G9a co-suppresses LINE1 elements in spermatogonia View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-09-11

AUTHORS

Monica Di Giacomo, Stefano Comazzetto, Srihari C Sampath, Srinath C Sampath, Dónal O’Carroll

ABSTRACT

BACKGROUND: Repression of retrotransposons is essential for genome integrity and the development of germ cells. Among retrotransposons, the establishment of CpG DNA methylation and epigenetic silencing of LINE1 (L1) elements and the intracisternal A particle (IAP) endogenous retrovirus (ERV) is dependent upon the piRNA pathway during embryonic germ cell reprogramming. Furthermore, the Piwi protein Mili, guided by piRNAs, cleaves expressed L1 transcripts to post-transcriptionally enforce L1 silencing in meiotic cells. The loss of both DNA methylation and the Mili piRNA pathway does not affect L1 silencing in the mitotic spermatogonia where histone H3 lysine 9 dimethylation (H3K9me2) is postulated to co-repress these elements. RESULTS: Here we show that the histone H3 lysine 9 dimethyltransferase G9a co-suppresses L1 elements in spermatogonia. In the absence of both a functional piRNA pathway and L1 DNA methylation, G9a is both essential and sufficient to silence L1 elements. In contrast, H3K9me2 alone is insufficient to maintain IAP silencing in spermatogonia. The loss of all three repressive mechanisms has a major impact on spermatogonial populations inclusive of spermatogonial stem cells, with the loss of all germ cells observed in a high portion of seminiferous tubules. CONCLUSIONS: Our study identifies G9a-mediated H3K9me2 as a novel and important L1 repressive mechanism in the germ line. We also demonstrate fundamental differences in the requirements for the maintenance of L1 and IAP silencing during adult spermatogenesis, where H3K9me2 is sufficient to maintain L1 but not IAP silencing. Finally, we demonstrate that repression of retrotransposon activation in spermatogonia is important for the survival of this population and testicular homeostasis. More... »

