Pyrosequencing, a method approved to detect the two major EGFR mutations for anti EGFR therapy in NSCLC View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Sandrine Dufort, Marie-Jeanne Richard, Sylvie Lantuejoul, Florence de Fraipont

ABSTRACT

BACKGROUND: Epidermal Growth Factor Receptor (EGFR) mutations, especially in-frame deletions in exon 19 (ΔLRE) and a point mutation in exon 21 (L858R) predict gefitinib sensitivity in patients with non-small cell lung cancer. Several methods are currently described for their detection but the gold standard for tissue samples remains direct DNA sequencing, which requires samples containing at least 50% of tumor cells. METHODS: We designed a pyrosequencing assay based on nested PCR for the characterization of theses mutations on formalin-fixed and paraffin-embedded tumor tissue. RESULTS: This method is highly specific and permits precise characterization of all the exon 19 deletions. Its sensitivity is higher than that of "BigDye terminator" sequencing and enabled detection of 3 additional mutations in the 58 NSCLC tested. The concordance between the two methods was very good (97.4%). In the prospective analysis of 213 samples, 7 (3.3%) samples were not analyzed and EGFR mutations were detected in 18 (8.7%) patients. However, we observed a deficit of mutation detection when the samples were very poor in tumor cells. CONCLUSIONS: pyrosequencing is then a highly accurate method for detecting ΔLRE and L858R EGFR mutations in patients with NSCLC when the samples contain at least 20% of tumor cells. More... »

PAGES

57

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1756-9966-30-57

DOI

http://dx.doi.org/10.1186/1756-9966-30-57

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043539010

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21575212


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alleles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Non-Small-Cell Lung", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Exons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptor, Epidermal Growth Factor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Deletion", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut Albert Bonniot", 
          "id": "https://www.grid.ac/institutes/grid.418110.d", 
          "name": [
            "UM Biochimie des Cancers et Bioth\u00e9rapies, CHU Grenoble, Institut de Biologie et Pathologie, parvis Belledonne, 38 043, Grenoble, France", 
            "Centre de recherche INSERM/UJF U823, Institut Albert Bonniot, Rond-point de la Chantourne, La Tronche cedex 9, 38 709, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dufort", 
        "givenName": "Sandrine", 
        "id": "sg:person.0642416450.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642416450.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Albert Bonniot", 
          "id": "https://www.grid.ac/institutes/grid.418110.d", 
          "name": [
            "UM Biochimie des Cancers et Bioth\u00e9rapies, CHU Grenoble, Institut de Biologie et Pathologie, parvis Belledonne, 38 043, Grenoble, France", 
            "Centre de recherche INSERM/UJF U823, Institut Albert Bonniot, Rond-point de la Chantourne, La Tronche cedex 9, 38 709, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Richard", 
        "givenName": "Marie-Jeanne", 
        "id": "sg:person.013242257222.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013242257222.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre Hospitalier Universitaire de Grenoble", 
          "id": "https://www.grid.ac/institutes/grid.410529.b", 
          "name": [
            "Centre de recherche INSERM/UJF U823, Institut Albert Bonniot, Rond-point de la Chantourne, La Tronche cedex 9, 38 709, France", 
            "D\u00e9partement d'Anatomie et Cytologie Pathologiques, CHU Grenoble, Institut de Biologie et Pathologie, parvis Belledonne, 38 043, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lantuejoul", 
        "givenName": "Sylvie", 
        "id": "sg:person.01005323433.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005323433.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Albert Bonniot", 
          "id": "https://www.grid.ac/institutes/grid.418110.d", 
          "name": [
            "UM Biochimie des Cancers et Bioth\u00e9rapies, CHU Grenoble, Institut de Biologie et Pathologie, parvis Belledonne, 38 043, Grenoble, France", 
            "Centre de recherche INSERM/UJF U823, Institut Albert Bonniot, Rond-point de la Chantourne, La Tronche cedex 9, 38 709, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Fraipont", 
        "givenName": "Florence", 
        "id": "sg:person.01211636737.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211636737.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.0405220101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000546271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.01.0793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003116372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1513/pats.200809-107lc", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003782801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0004576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008066950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejme0905763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010923914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1349-7006.2006.00377.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011175383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.lungcan.2010.01.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015452600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1026090218031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017053676", 
