Pyrosequencing, a method approved to detect the two major EGFR mutations for anti EGFR therapy in NSCLC View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Sandrine Dufort, Marie-Jeanne Richard, Sylvie Lantuejoul, Florence de Fraipont

ABSTRACT

BACKGROUND: Epidermal Growth Factor Receptor (EGFR) mutations, especially in-frame deletions in exon 19 (ΔLRE) and a point mutation in exon 21 (L858R) predict gefitinib sensitivity in patients with non-small cell lung cancer. Several methods are currently described for their detection but the gold standard for tissue samples remains direct DNA sequencing, which requires samples containing at least 50% of tumor cells. METHODS: We designed a pyrosequencing assay based on nested PCR for the characterization of theses mutations on formalin-fixed and paraffin-embedded tumor tissue. RESULTS: This method is highly specific and permits precise characterization of all the exon 19 deletions. Its sensitivity is higher than that of "BigDye terminator" sequencing and enabled detection of 3 additional mutations in the 58 NSCLC tested. The concordance between the two methods was very good (97.4%). In the prospective analysis of 213 samples, 7 (3.3%) samples were not analyzed and EGFR mutations were detected in 18 (8.7%) patients. However, we observed a deficit of mutation detection when the samples were very poor in tumor cells. CONCLUSIONS: pyrosequencing is then a highly accurate method for detecting ΔLRE and L858R EGFR mutations in patients with NSCLC when the samples contain at least 20% of tumor cells. More... »

PAGES

57

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1756-9966-30-57

DOI

http://dx.doi.org/10.1186/1756-9966-30-57

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043539010

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21575212


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alleles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Non-Small-Cell Lung", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Exons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptor, Epidermal Growth Factor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Deletion", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut Albert Bonniot", 
          "id": "https://www.grid.ac/institutes/grid.418110.d", 
          "name": [
            "UM Biochimie des Cancers et Bioth\u00e9rapies, CHU Grenoble, Institut de Biologie et Pathologie, parvis Belledonne, 38 043, Grenoble, France", 
            "Centre de recherche INSERM/UJF U823, Institut Albert Bonniot, Rond-point de la Chantourne, La Tronche cedex 9, 38 709, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dufort", 
        "givenName": "Sandrine", 
        "id": "sg:person.0642416450.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642416450.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Albert Bonniot", 
          "id": "https://www.grid.ac/institutes/grid.418110.d", 
          "name": [
            "UM Biochimie des Cancers et Bioth\u00e9rapies, CHU Grenoble, Institut de Biologie et Pathologie, parvis Belledonne, 38 043, Grenoble, France", 
            "Centre de recherche INSERM/UJF U823, Institut Albert Bonniot, Rond-point de la Chantourne, La Tronche cedex 9, 38 709, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Richard", 
        "givenName": "Marie-Jeanne", 
        "id": "sg:person.013242257222.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013242257222.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre Hospitalier Universitaire de Grenoble", 
          "id": "https://www.grid.ac/institutes/grid.410529.b", 
          "name": [
            "Centre de recherche INSERM/UJF U823, Institut Albert Bonniot, Rond-point de la Chantourne, La Tronche cedex 9, 38 709, France", 
            "D\u00e9partement d'Anatomie et Cytologie Pathologiques, CHU Grenoble, Institut de Biologie et Pathologie, parvis Belledonne, 38 043, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lantuejoul", 
        "givenName": "Sylvie", 
        "id": "sg:person.01005323433.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005323433.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Albert Bonniot", 
          "id": "https://www.grid.ac/institutes/grid.418110.d", 
          "name": [
            "UM Biochimie des Cancers et Bioth\u00e9rapies, CHU Grenoble, Institut de Biologie et Pathologie, parvis Belledonne, 38 043, Grenoble, France", 
            "Centre de recherche INSERM/UJF U823, Institut Albert Bonniot, Rond-point de la Chantourne, La Tronche cedex 9, 38 709, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Fraipont", 
        "givenName": "Florence", 
        "id": "sg:person.01211636737.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211636737.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.0405220101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000546271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2005.01.0793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003116372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1513/pats.200809-107lc", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003782801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0004576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008066950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejme0905763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010923914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1349-7006.2006.00377.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011175383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.lungcan.2010.01.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015452600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1026090218031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017053676", 
          "https://doi.org/10.1023/a:1026090218031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.24746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022093875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.24746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022093875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2009.25.1637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023965473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-05-0331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028389586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/onc.2009.198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030987778", 
          "https://doi.org/10.1038/onc.2009.198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/onc.2009.198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030987778", 
          "https://doi.org/10.1038/onc.2009.198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-07-1387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031775125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2009.27.4365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034206013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10147-008-0772-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037715015", 
          "https://doi.org/10.1007/s10147-008-0772-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10147-008-0772-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037715015", 
          "https://doi.org/10.1007/s10147-008-0772-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-07-5207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040375956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/jto.0b013e318211dcee", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043559594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ab.2009.05.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047524596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-05-2324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052678238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.281.5375.363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062561814"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "BACKGROUND: Epidermal Growth Factor Receptor (EGFR) mutations, especially in-frame deletions in exon 19 (\u0394LRE) and a point mutation in exon 21 (L858R) predict gefitinib sensitivity in patients with non-small cell lung cancer. Several methods are currently described for their detection but the gold standard for tissue samples remains direct DNA sequencing, which requires samples containing at least 50% of tumor cells.\nMETHODS: We designed a pyrosequencing assay based on nested PCR for the characterization of theses mutations on formalin-fixed and paraffin-embedded tumor tissue.\nRESULTS: This method is highly specific and permits precise characterization of all the exon 19 deletions. Its sensitivity is higher than that of \"BigDye terminator\" sequencing and enabled detection of 3 additional mutations in the 58 NSCLC tested. The concordance between the two methods was very good (97.4%). In the prospective analysis of 213 samples, 7 (3.3%) samples were not analyzed and EGFR mutations were detected in 18 (8.7%) patients. However, we observed a deficit of mutation detection when the samples were very poor in tumor cells.\nCONCLUSIONS: pyrosequencing is then a highly accurate method for detecting \u0394LRE and L858R EGFR mutations in patients with NSCLC when the samples contain at least 20% of tumor cells.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1756-9966-30-57", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1094159", 
        "issn": [
          "0392-9078", 
          "1756-9966"
        ], 
        "name": "Journal of Experimental & Clinical Cancer Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "name": "Pyrosequencing, a method approved to detect the two major EGFR mutations for anti EGFR therapy in NSCLC", 
    "pagination": "57", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cf648dc8595b901e45154168074213941f26fc4597a209388ae21e5d18872b9d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21575212"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8308647"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1756-9966-30-57"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043539010"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1756-9966-30-57", 
      "https://app.dimensions.ai/details/publication/pub.1043539010"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1756-9966-30-57"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1756-9966-30-57'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1756-9966-30-57'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1756-9966-30-57'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1756-9966-30-57'


