in a hierarchically organised machine-processable format. One such ontology for the chemical domain is ChEBI. ChEBI provides a classification of chemicals based on their structural features and a role or activity-based classification. An example of a structure-based class is 'pentacyclic compound' (compounds containing five-ring structures), while an example of a role-based class is 'analgesic', since many different chemicals can act as analgesics without sharing structural features. Structure-based classification in chemistry exploits elegant regularities and symmetries in the underlying chemical domain. As yet, there has been neither a systematic analysis of the types of structural classification in use in chemistry nor a comparison to the capabilities of available technologies. RESULTS: We analyze the different categories of structural classes in chemistry, presenting a list of patterns for features found in class definitions. We compare these patterns of class definition to tools which allow for automation of hierarchy construction within cheminformatics and within logic-based ontology technology, going into detail in the latter case with respect to the expressive capabilities of the Web Ontology Language and recent extensions for modelling structured objects. Finally we discuss the relationships and interactions between cheminformatics approaches and logic-based approaches. CONCLUSION: Systems that perform intelligent reasoning tasks on chemistry data require a diverse set of underlying computational utilities including algorithmic, statistical and logic-based tools. For the task of automatic structure-based classification of chemical entities, essential to managing the vast swathes of chemical data being brought online, systems which are capable of hybrid reasoning combining several different approaches are crucial. We provide a thorough review of the available tools and methodologies, and identify areas of open research. More... »

PAGES

8-8

References to SciGraph publications

  • 2000-05. Gene Ontology: tool for the unification of biology in NATURE GENETICS
  • 2010. Integrative Information Management for Systems Biology in DATA INTEGRATION IN THE LIFE SCIENCES
  • 2012. Modelling Structured Domains Using Description Graphs and Logic Programming in THE SEMANTIC WEB: RESEARCH AND APPLICATIONS
  • 2009-12-17. The PubChem chemical structure sketcher in JOURNAL OF CHEMINFORMATICS
  • 2010-06-29. BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models in BMC SYSTEMS BIOLOGY
  • 2004-01-01. Ontologies in Bioinformatics and Systems Biology in ARTIFICIAL INTELLIGENCE METHODS AND TOOLS FOR SYSTEMS BIOLOGY
  • 2011-06-24. BioAssay Ontology (BAO): a semantic description of bioassays and high-throughput screening results in BMC BIOINFORMATICS
  • 2010-06-22. Modeling biomedical experimental processes with OBI in JOURNAL OF BIOMEDICAL SEMANTICS
  • 1965-01. Medical Subject Headings in NATURE
  • 2011-07-26. Prototype semantic infrastructure for automated small molecule classification and annotation in lipidomics in BMC BIOINFORMATICS
  • 2010-02. Ontology engineering in NATURE BIOTECHNOLOGY
  • 2012-01-06. Self-organizing ontology of biochemically relevant small molecules in BMC BIOINFORMATICS
  • 2006. High-Throughput Identification of Chemistry in Life Science Texts in COMPUTATIONAL LIFE SCIENCES II
  • 2008. OWL Datatypes: Design and Implementation in THE SEMANTIC WEB - ISWC 2008
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1758-2946-4-8

    DOI

    http://dx.doi.org/10.1186/1758-2946-4-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1003671218

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/22480202


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Macromolecular and Materials Chemistry", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.8591.5", 
              "name": [
                "Cheminformatics and Metabolism, European Bioinformatics Institute, Hinxton, UK", 
                "Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hastings", 
            "givenName": "Janna", 
            "id": "sg:person.0606506716.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606506716.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science, University of Oxford, Oxford, UK", 
              "id": "http://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Department of Computer Science, University of Oxford, Oxford, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Magka", 
            "givenName": "Despoina", 
            "id": "sg:person.0641311611.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641311611.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Royal Society of Chemistry, Cambridge, UK", 
              "id": "http://www.grid.ac/institutes/grid.431456.1", 
              "name": [
                "Royal Society of Chemistry, Cambridge, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Batchelor", 
            "givenName": "Colin", 
            "id": "sg:person.0755540211.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755540211.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "ETH, Z\u00fcrich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "Cheminformatics and Metabolism, European Bioinformatics Institute, Hinxton, UK", 
