Pyrosequencing, a method approved to detect the two major EGFR mutations for anti EGFR therapy in NSCLC View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Sandrine Dufort, Marie-Jeanne Richard, Sylvie Lantuejoul, Florence de Fraipont

ABSTRACT

BACKGROUND: Epidermal Growth Factor Receptor (EGFR) mutations, especially in-frame deletions in exon 19 (ΔLRE) and a point mutation in exon 21 (L858R) predict gefitinib sensitivity in patients with non-small cell lung cancer. Several methods are currently described for their detection but the gold standard for tissue samples remains direct DNA sequencing, which requires samples containing at least 50% of tumor cells. METHODS: We designed a pyrosequencing assay based on nested PCR for the characterization of theses mutations on formalin-fixed and paraffin-embedded tumor tissue. RESULTS: This method is highly specific and permits precise characterization of all the exon 19 deletions. Its sensitivity is higher than that of "BigDye terminator" sequencing and enabled detection of 3 additional mutations in the 58 NSCLC tested. The concordance between the two methods was very good (97.4%). In the prospective analysis of 213 samples, 7 (3.3%) samples were not analyzed and EGFR mutations were detected in 18 (8.7%) patients. However, we observed a deficit of mutation detection when the samples were very poor in tumor cells. CONCLUSIONS: pyrosequencing is then a highly accurate method for detecting ΔLRE and L858R EGFR mutations in patients with NSCLC when the samples contain at least 20% of tumor cells. More... »

PAGES

57

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1756-9966-30-57

DOI

http://dx.doi.org/10.1186/1756-9966-30-57

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043539010

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21575212


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alleles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Non-Small-Cell Lung", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Exons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptor, Epidermal Growth Factor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Deletion", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut Albert Bonniot", 
          "id": "https://www.grid.ac/institutes/grid.418110.d", 
          "name": [
            "UM Biochimie des Cancers et Bioth\u00e9rapies, CHU Grenoble, Institut de Biologie et Pathologie, parvis Belledonne, 38 043, Grenoble, France", 
            "Centre de recherche INSERM/UJF U823, Institut Albert Bonniot, Rond-point de la Chantourne, La Tronche cedex 9, 38 709, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dufort", 
        "givenName": "Sandrine", 
        "id": "sg:person.0642416450.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642416450.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Albert Bonniot", 
          "id": "https://www.grid.ac/institutes/grid.418110.d", 
          "name": [
            "UM Biochimie des Cancers et Bioth\u00e9rapies, CHU Grenoble, Institut de Biologie et Pathologie, parvis Belledonne, 38 043, Grenoble, France", 
            "Centre de recherche INSERM/UJF U823, Institut Albert Bonniot, Rond-point de la Chantourne, La Tronche cedex 9, 38 709, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Richard", 
        "givenName": "Marie-Jeanne", 
        "id": "sg:person.013242257222.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013242257222.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre Hospitalier Universitaire de Grenoble", 
          "id": "https://www.grid.ac/institutes/grid.410529.b", 
          "name": [
            "Centre de recherche INSERM/UJF U823, Institut Albert Bonniot, Rond-point de la Chantourne, La Tronche cedex 9, 38 709, France", 
            "D\u00e9partement d'Anatomie et Cytologie Pathologiques, CHU Grenoble, Institut de Biologie et Pathologie, parvis Belledonne, 38 043, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lantuejoul", 
        "givenName": "Sylvie", 
        "id": "sg:person.01005323433.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005323433.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Albert Bonniot", 
          "id": "https://www.grid.ac/institutes/grid.418110.d", 
          "name": [
            "UM Biochimie des Cancers et Bioth\u00e9rapies, CHU Grenoble, Institut de Biologie et Pathologie, parvis Belledonne, 38 043, Grenoble, France", 
            "Centre de recherche INSERM/UJF U823, Institut Albert Bonniot, Rond-point de la Chantourne, La Tronche cedex 9, 38 709, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Fraipont", 
        "givenName": "Florence", 
        "id": "sg:person.01211636737.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211636737.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.0405220101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000546271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.01.0793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003116372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1513/pats.200809-107lc", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003782801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0004576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008066950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejme0905763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010923914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1349-7006.2006.00377.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011175383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.lungcan.2010.01.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015452600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1026090218031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017053676", 
          "https://doi.org/10.1023/a:1026090218031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.24746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022093875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.24746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022093875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2009.25.1637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023965473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-05-0331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028389586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/onc.2009.198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030987778", 
          "https://doi.org/10.1038/onc.2009.198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/onc.2009.198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030987778", 
          "https://doi.org/10.1038/onc.2009.198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-07-1387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031775125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2009.27.4365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034206013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10147-008-0772-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037715015", 
          "https://doi.org/10.1007/s10147-008-0772-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10147-008-0772-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037715015", 
          "https://doi.org/10.1007/s10147-008-0772-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-07-5207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040375956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/jto.0b013e318211dcee", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043559594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ab.2009.05.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047524596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-05-2324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052678238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.281.5375.363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062561814"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "BACKGROUND: Epidermal Growth Factor Receptor (EGFR) mutations, especially in-frame deletions in exon 19 (\u0394LRE) and a point mutation in exon 21 (L858R) predict gefitinib sensitivity in patients with non-small cell lung cancer. Several methods are currently described for their detection but the gold standard for tissue samples remains direct DNA sequencing, which requires samples containing at least 50% of tumor cells.\nMETHODS: We designed a pyrosequencing assay based on nested PCR for the characterization of theses mutations on formalin-fixed and paraffin-embedded tumor tissue.\nRESULTS: This method is highly specific and permits precise characterization of all the exon 19 deletions. Its sensitivity is higher than that of \"BigDye terminator\" sequencing and enabled detection of 3 additional mutations in the 58 NSCLC tested. The concordance between the two methods was very good (97.4%). In the prospective analysis of 213 samples, 7 (3.3%) samples were not analyzed and EGFR mutations were detected in 18 (8.7%) patients. However, we observed a deficit of mutation detection when the samples were very poor in tumor cells.\nCONCLUSIONS: pyrosequencing is then a highly accurate method for detecting \u0394LRE and L858R EGFR mutations in patients with NSCLC when the samples contain at least 20% of tumor cells.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1756-9966-30-57", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1094159", 
        "issn": [
          "0392-9078", 
          "1756-9966"
        ], 
        "name": "Journal of Experimental & Clinical Cancer Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "name": "Pyrosequencing, a method approved to detect the two major EGFR mutations for anti EGFR therapy in NSCLC", 
    "pagination": "57", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cf648dc8595b901e45154168074213941f26fc4597a209388ae21e5d18872b9d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21575212"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8308647"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1756-9966-30-57"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043539010"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1756-9966-30-57", 
      "https://app.dimensions.ai/details/publication/pub.1043539010"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1756-9966-30-57"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1756-9966-30-57'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1756-9966-30-57'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1756-9966-30-57'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1756-9966-30-57'