 

This table displays all metadata directly associated to this object as RDF triples.

206 TRIPLES      21 PREDICATES      61 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1756-9966-30-57 schema:about N00d3b507206842bc8827f67e6b9d96e5
2 N0e37afcdba424166bf4869b384734597
3 N21b85f2bdabb492b9883bcf97f6cda5d
4 N3d7105d78f704fdb971875dbeeaeccea
5 N3fb754b88eba4ece8aa49caae9f9424b
6 N4a3260452f0e468aaa57d0a881f24be2
7 N56ac33ee065d4eb6ba499ba7a4af9b3f
8 N6a181debdfb64f20af4bff405c34f12b
9 N711aaad446804a7a8a630860542e3ecb
10 Nae061662b0ff4852884a9fc97bc47899
11 Ncd4b0ed4c6684e73b13a4b918be8515c
12 Nf69e17bfb5b24cb389d8babf3783fdc0
13 anzsrc-for:11
14 anzsrc-for:1112
15 schema:author N0e7c3c2b8d2b4cb5b3cdd0590f1571dc
16 schema:citation sg:pub.10.1007/s10147-008-0772-4
17 sg:pub.10.1023/a:1026090218031
18 sg:pub.10.1038/onc.2009.198
19 https://doi.org/10.1002/ijc.24746
20 https://doi.org/10.1016/j.ab.2009.05.027
21 https://doi.org/10.1016/j.lungcan.2010.01.017
22 https://doi.org/10.1056/nejme0905763
23 https://doi.org/10.1073/pnas.0405220101
24 https://doi.org/10.1097/jto.0b013e318211dcee
25 https://doi.org/10.1111/j.1349-7006.2006.00377.x
26 https://doi.org/10.1126/science.281.5375.363
27 https://doi.org/10.1158/0008-5472.can-05-0331
28 https://doi.org/10.1158/1078-0432.ccr-05-2324
29 https://doi.org/10.1158/1078-0432.ccr-07-1387
30 https://doi.org/10.1158/1078-0432.ccr-07-5207
31 https://doi.org/10.1200/jco.2005.01.0793
32 https://doi.org/10.1200/jco.2009.25.1637
33 https://doi.org/10.1200/jco.2009.27.4365
34 https://doi.org/10.1371/journal.pone.0004576
35 https://doi.org/10.1513/pats.200809-107lc
36 schema:datePublished 2011-12
37 schema:datePublishedReg 2011-12-01
38 schema:description BACKGROUND: Epidermal Growth Factor Receptor (EGFR) mutations, especially in-frame deletions in exon 19 (ΔLRE) and a point mutation in exon 21 (L858R) predict gefitinib sensitivity in patients with non-small cell lung cancer. Several methods are currently described for their detection but the gold standard for tissue samples remains direct DNA sequencing, which requires samples containing at least 50% of tumor cells. METHODS: We designed a pyrosequencing assay based on nested PCR for the characterization of theses mutations on formalin-fixed and paraffin-embedded tumor tissue. RESULTS: This method is highly specific and permits precise characterization of all the exon 19 deletions. Its sensitivity is higher than that of "BigDye terminator" sequencing and enabled detection of 3 additional mutations in the 58 NSCLC tested. The concordance between the two methods was very good (97.4%). In the prospective analysis of 213 samples, 7 (3.3%) samples were not analyzed and EGFR mutations were detected in 18 (8.7%) patients. However, we observed a deficit of mutation detection when the samples were very poor in tumor cells. CONCLUSIONS: pyrosequencing is then a highly accurate method for detecting ΔLRE and L858R EGFR mutations in patients with NSCLC when the samples contain at least 20% of tumor cells.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree true
42 schema:isPartOf N2480e0e5e7ef462bb746e7058347953c
43 N256da2b86ec1472a9f3d2a9bc7a12f81
44 sg:journal.1094159
45 schema:name Pyrosequencing, a method approved to detect the two major EGFR mutations for anti EGFR therapy in NSCLC
46 schema:pagination 57
47 schema:productId N2256552d0c4c421eb4fd2b5bad8ccaa3
48 N551f2fb6affa441aadba8fa4681c9926
49 N918a3375b0284352bc4098675e7593a3
50 Nc953c207c4a346ebae5cd05152354b2c
51 Nd87cd4d3bca2475f853b2437ca66e3fc
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043539010
53 https://doi.org/10.1186/1756-9966-30-57
54 schema:sdDatePublished 2019-04-10T23:25
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Nbc62ca7920af40f6a4399ad7685acf79
57 schema:url http://link.springer.com/10.1186%2F1756-9966-30-57
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N00d3b507206842bc8827f67e6b9d96e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Lung Neoplasms
63 rdf:type schema:DefinedTerm