                "ETH, Z\u00fcrich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Duan", 
            "givenName": "Lian", 
            "id": "sg:person.01071766611.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071766611.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Computer Science, University of Manchester, Manchester, UK", 
              "id": "http://www.grid.ac/institutes/grid.5379.8", 
              "name": [
                "School of Computer Science, University of Manchester, Manchester, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stevens", 
            "givenName": "Robert", 
            "id": "sg:person.0653547307.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653547307.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cheminformatics and Metabolism, European Bioinformatics Institute, Hinxton, UK", 
              "id": "http://www.grid.ac/institutes/grid.225360.0", 
              "name": [
                "Cheminformatics and Metabolism, European Bioinformatics Institute, Hinxton, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ennis", 
            "givenName": "Marcus", 
            "id": "sg:person.01157704762.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157704762.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cheminformatics and Metabolism, European Bioinformatics Institute, Hinxton, UK", 
              "id": "http://www.grid.ac/institutes/grid.225360.0", 
              "name": [
                "Cheminformatics and Metabolism, European Bioinformatics Institute, Hinxton, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Steinbeck", 
            "givenName": "Christoph", 
            "id": "sg:person.012610137527.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012610137527.56"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1752-0509-4-92", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041647661", 
              "https://doi.org/10.1186/1752-0509-4-92"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-30284-8_29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015468013", 
              "https://doi.org/10.1007/978-3-642-30284-8_29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11875741_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002525704", 
              "https://doi.org/10.1007/11875741_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2041-1480-1-s1-s7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036820478", 
              "https://doi.org/10.1186/2041-1480-1-s1-s7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0210-128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001668274", 
              "https://doi.org/10.1038/nbt0210-128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-13-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000038838", 
              "https://doi.org/10.1186/1471-2105-13-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-88564-1_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038590901", 
              "https://doi.org/10.1007/978-3-540-88564-1_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/205236a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040043378", 
              "https://doi.org/10.1038/205236a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029431299", 
              "https://doi.org/10.1186/1471-2105-12-303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4020-5811-0_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002662487", 
              "https://doi.org/10.1007/978-1-4020-5811-0_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/75556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044135237", 
              "https://doi.org/10.1038/75556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15120-0_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037381047", 
              "https://doi.org/10.1007/978-3-642-15120-0_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046673090", 
              "https://doi.org/10.1186/1471-2105-12-257"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1758-2946-1-20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034939685", 
              "https://doi.org/10.1186/1758-2946-1-20"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-04-05", 
        "datePublishedReg": "2012-04-05", 
        "description": "BACKGROUND: Recent years have seen an explosion in the availability of data in the chemistry domain. With this information explosion, however, retrieving relevant results from the available information, and organising those results, become even harder problems. Computational processing is essential to filter and organise the available resources so as to better facilitate the work of scientists. Ontologies encode expert domain knowledge in a hierarchically organised machine-processable format. One such ontology for the chemical domain is ChEBI. ChEBI provides a classification of chemicals based on their structural features and a role or activity-based classification. An example of a structure-based class is 'pentacyclic compound' (compounds containing five-ring structures), while an example of a role-based class is 'analgesic', since many different chemicals can act as analgesics without sharing structural features. Structure-based classification in chemistry exploits elegant regularities and symmetries in the underlying chemical domain. As yet, there has been neither a systematic analysis of the types of structural classification in use in chemistry nor a comparison to the capabilities of available technologies.