 

This table displays all metadata directly associated to this object as RDF triples.

206 TRIPLES      21 PREDICATES      61 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1756-9966-30-57 schema:about N05381112bda844e89595cf6cff4a219e
2 N080cf25bef96444cac87b23cc0ea896c
3 N1338a2ada7094f56850e0dbc15b08d8d
4 N3971a58ac113438e9b8a8f13464ab1d4
5 N3a5e6b64fe4c410cb76ae24ef097acc3
6 N3cf2ae9918894057945d950c14a3abc5
7 N9c18c9423d394ec79e34cff500fb5cda
8 N9da29c1500004b8e90ecff16752a84a4
9 N9fb91c549f8b43d7b25f64299bf5120a
10 Nb6ad1ab0e97b4adb9dfaed3cf61f4d80
11 Ndd5421b9f1a942fd898d782ac3b61050
12 Ne2008ee708ae410197e1e7ed4323d2b0
13 anzsrc-for:11
14 anzsrc-for:1112
15 schema:author N8d3a1dd5820c40a3a55ca2cdddd01abd
16 schema:citation sg:pub.10.1007/s10147-008-0772-4
17 sg:pub.10.1023/a:1026090218031
18 sg:pub.10.1038/onc.2009.198
19 https://doi.org/10.1002/ijc.24746
20 https://doi.org/10.1016/j.ab.2009.05.027
21 https://doi.org/10.1016/j.lungcan.2010.01.017
22 https://doi.org/10.1056/nejme0905763
23 https://doi.org/10.1073/pnas.0405220101
24 https://doi.org/10.1097/jto.0b013e318211dcee
25 https://doi.org/10.1111/j.1349-7006.2006.00377.x
26 https://doi.org/10.1126/science.281.5375.363
27 https://doi.org/10.1158/0008-5472.can-05-0331
28 https://doi.org/10.1158/1078-0432.ccr-05-2324
29 https://doi.org/10.1158/1078-0432.ccr-07-1387
30 https://doi.org/10.1158/1078-0432.ccr-07-5207
31 https://doi.org/10.1200/jco.2005.01.0793
32 https://doi.org/10.1200/jco.2009.25.1637
33 https://doi.org/10.1200/jco.2009.27.4365
34 https://doi.org/10.1371/journal.pone.0004576
35 https://doi.org/10.1513/pats.200809-107lc
36 schema:datePublished 2011-12
37 schema:datePublishedReg 2011-12-01
38 schema:description BACKGROUND: Epidermal Growth Factor Receptor (EGFR) mutations, especially in-frame deletions in exon 19 (ΔLRE) and a point mutation in exon 21 (L858R) predict gefitinib sensitivity in patients with non-small cell lung cancer. Several methods are currently described for their detection but the gold standard for tissue samples remains direct DNA sequencing, which requires samples containing at least 50% of tumor cells. METHODS: We designed a pyrosequencing assay based on nested PCR for the characterization of theses mutations on formalin-fixed and paraffin-embedded tumor tissue. RESULTS: This method is highly specific and permits precise characterization of all the exon 19 deletions. Its sensitivity is higher than that of "BigDye terminator" sequencing and enabled detection of 3 additional mutations in the 58 NSCLC tested. The concordance between the two methods was very good (97.4%). In the prospective analysis of 213 samples, 7 (3.3%) samples were not analyzed and EGFR mutations were detected in 18 (8.7%) patients. However, we observed a deficit of mutation detection when the samples were very poor in tumor cells. CONCLUSIONS: pyrosequencing is then a highly accurate method for detecting ΔLRE and L858R EGFR mutations in patients with NSCLC when the samples contain at least 20% of tumor cells.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree true
42 schema:isPartOf N5fa8a9423a6f42ebb6256a70497ce04a
43 Ndd987a4eea7d42b19d4ef042613fec81
44 sg:journal.1094159
45 schema:name Pyrosequencing, a method approved to detect the two major EGFR mutations for anti EGFR therapy in NSCLC
46 schema:pagination 57
47 schema:productId N3ac556146d384e93aa36e2ca5ef21914
48 N4359550a9c8545238ca96877d6710d23
49 N61cb4a389c864cafa4e466db079d1203
50 Nc5db625e404a46be866737b79c989c4d
51 Nfd67170c51ae4ee3983a942d6053aa62
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043539010
53 https://doi.org/10.1186/1756-9966-30-57
54 schema:sdDatePublished 2019-04-10T23:25
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N97c3f46818254e4ba75478e3cfe7a33b
57 schema:url http://link.springer.com/10.1186%2F1756-9966-30-57
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N05381112bda844e89595cf6cff4a219e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Sequence Analysis, DNA