64 N0e37afcdba424166bf4869b384734597 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Male
66 rdf:type schema:DefinedTerm
67 N0e7c3c2b8d2b4cb5b3cdd0590f1571dc rdf:first sg:person.0642416450.37
68 rdf:rest Ndc93bfaeba244fe897cbcbc177d7a6fe
69 N21b85f2bdabb492b9883bcf97f6cda5d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Mutation
71 rdf:type schema:DefinedTerm
72 N2256552d0c4c421eb4fd2b5bad8ccaa3 schema:name pubmed_id
73 schema:value 21575212
74 rdf:type schema:PropertyValue
75 N2480e0e5e7ef462bb746e7058347953c schema:issueNumber 1
76 rdf:type schema:PublicationIssue
77 N256da2b86ec1472a9f3d2a9bc7a12f81 schema:volumeNumber 30
78 rdf:type schema:PublicationVolume
79 N3d7105d78f704fdb971875dbeeaeccea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Alleles
81 rdf:type schema:DefinedTerm
82 N3fb754b88eba4ece8aa49caae9f9424b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Exons
84 rdf:type schema:DefinedTerm
85 N4a3260452f0e468aaa57d0a881f24be2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Female
87 rdf:type schema:DefinedTerm
88 N551f2fb6affa441aadba8fa4681c9926 schema:name readcube_id
89 schema:value cf648dc8595b901e45154168074213941f26fc4597a209388ae21e5d18872b9d
90 rdf:type schema:PropertyValue
91 N56ac33ee065d4eb6ba499ba7a4af9b3f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Receptor, Epidermal Growth Factor
93 rdf:type schema:DefinedTerm
94 N64b767c42fa44cf89b44cf73a6b345f9 rdf:first sg:person.01211636737.68
95 rdf:rest rdf:nil
96 N6a181debdfb64f20af4bff405c34f12b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Sequence Deletion
98 rdf:type schema:DefinedTerm
99 N711aaad446804a7a8a630860542e3ecb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Sequence Analysis, DNA
101 rdf:type schema:DefinedTerm
102 N918a3375b0284352bc4098675e7593a3 schema:name dimensions_id
103 schema:value pub.1043539010
104 rdf:type schema:PropertyValue
105 Nae061662b0ff4852884a9fc97bc47899 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Carcinoma, Non-Small-Cell Lung
107 rdf:type schema:DefinedTerm
108 Nbc62ca7920af40f6a4399ad7685acf79 schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 Nc953c207c4a346ebae5cd05152354b2c schema:name doi
111 schema:value 10.1186/1756-9966-30-57
112 rdf:type schema:PropertyValue
113 Ncd4b0ed4c6684e73b13a4b918be8515c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Humans
115 rdf:type schema:DefinedTerm
116 Nd87cd4d3bca2475f853b2437ca66e3fc schema:name nlm_unique_id
117 schema:value 8308647
118 rdf:type schema:PropertyValue
119 Ndb0bf95ba29c4660a9e852c217c3e050 rdf:first sg:person.01005323433.86
120 rdf:rest N64b767c42fa44cf89b44cf73a6b345f9
121 Ndc93bfaeba244fe897cbcbc177d7a6fe rdf:first sg:person.013242257222.96
122 rdf:rest Ndb0bf95ba29c4660a9e852c217c3e050
123 Nf69e17bfb5b24cb389d8babf3783fdc0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Cell Line, Tumor
125 rdf:type schema:DefinedTerm
126 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
127 schema:name Medical and Health Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
130 schema:name Oncology and Carcinogenesis
131 rdf:type schema:DefinedTerm
132 sg:journal.1094159 schema:issn 0392-9078
133 1756-9966
134 schema:name Journal of Experimental & Clinical Cancer Research
135 rdf:type schema:Periodical
136 sg:person.01005323433.86 schema:affiliation https://www.grid.ac/institutes/grid.410529.b
137 schema:familyName Lantuejoul
138 schema:givenName Sylvie
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005323433.86
140 rdf:type schema:Person
141 sg:person.01211636737.68 schema:affiliation https://www.grid.ac/institutes/grid.418110.d
142 schema:familyName de Fraipont
143 schema:givenName Florence
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211636737.68
145 rdf:type schema:Person
146 sg:person.013242257222.96 schema:affiliation https://www.grid.ac/institutes/grid.418110.d
147 schema:familyName Richard
148 schema:givenName Marie-Jeanne
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013242257222.96