\nRESULTS: We analyze the different categories of structural classes in chemistry, presenting a list of patterns for features found in class definitions. We compare these patterns of class definition to tools which allow for automation of hierarchy construction within cheminformatics and within logic-based ontology technology, going into detail in the latter case with respect to the expressive capabilities of the Web Ontology Language and recent extensions for modelling structured objects. Finally we discuss the relationships and interactions between cheminformatics approaches and logic-based approaches.\nCONCLUSION: Systems that perform intelligent reasoning tasks on chemistry data require a diverse set of underlying computational utilities including algorithmic, statistical and logic-based tools. For the task of automatic structure-based classification of chemical entities, essential to managing the vast swathes of chemical data being brought online, systems which are capable of hybrid reasoning combining several different approaches are crucial. We provide a thorough review of the available tools and methodologies, and identify areas of open research.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/1758-2946-4-8", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2764688", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1042252", 
            "issn": [
              "1758-2946"
            ], 
            "name": "Journal of Cheminformatics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "keywords": [
          "chemical domain", 
          "structural features", 
          "cheminformatics approaches", 
          "structure-based classification", 
          "pentacyclic compounds", 
          "chemical entities", 
          "chemistry", 
          "structure-based classes", 
          "different chemical", 
          "chemistry domain", 
          "structural classes", 
          "chemistry data", 
          "chemical data", 
          "chemicals", 
          "ChEBI", 
          "classification of chemicals", 
          "cheminformatics", 
          "compounds", 
          "structural classification", 
          "latter case", 
          "diverse set", 
          "logic-based tools", 
          "list of patterns", 
          "interaction", 
          "capability", 
          "symmetry", 
          "class", 
          "available technologies", 
          "recent years", 
          "system", 
          "relevant results", 
          "different approaches", 
          "work", 
          "detail", 
          "example", 
          "technology", 
          "recent extension", 
          "systematic analysis", 
          "approach", 
          "results", 
          "features", 
          "tool", 
          "analysis", 
          "respect", 
          "methodology", 
          "scientists", 
          "types", 
          "utility", 
          "use", 
          "comparison", 
          "class definitions", 
          "review", 
          "processing", 
          "machine-processable format", 
          "construction", 
          "Web Ontology Language", 
          "domain", 
          "expert domain knowledge", 
          "explosion", 
          "logic-based approach", 
          "data", 
          "area", 
          "regularity", 
          "ontology technology", 
          "Ontology Language", 
          "domain knowledge", 
          "hybrid reasoning", 
          "such ontologies", 
          "available information", 
          "structured objects", 
          "role", 
          "information explosion", 
          "hard problem", 
          "computational processing", 
          "availability of data", 
          "expressive capabilities", 
          "open research", 
          "hierarchy construction", 
          "computational utility", 
          "entities", 
          "patterns", 
          "ontology", 
          "available tools", 
          "reasoning tasks", 
          "thorough review", 
          "available resources", 
          "format", 
          "automation", 
          "availability", 
          "classification", 
          "different categories", 
          "relationship", 
          "information", 
          "task", 
          "set", 
          "cases", 
          "research", 
          "filter", 
          "extension", 
          "reasoning", 
          "work of scientists", 
          "analgesics", 
          "language", 
          "objects", 
          "knowledge", 
          "resources", 
          "definition", 
          "swathes", 
          "vast swathes", 
          "list", 
          "problem", 
          "years", 
          "categories", 
          "retrieving relevant results", 
          "activity-based classification", 
          "role-based class", 
          "chemistry exploits elegant regularities", 
          "exploits elegant regularities", 
          "elegant regularities", 
          "underlying chemical domain", 
          "logic-based ontology technology", 
          "intelligent reasoning tasks", 