63 rdf:type schema:DefinedTerm
64 N080cf25bef96444cac87b23cc0ea896c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Exons
66 rdf:type schema:DefinedTerm
67 N1338a2ada7094f56850e0dbc15b08d8d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Carcinoma, Non-Small-Cell Lung
69 rdf:type schema:DefinedTerm
70 N37df97eadfd14002b99b4e394082eaae rdf:first sg:person.01005323433.86
71 rdf:rest N44af1c096ef4431c9e3670a471fca423
72 N3971a58ac113438e9b8a8f13464ab1d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Female
74 rdf:type schema:DefinedTerm
75 N3a5e6b64fe4c410cb76ae24ef097acc3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Mutation
77 rdf:type schema:DefinedTerm
78 N3ac556146d384e93aa36e2ca5ef21914 schema:name readcube_id
79 schema:value cf648dc8595b901e45154168074213941f26fc4597a209388ae21e5d18872b9d
80 rdf:type schema:PropertyValue
81 N3cf2ae9918894057945d950c14a3abc5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Receptor, Epidermal Growth Factor
83 rdf:type schema:DefinedTerm
84 N4359550a9c8545238ca96877d6710d23 schema:name dimensions_id
85 schema:value pub.1043539010
86 rdf:type schema:PropertyValue
87 N44af1c096ef4431c9e3670a471fca423 rdf:first sg:person.01211636737.68
88 rdf:rest rdf:nil
89 N5fa8a9423a6f42ebb6256a70497ce04a schema:volumeNumber 30
90 rdf:type schema:PublicationVolume
91 N61cb4a389c864cafa4e466db079d1203 schema:name pubmed_id
92 schema:value 21575212
93 rdf:type schema:PropertyValue
94 N6a22bf44ef594ebaa9bbaff399825ab6 rdf:first sg:person.013242257222.96
95 rdf:rest N37df97eadfd14002b99b4e394082eaae
96 N8d3a1dd5820c40a3a55ca2cdddd01abd rdf:first sg:person.0642416450.37
97 rdf:rest N6a22bf44ef594ebaa9bbaff399825ab6
98 N97c3f46818254e4ba75478e3cfe7a33b schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 N9c18c9423d394ec79e34cff500fb5cda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Sequence Deletion
102 rdf:type schema:DefinedTerm
103 N9da29c1500004b8e90ecff16752a84a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Humans
105 rdf:type schema:DefinedTerm
106 N9fb91c549f8b43d7b25f64299bf5120a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Cell Line, Tumor
108 rdf:type schema:DefinedTerm
109 Nb6ad1ab0e97b4adb9dfaed3cf61f4d80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Male
111 rdf:type schema:DefinedTerm
112 Nc5db625e404a46be866737b79c989c4d schema:name doi
113 schema:value 10.1186/1756-9966-30-57
114 rdf:type schema:PropertyValue
115 Ndd5421b9f1a942fd898d782ac3b61050 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Lung Neoplasms
117 rdf:type schema:DefinedTerm
118 Ndd987a4eea7d42b19d4ef042613fec81 schema:issueNumber 1
119 rdf:type schema:PublicationIssue
120 Ne2008ee708ae410197e1e7ed4323d2b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Alleles
122 rdf:type schema:DefinedTerm
123 Nfd67170c51ae4ee3983a942d6053aa62 schema:name nlm_unique_id
124 schema:value 8308647
125 rdf:type schema:PropertyValue
126 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
127 schema:name Medical and Health Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
130 schema:name Oncology and Carcinogenesis
131 rdf:type schema:DefinedTerm
132 sg:journal.1094159 schema:issn 0392-9078
133 1756-9966
134 schema:name Journal of Experimental & Clinical Cancer Research
135 rdf:type schema:Periodical
136 sg:person.01005323433.86 schema:affiliation https://www.grid.ac/institutes/grid.410529.b
137 schema:familyName Lantuejoul
138 schema:givenName Sylvie
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005323433.86
140 rdf:type schema:Person
141 sg:person.01211636737.68 schema:affiliation https://www.grid.ac/institutes/grid.418110.d
142 schema:familyName de Fraipont
143 schema:givenName Florence
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211636737.68
145 rdf:type schema:Person
146 sg:person.013242257222.96 schema:affiliation https://www.grid.ac/institutes/grid.418110.d
147 schema:familyName Richard
148 schema:givenName Marie-Jeanne
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013242257222.96