          "https://doi.org/10.1023/a:1026090218031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.24746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022093875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.24746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022093875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2009.25.1637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023965473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-05-0331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028389586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/onc.2009.198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030987778", 
          "https://doi.org/10.1038/onc.2009.198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/onc.2009.198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030987778", 
          "https://doi.org/10.1038/onc.2009.198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-07-1387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031775125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2009.27.4365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034206013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10147-008-0772-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037715015", 
          "https://doi.org/10.1007/s10147-008-0772-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10147-008-0772-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037715015", 
          "https://doi.org/10.1007/s10147-008-0772-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-07-5207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040375956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/jto.0b013e318211dcee", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043559594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ab.2009.05.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047524596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-05-2324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052678238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.281.5375.363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062561814"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "BACKGROUND: Epidermal Growth Factor Receptor (EGFR) mutations, especially in-frame deletions in exon 19 (\u0394LRE) and a point mutation in exon 21 (L858R) predict gefitinib sensitivity in patients with non-small cell lung cancer. Several methods are currently described for their detection but the gold standard for tissue samples remains direct DNA sequencing, which requires samples containing at least 50% of tumor cells.\nMETHODS: We designed a pyrosequencing assay based on nested PCR for the characterization of theses mutations on formalin-fixed and paraffin-embedded tumor tissue.\nRESULTS: This method is highly specific and permits precise characterization of all the exon 19 deletions. Its sensitivity is higher than that of \"BigDye terminator\" sequencing and enabled detection of 3 additional mutations in the 58 NSCLC tested. The concordance between the two methods was very good (97.4%). In the prospective analysis of 213 samples, 7 (3.3%) samples were not analyzed and EGFR mutations were detected in 18 (8.7%) patients. However, we observed a deficit of mutation detection when the samples were very poor in tumor cells.\nCONCLUSIONS: pyrosequencing is then a highly accurate method for detecting \u0394LRE and L858R EGFR mutations in patients with NSCLC when the samples contain at least 20% of tumor cells.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1756-9966-30-57", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1094159", 
        "issn": [
          "0392-9078", 
          "1756-9966"
        ], 
        "name": "Journal of Experimental & Clinical Cancer Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "name": "Pyrosequencing, a method approved to detect the two major EGFR mutations for anti EGFR therapy in NSCLC", 
    "pagination": "57", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cf648dc8595b901e45154168074213941f26fc4597a209388ae21e5d18872b9d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21575212"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8308647"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1756-9966-30-57"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043539010"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1756-9966-30-57", 
      "https://app.dimensions.ai/details/publication/pub.1043539010"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1756-9966-30-57"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1756-9966-30-57'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1756-9966-30-57'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1756-9966-30-57'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1756-9966-30-57'


