New developments on the cheminformatics open workflow environment CDK-Taverna View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Andreas Truszkowski, Kalai Vanii Jayaseelan, Stefan Neumann, Egon L Willighagen, Achim Zielesny, Christoph Steinbeck

ABSTRACT

BACKGROUND: The computational processing and analysis of small molecules is at heart of cheminformatics and structural bioinformatics and their application in e.g. metabolomics or drug discovery. Pipelining or workflow tools allow for the Lego™-like, graphical assembly of I/O modules and algorithms into a complex workflow which can be easily deployed, modified and tested without the hassle of implementing it into a monolithic application. The CDK-Taverna project aims at building a free open-source cheminformatics pipelining solution through combination of different open-source projects such as Taverna, the Chemistry Development Kit (CDK) or the Waikato Environment for Knowledge Analysis (WEKA). A first integrated version 1.0 of CDK-Taverna was recently released to the public. RESULTS: The CDK-Taverna project was migrated to the most up-to-date versions of its foundational software libraries with a complete re-engineering of its worker's architecture (version 2.0). 64-bit computing and multi-core usage by paralleled threads are now supported to allow for fast in-memory processing and analysis of large sets of molecules. Earlier deficiencies like workarounds for iterative data reading are removed. The combinatorial chemistry related reaction enumeration features are considerably enhanced. Additional functionality for calculating a natural product likeness score for small molecules is implemented to identify possible drug candidates. Finally the data analysis capabilities are extended with new workers that provide access to the open-source WEKA library for clustering and machine learning as well as training and test set partitioning. The new features are outlined with usage scenarios. CONCLUSIONS: CDK-Taverna 2.0 as an open-source cheminformatics workflow solution matured to become a freely available and increasingly powerful tool for the biosciences. The combination of the new CDK-Taverna worker family with the already available workflows developed by a lively Taverna community and published on myexperiment.org enables molecular scientists to quickly calculate, process and analyse molecular data as typically found in e.g. today's systems biology scenarios. More... »

PAGES

54

References to SciGraph publications

  • 2010. Taverna, Reloaded in SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT
  • 2006-08. Cheminformatics analysis and learning in a data pipelining environment in MOLECULAR DIVERSITY
  • 2010-12. CDK-Taverna: an open workflow environment for cheminformatics in BMC BIOINFORMATICS
  • 2007. Taverna/myGrid: Aligning a Workflow System with the Life Sciences Community in WORKFLOWS FOR E-SCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1758-2946-3-54