          "automatic structure-based classification"
        ], 
        "name": "Structure-based classification and ontology in chemistry", 
        "pagination": "8-8", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1003671218"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1758-2946-4-8"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "22480202"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1758-2946-4-8", 
          "https://app.dimensions.ai/details/publication/pub.1003671218"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_568.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/1758-2946-4-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1758-2946-4-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1758-2946-4-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1758-2946-4-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1758-2946-4-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    301 TRIPLES      22 PREDICATES      163 URIs      141 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1758-2946-4-8 schema:about anzsrc-for:03
    2 anzsrc-for:0303
    3 schema:author Na5b293ad9c834caba5137eb518574170
    4 schema:citation sg:pub.10.1007/11875741_11
    5 sg:pub.10.1007/978-1-4020-5811-0_8
    6 sg:pub.10.1007/978-3-540-88564-1_20
    7 sg:pub.10.1007/978-3-642-15120-0_13
    8 sg:pub.10.1007/978-3-642-30284-8_29
    9 sg:pub.10.1038/205236a0
    10 sg:pub.10.1038/75556
    11 sg:pub.10.1038/nbt0210-128
    12 sg:pub.10.1186/1471-2105-12-257
    13 sg:pub.10.1186/1471-2105-12-303
    14 sg:pub.10.1186/1471-2105-13-3
    15 sg:pub.10.1186/1752-0509-4-92
    16 sg:pub.10.1186/1758-2946-1-20
    17 sg:pub.10.1186/2041-1480-1-s1-s7
    18 schema:datePublished 2012-04-05
    19 schema:datePublishedReg 2012-04-05
    20 schema:description BACKGROUND: Recent years have seen an explosion in the availability of data in the chemistry domain. With this information explosion, however, retrieving relevant results from the available information, and organising those results, become even harder problems. Computational processing is essential to filter and organise the available resources so as to better facilitate the work of scientists. Ontologies encode expert domain knowledge in a hierarchically organised machine-processable format. One such ontology for the chemical domain is ChEBI. ChEBI provides a classification of chemicals based on their structural features and a role or activity-based classification. An example of a structure-based class is 'pentacyclic compound' (compounds containing five-ring structures), while an example of a role-based class is 'analgesic', since many different chemicals can act as analgesics without sharing structural features. Structure-based classification in chemistry exploits elegant regularities and symmetries in the underlying chemical domain. As yet, there has been neither a systematic analysis of the types of structural classification in use in chemistry nor a comparison to the capabilities of available technologies. RESULTS: We analyze the different categories of structural classes in chemistry, presenting a list of patterns for features found in class definitions. We compare these patterns of class definition to tools which allow for automation of hierarchy construction within cheminformatics and within logic-based ontology technology, going into detail in the latter case with respect to the expressive capabilities of the Web Ontology Language and recent extensions for modelling structured objects. Finally we discuss the relationships and interactions between cheminformatics approaches and logic-based approaches. CONCLUSION: Systems that perform intelligent reasoning tasks on chemistry data require a diverse set of underlying computational utilities including algorithmic, statistical and logic-based tools. For the task of automatic structure-based classification of chemical entities, essential to managing the vast swathes of chemical data being brought online, systems which are capable of hybrid reasoning combining several different approaches are crucial. We provide a thorough review of the available tools and methodologies, and identify areas of open research.
    21 schema:genre article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree true
    24 schema:isPartOf N0d568d52767147979e5431981dc3984b
    25 N800876de3a5c4bcaa27f2525e1dfb2d0
    26 sg:journal.1042252
    27 schema:keywords ChEBI
    28 Ontology Language
    29 Web Ontology Language
    30 activity-based classification
    31 analgesics
    32 analysis
    33 approach
    34 area
    35 automatic structure-based classification
    36 automation
    37 availability
    38 availability of data
    39 available information
    40 available resources
    41 available technologies
    42 available tools
    43 capability
    44 cases
    45 categories
    46 chemical data
    47 chemical domain
    48 chemical entities
    49 chemicals
    50 cheminformatics
    51 cheminformatics approaches
    52 chemistry
    53 chemistry data
    54 chemistry domain
    55 chemistry exploits elegant regularities
    56 class
    57 class definitions
    58 classification
    59 classification of chemicals
    60 comparison
    61 compounds
    62 computational processing