150 rdf:type schema:Person
151 sg:person.0642416450.37 schema:affiliation https://www.grid.ac/institutes/grid.418110.d
152 schema:familyName Dufort
153 schema:givenName Sandrine
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642416450.37
155 rdf:type schema:Person
156 sg:pub.10.1007/s10147-008-0772-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037715015
157 https://doi.org/10.1007/s10147-008-0772-4
158 rdf:type schema:CreativeWork
159 sg:pub.10.1023/a:1026090218031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017053676
160 https://doi.org/10.1023/a:1026090218031
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/onc.2009.198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030987778
163 https://doi.org/10.1038/onc.2009.198
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1002/ijc.24746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022093875
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.ab.2009.05.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047524596
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.lungcan.2010.01.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015452600
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1056/nejme0905763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010923914
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1073/pnas.0405220101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000546271
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1097/jto.0b013e318211dcee schema:sameAs https://app.dimensions.ai/details/publication/pub.1043559594
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1111/j.1349-7006.2006.00377.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011175383
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1126/science.281.5375.363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062561814
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1158/0008-5472.can-05-0331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028389586
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1158/1078-0432.ccr-05-2324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052678238
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1158/1078-0432.ccr-07-1387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031775125
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1158/1078-0432.ccr-07-5207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040375956
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1200/jco.2005.01.0793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003116372
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1200/jco.2009.25.1637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023965473
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1200/jco.2009.27.4365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034206013
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1371/journal.pone.0004576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008066950
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1513/pats.200809-107lc schema:sameAs https://app.dimensions.ai/details/publication/pub.1003782801
198 rdf:type schema:CreativeWork
199 https://www.grid.ac/institutes/grid.410529.b schema:alternateName Centre Hospitalier Universitaire de Grenoble
200 schema:name Centre de recherche INSERM/UJF U823, Institut Albert Bonniot, Rond-point de la Chantourne, La Tronche cedex 9, 38 709, France
201 Département d'Anatomie et Cytologie Pathologiques, CHU Grenoble, Institut de Biologie et Pathologie, parvis Belledonne, 38 043, Grenoble, France
202 rdf:type schema:Organization
203 https://www.grid.ac/institutes/grid.418110.d schema:alternateName Institut Albert Bonniot
204 schema:name Centre de recherche INSERM/UJF U823, Institut Albert Bonniot, Rond-point de la Chantourne, La Tronche cedex 9, 38 709, France
205 UM Biochimie des Cancers et Biothérapies, CHU Grenoble, Institut de Biologie et Pathologie, parvis Belledonne, 38 043, Grenoble, France
206 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...