    DOI

    http://dx.doi.org/10.1186/1758-2946-3-54

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1047944548

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/22166170


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Institute for Bioinformatics and Cheminformatics, University of Applied Sciences of Gelsenkirchen, Recklinghausen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Truszkowski", 
            "givenName": "Andreas", 
            "id": "sg:person.01156445154.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156445154.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "European Bioinformatics Institute", 
              "id": "https://www.grid.ac/institutes/grid.225360.0", 
              "name": [
                "Chemoinformatics and Metabolism, European Bioinformatics Institute (EBI), Cambridge, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jayaseelan", 
            "givenName": "Kalai Vanii", 
            "id": "sg:person.01224560354.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224560354.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "GNWI - Gesellschaft fuer naturwissenschaftliche Informatik mbH, Oer-Erkenschwick, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Neumann", 
            "givenName": "Stefan", 
            "id": "sg:person.01272673554.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272673554.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Karolinska Institute", 
              "id": "https://www.grid.ac/institutes/grid.4714.6", 
              "name": [
                "Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Willighagen", 
            "givenName": "Egon L", 
            "id": "sg:person.01025257214.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025257214.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Institute for Bioinformatics and Cheminformatics, University of Applied Sciences of Gelsenkirchen, Recklinghausen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zielesny", 
            "givenName": "Achim", 
            "id": "sg:person.0615402654.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615402654.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "European Bioinformatics Institute", 
              "id": "https://www.grid.ac/institutes/grid.225360.0", 
              "name": [
                "Chemoinformatics and Metabolism, European Bioinformatics Institute (EBI), Cambridge, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Steinbeck", 
            "givenName": "Christoph", 
            "id": "sg:person.012610137527.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012610137527.56"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-84628-757-2_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002882600", 
              "https://doi.org/10.1007/978-1-84628-757-2_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11030-006-9041-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019183848", 
              "https://doi.org/10.1007/s11030-006-9041-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1656274.1656278", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028526411"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bth361", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029467065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.drudis.2008.10.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031347841"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ci025584y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033183422"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ci025584y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033183422"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041461109", 
              "https://doi.org/10.1186/1471-2105-11-159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-13818-8_33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046014147", 
              "https://doi.org/10.1007/978-3-642-13818-8_33"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-13818-8_33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046014147", 
              "https://doi.org/10.1007/978-3-642-13818-8_33"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ci0341823", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055401692"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ci0341823", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055401692"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ci700286x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055404371"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ci700286x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055404371"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/moor.10.2.180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064722675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2174/138161206777585274", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069165901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077638299", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-12", 
        "datePublishedReg": "2011-12-01", 
        "description": "BACKGROUND: The computational processing and analysis of small molecules is at heart of cheminformatics and structural bioinformatics and their application in e.g. metabolomics or drug discovery. Pipelining or workflow tools allow for the Lego\u2122-like, graphical assembly of I/O modules and algorithms into a complex workflow which can be easily deployed, modified and tested without the hassle of implementing it into a monolithic application. The CDK-Taverna project aims at building a free open-source cheminformatics pipelining solution through combination of different open-source projects such as Taverna, the Chemistry Development Kit (CDK) or the Waikato Environment for Knowledge Analysis (WEKA). A first integrated version 1.0 of CDK-Taverna was recently released to the public.\nRESULTS: The CDK-Taverna project was migrated to the most up-to-date versions of its foundational software libraries with a complete re-engineering of its worker's architecture (version 2.0). 64-bit computing and multi-core usage by paralleled threads are now supported to allow for fast in-memory processing and analysis of large sets of molecules. Earlier deficiencies like workarounds for iterative data reading are removed. The combinatorial chemistry related reaction enumeration features are considerably enhanced. Additional functionality for calculating a natural product likeness score for small molecules is implemented to identify possible drug candidates. Finally the data analysis capabilities are extended with new workers that provide access to the open-source WEKA library for clustering and machine learning as well as training and test set partitioning. The new features are outlined with usage scenarios.\nCONCLUSIONS: CDK-Taverna 2.0 as an open-source cheminformatics workflow solution matured to become a freely available and increasingly powerful tool for the biosciences. The combination of the new CDK-Taverna worker family with the already available workflows developed by a lively Taverna community and published on myexperiment.org enables molecular scientists to quickly calculate, process and analyse molecular data as typically found in e.g. today's systems biology scenarios.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/1758-2946-3-54", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1042252", 
            "issn": [
              "1758-2946"
            ], 
            "name": "Journal of Cheminformatics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "name": "New developments on the cheminformatics open workflow environment CDK-Taverna", 
        "pagination": "54", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e46591435ccec37050178b05362d51fbcc7bc552435a3299a5faffcb89b70b9f"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "22166170"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101516718"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1758-2946-3-54"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1047944548"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1758-2946-3-54", 
          "https://app.dimensions.ai/details/publication/pub.1047944548"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:14", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000551.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2F1758-2946-3-54"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1758-2946-3-54'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1758-2946-3-54'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1758-2946-3-54'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1758-2946-3-54'


     

    This table displays all metadata directly associated to this object as RDF triples.