PAGES

24-24

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1756-8935-7-24

DOI

http://dx.doi.org/10.1186/1756-8935-7-24

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020044913

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25276231


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Via Ramarini 32, Monterotondo Scalo 00015, Italy", 
          "id": "http://www.grid.ac/institutes/grid.418924.2", 
          "name": [
            "European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Via Ramarini 32, Monterotondo Scalo 00015, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Di Giacomo", 
        "givenName": "Monica", 
        "id": "sg:person.01122022346.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122022346.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Via Ramarini 32, Monterotondo Scalo 00015, Italy", 
          "id": "http://www.grid.ac/institutes/grid.418924.2", 
          "name": [
            "European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Via Ramarini 32, Monterotondo Scalo 00015, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Comazzetto", 
        "givenName": "Stefano", 
        "id": "sg:person.01330671364.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330671364.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genetics Department, Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA", 
          "id": "http://www.grid.ac/institutes/grid.418185.1", 
          "name": [
            "Genetics Department, Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sampath", 
        "givenName": "Srihari C", 
        "id": "sg:person.01057767242.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057767242.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genetics Department, Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA", 
          "id": "http://www.grid.ac/institutes/grid.418185.1", 
          "name": [
            "Genetics Department, Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sampath", 
        "givenName": "Srinath C", 
        "id": "sg:person.0703516637.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703516637.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Via Ramarini 32, Monterotondo Scalo 00015, Italy", 
          "id": "http://www.grid.ac/institutes/grid.418924.2", 
          "name": [
            "European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Via Ramarini 32, Monterotondo Scalo 00015, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "O\u2019Carroll", 
        "givenName": "D\u00f3nal", 
        "id": "sg:person.0743321646.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743321646.78"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature08858", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037699392", 
          "https://doi.org/10.1038/nature08858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031637176", 
          "https://doi.org/10.1038/nature02886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032835667", 
          "https://doi.org/10.1038/nature10672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020435351", 
          "https://doi.org/10.1038/nature03238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047903489", 
          "https://doi.org/10.1038/nature10547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008081317", 
          "https://doi.org/10.1038/nature11244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016166463", 
          "https://doi.org/10.1038/ng1367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006671043", 
          "https://doi.org/10.1038/ng1366"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-09-11", 
    "datePublishedReg": "2014-09-11", 
    "description": "BACKGROUND: Repression of retrotransposons is essential for genome integrity and the development of germ cells. Among retrotransposons, the establishment of CpG DNA methylation and epigenetic silencing of LINE1 (L1) elements and the intracisternal A particle (IAP) endogenous retrovirus (ERV) is dependent upon the piRNA pathway during embryonic germ cell reprogramming. Furthermore, the Piwi protein Mili, guided by piRNAs, cleaves expressed L1 transcripts to post-transcriptionally enforce L1 silencing in meiotic cells. The loss of both DNA methylation and the Mili piRNA pathway does not affect L1 silencing in the mitotic spermatogonia where histone H3 lysine 9 dimethylation (H3K9me2) is postulated to co-repress these elements.\nRESULTS: Here we show that the histone H3 lysine 9 dimethyltransferase G9a co-suppresses L1 elements in spermatogonia. In the absence of both a functional piRNA pathway and L1 DNA methylation, G9a is both essential and sufficient to silence L1 elements. In contrast, H3K9me2 alone is insufficient to maintain IAP silencing in spermatogonia. The loss of all three repressive mechanisms has a major impact on spermatogonial populations inclusive of spermatogonial stem cells, with the loss of all germ cells observed in a high portion of seminiferous tubules.\nCONCLUSIONS: Our study identifies G9a-mediated H3K9me2 as a novel and important L1 repressive mechanism in the germ line. We also demonstrate fundamental differences in the requirements for the maintenance of L1 and IAP silencing during adult spermatogenesis, where H3K9me2 is sufficient to maintain L1 but not IAP silencing. Finally, we demonstrate that repression of retrotransposon activation in spermatogonia is important for the survival of this population and testicular homeostasis.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1756-8935-7-24", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3791289", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1039921", 
        "issn": [
          "1756-8935"
        ], 
        "name": "Epigenetics & Chromatin", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "keywords": [
      "piRNA pathway", 
      "DNA methylation", 
      "histone H3 lysine 9 dimethylation", 
      "LINE1 elements", 
      "repressive mechanisms", 
      "H3 lysine 9 dimethylation", 
      "L1 elements", 
      "germ cells", 
      "repression of retrotransposons", 
      "germ cell reprogramming", 
      "Piwi protein Mili", 
      "functional piRNA pathway", 
      "CpG DNA methylation", 
      "endogenous retroviruses", 
      "lysine 9 dimethylation", 
      "genome integrity", 
      "mitotic spermatogonia", 
      "retrotransposon activation", 
      "cell reprogramming", 
      "spermatogonial stem cells", 
      "meiotic cells", 
      "epigenetic silencing", 
      "germ line", 
      "testicular homeostasis", 
      "L1 transcripts", 
      "H3K9me2", 
      "methylation", 
      "adult spermatogenesis", 
      "spermatogonial population", 
      "stem cells", 
      "retrotransposons", 
      "IAP", 
      "repression", 
      "spermatogonia", 
      "pathway", 
      "cells", 
      "piRNAs", 
      "G9a", 
      "reprogramming", 
      "dimethylation", 
      "silencing", 
      "MILI", 
      "transcripts", 
      "seminiferous tubules", 
      "maintenance of L1", 
      "homeostasis", 
      "cleaves", 
      "retroviruses", 
      "spermatogenesis", 
      "mechanism", 
      "fundamental differences", 
      "population", 
      "major impact", 
      "activation", 
      "high portion", 
      "loss", 
      "maintenance", 
      "L1", 
      "establishment", 
      "elements", 
      "integrity", 
      "lines", 
      "tubules", 
      "survival", 
      "absence", 
      "contrast", 
      "portion", 
      "development", 
      "study", 
      "differences", 
      "impact", 
      "requirements", 
      "particle (IAP) endogenous retrovirus", 
      "embryonic germ cell reprogramming", 
      "protein Mili", 
      "Mili piRNA pathway", 
      "histone H3 lysine 9 dimethyltransferase G9a co-suppresses L1 elements", 
      "H3 lysine 9 dimethyltransferase G9a co-suppresses L1 elements", 
      "lysine 9 dimethyltransferase G9a co-suppresses L1 elements", 
      "dimethyltransferase G9a co-suppresses L1 elements", 
      "G9a co-suppresses L1 elements", 
      "co-suppresses L1 elements", 
      "L1 DNA methylation", 
      "G9a-mediated H3K9me2", 
      "important L1 repressive mechanism", 
      "L1 repressive mechanism", 
      "co-suppresses LINE1 elements"
    ], 
    "name": "G9a co-suppresses LINE1 elements in spermatogonia", 
    "pagination": "24-24", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020044913"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1756-8935-7-24"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25276231"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1756-8935-7-24", 
      "https://app.dimensions.ai/details/publication/pub.1020044913"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_618.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1756-8935-7-24"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1756-8935-7-24'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1756-8935-7-24'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1756-8935-7-24'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1756-8935-7-24'


 

This table displays all metadata directly associated to this object as RDF triples.