    63 computational utility
    64 construction
    65 data
    66 definition
    67 detail
    68 different approaches
    69 different categories
    70 different chemical
    71 diverse set
    72 domain
    73 domain knowledge
    74 elegant regularities
    75 entities
    76 example
    77 expert domain knowledge
    78 exploits elegant regularities
    79 explosion
    80 expressive capabilities
    81 extension
    82 features
    83 filter
    84 format
    85 hard problem
    86 hierarchy construction
    87 hybrid reasoning
    88 information
    89 information explosion
    90 intelligent reasoning tasks
    91 interaction
    92 knowledge
    93 language
    94 latter case
    95 list
    96 list of patterns
    97 logic-based approach
    98 logic-based ontology technology
    99 logic-based tools
    100 machine-processable format
    101 methodology
    102 objects
    103 ontology
    104 ontology technology
    105 open research
    106 patterns
    107 pentacyclic compounds
    108 problem
    109 processing
    110 reasoning
    111 reasoning tasks
    112 recent extension
    113 recent years
    114 regularity
    115 relationship
    116 relevant results
    117 research
    118 resources
    119 respect
    120 results
    121 retrieving relevant results
    122 review
    123 role
    124 role-based class
    125 scientists
    126 set
    127 structural classes
    128 structural classification
    129 structural features
    130 structure-based classes
    131 structure-based classification
    132 structured objects
    133 such ontologies
    134 swathes
    135 symmetry
    136 system
    137 systematic analysis
    138 task
    139 technology
    140 thorough review
    141 tool
    142 types
    143 underlying chemical domain
    144 use
    145 utility
    146 vast swathes
    147 work
    148 work of scientists
    149 years
    150 schema:name Structure-based classification and ontology in chemistry
    151 schema:pagination 8-8
    152 schema:productId N3cde279350b64141820582d1672c3e3b
    153 N9eb8cd8041ee47fb95c1536a8374d4e9
    154 Na9e2dc47316c40bab3a47277c1633e7b
    155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003671218
    156 https://doi.org/10.1186/1758-2946-4-8
    157 schema:sdDatePublished 2021-12-01T19:27
    158 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    159 schema:sdPublisher N873560056a7d41f398dc4e4edc0deaff
    160 schema:url https://doi.org/10.1186/1758-2946-4-8
    161 sgo:license sg:explorer/license/
    162 sgo:sdDataset articles
    163 rdf:type schema:ScholarlyArticle
    164 N0d568d52767147979e5431981dc3984b schema:volumeNumber 4
    165 rdf:type schema:PublicationVolume
    166 N20b8b738369a4974bee484b5056b4be2 rdf:first sg:person.01071766611.70
    167 rdf:rest N92ddc8350b844454a9d2889d8b35a662
    168 N3660ecf0a9294669be09d5af897f7099 rdf:first sg:person.012610137527.56
    169 rdf:rest rdf:nil
    170 N3cde279350b64141820582d1672c3e3b schema:name dimensions_id
    171 schema:value pub.1003671218
    172 rdf:type schema:PropertyValue
    173 N5f04af8abbbe4d53a5b48ffad1f1f331 rdf:first sg:person.0641311611.59
    174 rdf:rest Nddb69f2e94954cea919491c5cd385c6e
    175 N800876de3a5c4bcaa27f2525e1dfb2d0 schema:issueNumber 1
    176 rdf:type schema:PublicationIssue
    177 N873560056a7d41f398dc4e4edc0deaff schema:name Springer Nature - SN SciGraph project
    178 rdf:type schema:Organization
    179 N92ddc8350b844454a9d2889d8b35a662 rdf:first sg:person.0653547307.62
    180 rdf:rest Nc638d548f387405facefc94139792227
    181 N9eb8cd8041ee47fb95c1536a8374d4e9 schema:name pubmed_id
    182 schema:value 22480202
    183 rdf:type schema:PropertyValue
    184 Na5b293ad9c834caba5137eb518574170 rdf:first sg:person.0606506716.14
    185 rdf:rest N5f04af8abbbe4d53a5b48ffad1f1f331
    186 Na9e2dc47316c40bab3a47277c1633e7b schema:name doi
    187 schema:value 10.1186/1758-2946-4-8
    188 rdf:type schema:PropertyValue
    189 Nc638d548f387405facefc94139792227 rdf:first sg:person.01157704762.78
    190 rdf:rest N3660ecf0a9294669be09d5af897f7099
    191 Nddb69f2e94954cea919491c5cd385c6e rdf:first sg:person.0755540211.17
    192 rdf:rest N20b8b738369a4974bee484b5056b4be2
    193 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    194 schema:name Chemical Sciences
    195 rdf:type schema:DefinedTerm
    196 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
    197 schema:name Macromolecular and Materials Chemistry
    198 rdf:type schema:DefinedTerm
    199 sg:grant.2764688 http://pending.schema.org/fundedItem sg:pub.10.1186/1758-2946-4-8
    200 rdf:type schema:MonetaryGrant
    201 sg:journal.1042252 schema:issn 1758-2946
    202 schema:name Journal of Cheminformatics
    203 schema:publisher Springer Nature
    204 rdf:type schema:Periodical
    205 sg:person.01071766611.70 schema:affiliation grid-institutes:grid.5801.c
    206 schema:familyName Duan
    207 schema:givenName Lian
    208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071766611.70
    209 rdf:type schema:Person
    210 sg:person.01157704762.78 schema:affiliation grid-institutes:grid.225360.0
    211 schema:familyName Ennis
    212 schema:givenName Marcus
    213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157704762.78
    214 rdf:type schema:Person