    154 TRIPLES      21 PREDICATES      42 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1758-2946-3-54 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N3dde61a748a54d699f6cd5d742a49a4e
    4 schema:citation sg:pub.10.1007/978-1-84628-757-2_19
    5 sg:pub.10.1007/978-3-642-13818-8_33
    6 sg:pub.10.1007/s11030-006-9041-5
    7 sg:pub.10.1186/1471-2105-11-159
    8 https://app.dimensions.ai/details/publication/pub.1077638299
    9 https://doi.org/10.1016/j.drudis.2008.10.011
    10 https://doi.org/10.1021/ci025584y
    11 https://doi.org/10.1021/ci0341823
    12 https://doi.org/10.1021/ci700286x
    13 https://doi.org/10.1093/bioinformatics/bth361
    14 https://doi.org/10.1145/1656274.1656278
    15 https://doi.org/10.1287/moor.10.2.180
    16 https://doi.org/10.2174/138161206777585274
    17 schema:datePublished 2011-12
    18 schema:datePublishedReg 2011-12-01
    19 schema:description BACKGROUND: The computational processing and analysis of small molecules is at heart of cheminformatics and structural bioinformatics and their application in e.g. metabolomics or drug discovery. Pipelining or workflow tools allow for the Lego™-like, graphical assembly of I/O modules and algorithms into a complex workflow which can be easily deployed, modified and tested without the hassle of implementing it into a monolithic application. The CDK-Taverna project aims at building a free open-source cheminformatics pipelining solution through combination of different open-source projects such as Taverna, the Chemistry Development Kit (CDK) or the Waikato Environment for Knowledge Analysis (WEKA). A first integrated version 1.0 of CDK-Taverna was recently released to the public. RESULTS: The CDK-Taverna project was migrated to the most up-to-date versions of its foundational software libraries with a complete re-engineering of its worker's architecture (version 2.0). 64-bit computing and multi-core usage by paralleled threads are now supported to allow for fast in-memory processing and analysis of large sets of molecules. Earlier deficiencies like workarounds for iterative data reading are removed. The combinatorial chemistry related reaction enumeration features are considerably enhanced. Additional functionality for calculating a natural product likeness score for small molecules is implemented to identify possible drug candidates. Finally the data analysis capabilities are extended with new workers that provide access to the open-source WEKA library for clustering and machine learning as well as training and test set partitioning. The new features are outlined with usage scenarios. CONCLUSIONS: CDK-Taverna 2.0 as an open-source cheminformatics workflow solution matured to become a freely available and increasingly powerful tool for the biosciences. The combination of the new CDK-Taverna worker family with the already available workflows developed by a lively Taverna community and published on myexperiment.org enables molecular scientists to quickly calculate, process and analyse molecular data as typically found in e.g. today's systems biology scenarios.
    20 schema:genre research_article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree true
    23 schema:isPartOf N0936f89801c042c6a378c7b7de5b22b3
    24 N65bd368ff25548a9b02d84beb0b65775
    25 sg:journal.1042252
    26 schema:name New developments on the cheminformatics open workflow environment CDK-Taverna
    27 schema:pagination 54
    28 schema:productId N2f6d453031f24368b727d986295cbaf6
    29 N478d22ab08df40fdaa65a4eaa8228a68
    30 N67b8d11bcaef4f2ebb549db85c8d5449
    31 Na6e33c5dc99c42789659d56a392435db
    32 Nb0f775d820444cd3b51f7ca3e703d80e
    33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047944548
    34 https://doi.org/10.1186/1758-2946-3-54
    35 schema:sdDatePublished 2019-04-11T01:14
    36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    37 schema:sdPublisher N077f3bce012b4ed2b489e0e4fe1346f4
    38 schema:url http://link.springer.com/10.1186%2F1758-2946-3-54
    39 sgo:license sg:explorer/license/
    40 sgo:sdDataset articles
    41 rdf:type schema:ScholarlyArticle
    42 N077f3bce012b4ed2b489e0e4fe1346f4 schema:name Springer Nature - SN SciGraph project
    43 rdf:type schema:Organization
    44 N0936f89801c042c6a378c7b7de5b22b3 schema:volumeNumber 3
    45 rdf:type schema:PublicationVolume
    46 N2f6d453031f24368b727d986295cbaf6 schema:name pubmed_id
    47 schema:value 22166170
    48 rdf:type schema:PropertyValue
    49 N3dde61a748a54d699f6cd5d742a49a4e rdf:first sg:person.01156445154.10
    50 rdf:rest Ndce6749194aa40c48aa18359aec5d65f
    51 N478d22ab08df40fdaa65a4eaa8228a68 schema:name doi
    52 schema:value 10.1186/1758-2946-3-54
    53 rdf:type schema:PropertyValue
    54 N4b90024233c04959aa39b9165fdb1682 schema:name Institute for Bioinformatics and Cheminformatics, University of Applied Sciences of Gelsenkirchen, Recklinghausen, Germany
    55 rdf:type schema:Organization
    56 N65bd368ff25548a9b02d84beb0b65775 schema:issueNumber 1
    57 rdf:type schema:PublicationIssue
    58 N67b8d11bcaef4f2ebb549db85c8d5449 schema:name dimensions_id
    59 schema:value pub.1047944548
    60 rdf:type schema:PropertyValue
    61 N79329e97b4d34f82bec0870353527ddf schema:name GNWI - Gesellschaft fuer naturwissenschaftliche Informatik mbH, Oer-Erkenschwick, Germany
    62 rdf:type schema:Organization
    63 Na6e33c5dc99c42789659d56a392435db schema:name readcube_id