 

This table displays all metadata directly associated to this object as RDF triples.

206 TRIPLES      21 PREDICATES      61 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1756-9966-30-57 schema:about N010875f0f3474f539d064df2aaa516ed
2 N21392893ad5d40e8b56e3388a5480eac
3 N6c50f30e29294170a31d7dfb0ae1cc04
4 N7f374c1865514dd694f4d32fcd2528be
5 N9225b097f4d04af7b52d2caac4dc4ed2
6 N9d22baf71df842bb9a3f7f1a0cf10a4d
7 N9ecf35618ef14b37bac51bdc5506916e
8 Nacfc3830d10e44f09e390549c0314875
9 Nc1fc0c95e04741088d294e792cc8c1df
10 Nd64d16150bc14d9b990e390264b819d7
11 Neaf5c5c8887946f0918562c5b08db76f
12 Nee2bd64476554e53aeb03b278515d8dc
13 anzsrc-for:11
14 anzsrc-for:1112
15 schema:author N9748de4a1fb247d0a715e5a202eafcf0
16 schema:citation sg:pub.10.1007/s10147-008-0772-4
17 sg:pub.10.1023/a:1026090218031
18 sg:pub.10.1038/onc.2009.198
19 https://doi.org/10.1002/ijc.24746
20 https://doi.org/10.1016/j.ab.2009.05.027
21 https://doi.org/10.1016/j.lungcan.2010.01.017
22 https://doi.org/10.1056/nejme0905763
23 https://doi.org/10.1073/pnas.0405220101
24 https://doi.org/10.1097/jto.0b013e318211dcee
25 https://doi.org/10.1111/j.1349-7006.2006.00377.x
26 https://doi.org/10.1126/science.281.5375.363
27 https://doi.org/10.1158/0008-5472.can-05-0331
28 https://doi.org/10.1158/1078-0432.ccr-05-2324
29 https://doi.org/10.1158/1078-0432.ccr-07-1387
30 https://doi.org/10.1158/1078-0432.ccr-07-5207
31 https://doi.org/10.1200/jco.2005.01.0793
32 https://doi.org/10.1200/jco.2009.25.1637
33 https://doi.org/10.1200/jco.2009.27.4365
34 https://doi.org/10.1371/journal.pone.0004576
35 https://doi.org/10.1513/pats.200809-107lc
36 schema:datePublished 2011-12
37 schema:datePublishedReg 2011-12-01
38 schema:description BACKGROUND: Epidermal Growth Factor Receptor (EGFR) mutations, especially in-frame deletions in exon 19 (ΔLRE) and a point mutation in exon 21 (L858R) predict gefitinib sensitivity in patients with non-small cell lung cancer. Several methods are currently described for their detection but the gold standard for tissue samples remains direct DNA sequencing, which requires samples containing at least 50% of tumor cells. METHODS: We designed a pyrosequencing assay based on nested PCR for the characterization of theses mutations on formalin-fixed and paraffin-embedded tumor tissue. RESULTS: This method is highly specific and permits precise characterization of all the exon 19 deletions. Its sensitivity is higher than that of "BigDye terminator" sequencing and enabled detection of 3 additional mutations in the 58 NSCLC tested. The concordance between the two methods was very good (97.4%). In the prospective analysis of 213 samples, 7 (3.3%) samples were not analyzed and EGFR mutations were detected in 18 (8.7%) patients. However, we observed a deficit of mutation detection when the samples were very poor in tumor cells. CONCLUSIONS: pyrosequencing is then a highly accurate method for detecting ΔLRE and L858R EGFR mutations in patients with NSCLC when the samples contain at least 20% of tumor cells.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree true
42 schema:isPartOf N19c8f0d167784d81ab507f4b0ba45c11
43 N4d6c1935998a4208a2c920a9f626a807
44 sg:journal.1094159
45 schema:name Pyrosequencing, a method approved to detect the two major EGFR mutations for anti EGFR therapy in NSCLC
46 schema:pagination 57
47 schema:productId Nbde571d6d1f94dc09b77151338cf7fc2
48 Ncfa7d5d40d144b349c77eff93fba0bc0
49 Ndfb91edc5fc045888e2f6e53e48bbd7b
50 Ne6175728608a4164b52244929d4bf652
51 Nf450b26a8598489ebe80993a1f60d158
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043539010
53 https://doi.org/10.1186/1756-9966-30-57
54 schema:sdDatePublished 2019-04-10T23:25
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Nbe91835b5c094e338741cc382126cf95
57 schema:url http://link.springer.com/10.1186%2F1756-9966-30-57
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N010875f0f3474f539d064df2aaa516ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Male
63 rdf:type schema:DefinedTerm
64 N19c8f0d167784d81ab507f4b0ba45c11 schema:issueNumber 1
65 rdf:type schema:PublicationIssue
66 N21392893ad5d40e8b56e3388a5480eac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Receptor, Epidermal Growth Factor
68 rdf:type schema:DefinedTerm
69 N4d6c1935998a4208a2c920a9f626a807 schema:volumeNumber 30
70 rdf:type schema:PublicationVolume
71 N59d93611f3f144ce820b2dbe0f066eb4 rdf:first sg:person.013242257222.96
72 rdf:rest N91bf76b9b82541278659ba84facc81b3
73 N6c50f30e29294170a31d7dfb0ae1cc04 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Cell Line, Tumor
75 rdf:type schema:DefinedTerm
76 N7f374c1865514dd694f4d32fcd2528be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Exons
78 rdf:type schema:DefinedTerm
79 N91bf76b9b82541278659ba84facc81b3 rdf:first sg:person.01005323433.86
80 rdf:rest N9e498a2164df4f8da55793f3f6e19f8a
81 N9225b097f4d04af7b52d2caac4dc4ed2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Alleles
83 rdf:type schema:DefinedTerm
84 N9748de4a1fb247d0a715e5a202eafcf0 rdf:first sg:person.0642416450.37
85 rdf:rest N59d93611f3f144ce820b2dbe0f066eb4
86 N9d22baf71df842bb9a3f7f1a0cf10a4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Lung Neoplasms
88 rdf:type schema:DefinedTerm
89 N9e498a2164df4f8da55793f3f6e19f8a rdf:first sg:person.01211636737.68
90 rdf:rest rdf:nil
91 N9ecf35618ef14b37bac51bdc5506916e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Humans
93 rdf:type schema:DefinedTerm
94 Nacfc3830d10e44f09e390549c0314875 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Sequence Analysis, DNA
96 rdf:type schema:DefinedTerm
97 Nbde571d6d1f94dc09b77151338cf7fc2 schema:name dimensions_id
98 schema:value pub.1043539010
99 rdf:type schema:PropertyValue
100 Nbe91835b5c094e338741cc382126cf95 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 Nc1fc0c95e04741088d294e792cc8c1df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Mutation
104 rdf:type schema:DefinedTerm
105 Ncfa7d5d40d144b349c77eff93fba0bc0 schema:name nlm_unique_id