    215 sg:person.012610137527.56 schema:affiliation grid-institutes:grid.225360.0
    216 schema:familyName Steinbeck
    217 schema:givenName Christoph
    218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012610137527.56
    219 rdf:type schema:Person
    220 sg:person.0606506716.14 schema:affiliation grid-institutes:grid.8591.5
    221 schema:familyName Hastings
    222 schema:givenName Janna
    223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606506716.14
    224 rdf:type schema:Person
    225 sg:person.0641311611.59 schema:affiliation grid-institutes:grid.4991.5
    226 schema:familyName Magka
    227 schema:givenName Despoina
    228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641311611.59
    229 rdf:type schema:Person
    230 sg:person.0653547307.62 schema:affiliation grid-institutes:grid.5379.8
    231 schema:familyName Stevens
    232 schema:givenName Robert
    233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653547307.62
    234 rdf:type schema:Person
    235 sg:person.0755540211.17 schema:affiliation grid-institutes:grid.431456.1
    236 schema:familyName Batchelor
    237 schema:givenName Colin
    238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755540211.17
    239 rdf:type schema:Person
    240 sg:pub.10.1007/11875741_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002525704
    241 https://doi.org/10.1007/11875741_11
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1007/978-1-4020-5811-0_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002662487
    244 https://doi.org/10.1007/978-1-4020-5811-0_8
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1007/978-3-540-88564-1_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038590901
    247 https://doi.org/10.1007/978-3-540-88564-1_20
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1007/978-3-642-15120-0_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037381047
    250 https://doi.org/10.1007/978-3-642-15120-0_13
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1007/978-3-642-30284-8_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015468013
    253 https://doi.org/10.1007/978-3-642-30284-8_29
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1038/205236a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040043378
    256 https://doi.org/10.1038/205236a0
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
    259 https://doi.org/10.1038/75556
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1038/nbt0210-128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001668274
    262 https://doi.org/10.1038/nbt0210-128
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1186/1471-2105-12-257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046673090
    265 https://doi.org/10.1186/1471-2105-12-257
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1186/1471-2105-12-303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029431299
    268 https://doi.org/10.1186/1471-2105-12-303
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1186/1471-2105-13-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000038838
    271 https://doi.org/10.1186/1471-2105-13-3
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1186/1752-0509-4-92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041647661
    274 https://doi.org/10.1186/1752-0509-4-92
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1186/1758-2946-1-20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034939685
    277 https://doi.org/10.1186/1758-2946-1-20
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1186/2041-1480-1-s1-s7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036820478
    280 https://doi.org/10.1186/2041-1480-1-s1-s7
    281 rdf:type schema:CreativeWork
    282 grid-institutes:grid.225360.0 schema:alternateName Cheminformatics and Metabolism, European Bioinformatics Institute, Hinxton, UK
    283 schema:name Cheminformatics and Metabolism, European Bioinformatics Institute, Hinxton, UK
    284 rdf:type schema:Organization
    285 grid-institutes:grid.431456.1 schema:alternateName Royal Society of Chemistry, Cambridge, UK
    286 schema:name Royal Society of Chemistry, Cambridge, UK
    287 rdf:type schema:Organization
    288 grid-institutes:grid.4991.5 schema:alternateName Department of Computer Science, University of Oxford, Oxford, UK
    289 schema:name Department of Computer Science, University of Oxford, Oxford, UK
    290 rdf:type schema:Organization
    291 grid-institutes:grid.5379.8 schema:alternateName School of Computer Science, University of Manchester, Manchester, UK
    292 schema:name School of Computer Science, University of Manchester, Manchester, UK
    293 rdf:type schema:Organization
    294 grid-institutes:grid.5801.c schema:alternateName ETH, Zürich, Switzerland
    295 schema:name Cheminformatics and Metabolism, European Bioinformatics Institute, Hinxton, UK
    296 ETH, Zürich, Switzerland
    297 rdf:type schema:Organization
    298 grid-institutes:grid.8591.5 schema:alternateName Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
    299 schema:name Cheminformatics and Metabolism, European Bioinformatics Institute, Hinxton, UK
    300 Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
    301 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...