    64 schema:value e46591435ccec37050178b05362d51fbcc7bc552435a3299a5faffcb89b70b9f
    65 rdf:type schema:PropertyValue
    66 Na9d0a93a58d34fb58e2dc75719f130e8 rdf:first sg:person.012610137527.56
    67 rdf:rest rdf:nil
    68 Nb0f775d820444cd3b51f7ca3e703d80e schema:name nlm_unique_id
    69 schema:value 101516718
    70 rdf:type schema:PropertyValue
    71 Nb9d322e0ce5e4cd89d6b00d13facec2f rdf:first sg:person.01025257214.29
    72 rdf:rest Nc36f376623bf4d7dac915a52af643264
    73 Nc36f376623bf4d7dac915a52af643264 rdf:first sg:person.0615402654.46
    74 rdf:rest Na9d0a93a58d34fb58e2dc75719f130e8
    75 Nd72d69b7f51644048e26429b3fa22f7b rdf:first sg:person.01272673554.14
    76 rdf:rest Nb9d322e0ce5e4cd89d6b00d13facec2f
    77 Ndce6749194aa40c48aa18359aec5d65f rdf:first sg:person.01224560354.22
    78 rdf:rest Nd72d69b7f51644048e26429b3fa22f7b
    79 Ndf6a282cb8c94385be8655ebf42c3ce6 schema:name Institute for Bioinformatics and Cheminformatics, University of Applied Sciences of Gelsenkirchen, Recklinghausen, Germany
    80 rdf:type schema:Organization
    81 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Information and Computing Sciences
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Artificial Intelligence and Image Processing
    86 rdf:type schema:DefinedTerm
    87 sg:journal.1042252 schema:issn 1758-2946
    88 schema:name Journal of Cheminformatics
    89 rdf:type schema:Periodical
    90 sg:person.01025257214.29 schema:affiliation https://www.grid.ac/institutes/grid.4714.6
    91 schema:familyName Willighagen
    92 schema:givenName Egon L
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025257214.29
    94 rdf:type schema:Person
    95 sg:person.01156445154.10 schema:affiliation Ndf6a282cb8c94385be8655ebf42c3ce6
    96 schema:familyName Truszkowski
    97 schema:givenName Andreas
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156445154.10
    99 rdf:type schema:Person
    100 sg:person.01224560354.22 schema:affiliation https://www.grid.ac/institutes/grid.225360.0
    101 schema:familyName Jayaseelan
    102 schema:givenName Kalai Vanii
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224560354.22
    104 rdf:type schema:Person
    105 sg:person.012610137527.56 schema:affiliation https://www.grid.ac/institutes/grid.225360.0
    106 schema:familyName Steinbeck
    107 schema:givenName Christoph
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012610137527.56
    109 rdf:type schema:Person
    110 sg:person.01272673554.14 schema:affiliation N79329e97b4d34f82bec0870353527ddf
    111 schema:familyName Neumann
    112 schema:givenName Stefan
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272673554.14
    114 rdf:type schema:Person
    115 sg:person.0615402654.46 schema:affiliation N4b90024233c04959aa39b9165fdb1682
    116 schema:familyName Zielesny
    117 schema:givenName Achim
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615402654.46
    119 rdf:type schema:Person
    120 sg:pub.10.1007/978-1-84628-757-2_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002882600
    121 https://doi.org/10.1007/978-1-84628-757-2_19
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/978-3-642-13818-8_33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046014147
    124 https://doi.org/10.1007/978-3-642-13818-8_33
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/s11030-006-9041-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019183848
    127 https://doi.org/10.1007/s11030-006-9041-5
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1186/1471-2105-11-159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041461109
    130 https://doi.org/10.1186/1471-2105-11-159
    131 rdf:type schema:CreativeWork
    132 https://app.dimensions.ai/details/publication/pub.1077638299 schema:CreativeWork
    133 https://doi.org/10.1016/j.drudis.2008.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031347841
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1021/ci025584y schema:sameAs https://app.dimensions.ai/details/publication/pub.1033183422
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1021/ci0341823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055401692
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1021/ci700286x schema:sameAs https://app.dimensions.ai/details/publication/pub.1055404371
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1093/bioinformatics/bth361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029467065
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1145/1656274.1656278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028526411
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1287/moor.10.2.180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064722675
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.2174/138161206777585274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069165901
    148 rdf:type schema:CreativeWork
    149 https://www.grid.ac/institutes/grid.225360.0 schema:alternateName European Bioinformatics Institute
    150 schema:name Chemoinformatics and Metabolism, European Bioinformatics Institute (EBI), Cambridge, UK
    151 rdf:type schema:Organization
    152 https://www.grid.ac/institutes/grid.4714.6 schema:alternateName Karolinska Institute
    153 schema:name Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
    154 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...