106 schema:value 8308647
107 rdf:type schema:PropertyValue
108 Nd64d16150bc14d9b990e390264b819d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Female
110 rdf:type schema:DefinedTerm
111 Ndfb91edc5fc045888e2f6e53e48bbd7b schema:name doi
112 schema:value 10.1186/1756-9966-30-57
113 rdf:type schema:PropertyValue
114 Ne6175728608a4164b52244929d4bf652 schema:name pubmed_id
115 schema:value 21575212
116 rdf:type schema:PropertyValue
117 Neaf5c5c8887946f0918562c5b08db76f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Sequence Deletion
119 rdf:type schema:DefinedTerm
120 Nee2bd64476554e53aeb03b278515d8dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Carcinoma, Non-Small-Cell Lung
122 rdf:type schema:DefinedTerm
123 Nf450b26a8598489ebe80993a1f60d158 schema:name readcube_id
124 schema:value cf648dc8595b901e45154168074213941f26fc4597a209388ae21e5d18872b9d
125 rdf:type schema:PropertyValue
126 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
127 schema:name Medical and Health Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
130 schema:name Oncology and Carcinogenesis
131 rdf:type schema:DefinedTerm
132 sg:journal.1094159 schema:issn 0392-9078
133 1756-9966
134 schema:name Journal of Experimental & Clinical Cancer Research
135 rdf:type schema:Periodical
136 sg:person.01005323433.86 schema:affiliation https://www.grid.ac/institutes/grid.410529.b
137 schema:familyName Lantuejoul
138 schema:givenName Sylvie
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005323433.86
140 rdf:type schema:Person
141 sg:person.01211636737.68 schema:affiliation https://www.grid.ac/institutes/grid.418110.d
142 schema:familyName de Fraipont
143 schema:givenName Florence
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211636737.68
145 rdf:type schema:Person
146 sg:person.013242257222.96 schema:affiliation https://www.grid.ac/institutes/grid.418110.d
147 schema:familyName Richard
148 schema:givenName Marie-Jeanne
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013242257222.96
150 rdf:type schema:Person
151 sg:person.0642416450.37 schema:affiliation https://www.grid.ac/institutes/grid.418110.d
152 schema:familyName Dufort
153 schema:givenName Sandrine
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642416450.37
155 rdf:type schema:Person
156 sg:pub.10.1007/s10147-008-0772-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037715015
157 https://doi.org/10.1007/s10147-008-0772-4
158 rdf:type schema:CreativeWork
159 sg:pub.10.1023/a:1026090218031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017053676
160 https://doi.org/10.1023/a:1026090218031
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/onc.2009.198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030987778
163 https://doi.org/10.1038/onc.2009.198
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1002/ijc.24746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022093875
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.ab.2009.05.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047524596
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.lungcan.2010.01.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015452600
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1056/nejme0905763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010923914
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1073/pnas.0405220101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000546271
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1097/jto.0b013e318211dcee schema:sameAs https://app.dimensions.ai/details/publication/pub.1043559594
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1111/j.1349-7006.2006.00377.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011175383
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1126/science.281.5375.363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062561814
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1158/0008-5472.can-05-0331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028389586
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1158/1078-0432.ccr-05-2324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052678238
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1158/1078-0432.ccr-07-1387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031775125
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1158/1078-0432.ccr-07-5207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040375956
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1200/jco.2005.01.0793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003116372
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1200/jco.2009.25.1637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023965473
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1200/jco.2009.27.4365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034206013
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1371/journal.pone.0004576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008066950
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1513/pats.200809-107lc schema:sameAs https://app.dimensions.ai/details/publication/pub.1003782801
198 rdf:type schema:CreativeWork
199 https://www.grid.ac/institutes/grid.410529.b schema:alternateName Centre Hospitalier Universitaire de Grenoble
200 schema:name Centre de recherche INSERM/UJF U823, Institut Albert Bonniot, Rond-point de la Chantourne, La Tronche cedex 9, 38 709, France
201 Département d'Anatomie et Cytologie Pathologiques, CHU Grenoble, Institut de Biologie et Pathologie, parvis Belledonne, 38 043, Grenoble, France
202 rdf:type schema:Organization
203 https://www.grid.ac/institutes/grid.418110.d schema:alternateName Institut Albert Bonniot
204 schema:name Centre de recherche INSERM/UJF U823, Institut Albert Bonniot, Rond-point de la Chantourne, La Tronche cedex 9, 38 709, France
205 UM Biochimie des Cancers et Biothérapies, CHU Grenoble, Institut de Biologie et Pathologie, parvis Belledonne, 38 043, Grenoble, France
206 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...