150 rdf:type schema:Person
151 sg:person.0642416450.37 schema:affiliation https://www.grid.ac/institutes/grid.418110.d
152 schema:familyName Dufort
153 schema:givenName Sandrine
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642416450.37
155 rdf:type schema:Person
156 sg:pub.10.1007/s10147-008-0772-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037715015
157 https://doi.org/10.1007/s10147-008-0772-4
158 rdf:type schema:CreativeWork
159 sg:pub.10.1023/a:1026090218031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017053676
160 https://doi.org/10.1023/a:1026090218031
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/onc.2009.198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030987778
163 https://doi.org/10.1038/onc.2009.198
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1002/ijc.24746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022093875
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.ab.2009.05.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047524596
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.lungcan.2010.01.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015452600
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1056/nejme0905763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010923914
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1073/pnas.0405220101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000546271
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1097/jto.0b013e318211dcee schema:sameAs https://app.dimensions.ai/details/publication/pub.1043559594
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1111/j.1349-7006.2006.00377.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011175383
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1126/science.281.5375.363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062561814
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1158/0008-5472.can-05-0331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028389586
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1158/1078-0432.ccr-05-2324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052678238
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1158/1078-0432.ccr-07-1387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031775125
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1158/1078-0432.ccr-07-5207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040375956
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1200/jco.2005.01.0793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003116372
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1200/jco.2009.25.1637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023965473
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1200/jco.2009.27.4365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034206013
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1371/journal.pone.0004576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008066950
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1513/pats.200809-107lc schema:sameAs https://app.dimensions.ai/details/publication/pub.1003782801
198 rdf:type schema:CreativeWork
199 https://www.grid.ac/institutes/grid.410529.b schema:alternateName Centre Hospitalier Universitaire de Grenoble
200 schema:name Centre de recherche INSERM/UJF U823, Institut Albert Bonniot, Rond-point de la Chantourne, La Tronche cedex 9, 38 709, France
201 Département d'Anatomie et Cytologie Pathologiques, CHU Grenoble, Institut de Biologie et Pathologie, parvis Belledonne, 38 043, Grenoble, France
202 rdf:type schema:Organization
203 https://www.grid.ac/institutes/grid.418110.d schema:alternateName Institut Albert Bonniot
204 schema:name Centre de recherche INSERM/UJF U823, Institut Albert Bonniot, Rond-point de la Chantourne, La Tronche cedex 9, 38 709, France
205 UM Biochimie des Cancers et Biothérapies, CHU Grenoble, Institut de Biologie et Pathologie, parvis Belledonne, 38 043, Grenoble, France
206 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...