213 TRIPLES      22 PREDICATES      121 URIs      105 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1756-8935-7-24 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N8d81349f91ce4ec49147f45c9eb0a097
4 schema:citation sg:pub.10.1038/nature02886
5 sg:pub.10.1038/nature03238
6 sg:pub.10.1038/nature08858
7 sg:pub.10.1038/nature10547
8 sg:pub.10.1038/nature10672
9 sg:pub.10.1038/nature11244
10 sg:pub.10.1038/ng1366
11 sg:pub.10.1038/ng1367
12 schema:datePublished 2014-09-11
13 schema:datePublishedReg 2014-09-11
14 schema:description BACKGROUND: Repression of retrotransposons is essential for genome integrity and the development of germ cells. Among retrotransposons, the establishment of CpG DNA methylation and epigenetic silencing of LINE1 (L1) elements and the intracisternal A particle (IAP) endogenous retrovirus (ERV) is dependent upon the piRNA pathway during embryonic germ cell reprogramming. Furthermore, the Piwi protein Mili, guided by piRNAs, cleaves expressed L1 transcripts to post-transcriptionally enforce L1 silencing in meiotic cells. The loss of both DNA methylation and the Mili piRNA pathway does not affect L1 silencing in the mitotic spermatogonia where histone H3 lysine 9 dimethylation (H3K9me2) is postulated to co-repress these elements. RESULTS: Here we show that the histone H3 lysine 9 dimethyltransferase G9a co-suppresses L1 elements in spermatogonia. In the absence of both a functional piRNA pathway and L1 DNA methylation, G9a is both essential and sufficient to silence L1 elements. In contrast, H3K9me2 alone is insufficient to maintain IAP silencing in spermatogonia. The loss of all three repressive mechanisms has a major impact on spermatogonial populations inclusive of spermatogonial stem cells, with the loss of all germ cells observed in a high portion of seminiferous tubules. CONCLUSIONS: Our study identifies G9a-mediated H3K9me2 as a novel and important L1 repressive mechanism in the germ line. We also demonstrate fundamental differences in the requirements for the maintenance of L1 and IAP silencing during adult spermatogenesis, where H3K9me2 is sufficient to maintain L1 but not IAP silencing. Finally, we demonstrate that repression of retrotransposon activation in spermatogonia is important for the survival of this population and testicular homeostasis.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf Nc5df4a17dfbf402b93ff12399563d72b
19 Nc6b82efa148e49d58d609a8217cd85ca
20 sg:journal.1039921
21 schema:keywords CpG DNA methylation
22 DNA methylation
23 G9a
24 G9a co-suppresses L1 elements
25 G9a-mediated H3K9me2
26 H3 lysine 9 dimethylation
27 H3 lysine 9 dimethyltransferase G9a co-suppresses L1 elements
28 H3K9me2
29 IAP
30 L1
31 L1 DNA methylation
32 L1 elements
33 L1 repressive mechanism
34 L1 transcripts
35 LINE1 elements
36 MILI
37 Mili piRNA pathway
38 Piwi protein Mili
39 absence
40 activation
41 adult spermatogenesis
42 cell reprogramming
43 cells
44 cleaves
45 co-suppresses L1 elements
46 co-suppresses LINE1 elements
47 contrast
48 development
49 differences
50 dimethylation
51 dimethyltransferase G9a co-suppresses L1 elements
52 elements
53 embryonic germ cell reprogramming
54 endogenous retroviruses
55 epigenetic silencing
56 establishment
57 functional piRNA pathway
58 fundamental differences
59 genome integrity
60 germ cell reprogramming
61 germ cells
62 germ line
63 high portion
64 histone H3 lysine 9 dimethylation
65 histone H3 lysine 9 dimethyltransferase G9a co-suppresses L1 elements
66 homeostasis
67 impact
68 important L1 repressive mechanism
69 integrity
70 lines
71 loss
72 lysine 9 dimethylation
73 lysine 9 dimethyltransferase G9a co-suppresses L1 elements
74 maintenance
75 maintenance of L1
76 major impact
77 mechanism
78 meiotic cells
79 methylation
80 mitotic spermatogonia
81 particle (IAP) endogenous retrovirus
82 pathway
83 piRNA pathway
84 piRNAs
85 population
86 portion
87 protein Mili
88 repression
89 repression of retrotransposons
90 repressive mechanisms
91 reprogramming
92 requirements
93 retrotransposon activation
94 retrotransposons
95 retroviruses
96 seminiferous tubules
97 silencing
98 spermatogenesis
99 spermatogonia
100 spermatogonial population
101 spermatogonial stem cells
102 stem cells
103 study
104 survival
105 testicular homeostasis
106 transcripts
107 tubules
108 schema:name G9a co-suppresses LINE1 elements in spermatogonia
109 schema:pagination 24-24
110 schema:productId N4aa2864f54134180af994d50e63de17c
111 N74abca1a3c74413ead5af508a27be6d9
112 Ned232175d2284571955fdf4111a5abbd
113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020044913
114 https://doi.org/10.1186/1756-8935-7-24
115 schema:sdDatePublished 2021-12-01T19:30
116 schema:sdLicense https://scigraph.springernature.com/explorer/license/
117 schema:sdPublisher N779c66cbf4e84f31836a89e2e2b66c20
118 schema:url https://doi.org/10.1186/1756-8935-7-24
119 sgo:license sg:explorer/license/
120 sgo:sdDataset articles
121 rdf:type schema:ScholarlyArticle
122 N0eb296cb89f14ffa9b458264ffe7fd17 rdf:first sg:person.0743321646.78
123 rdf:rest rdf:nil
124 N19950a483db344288d6d8f3a4c6fb6de rdf:first sg:person.0703516637.08
125 rdf:rest N0eb296cb89f14ffa9b458264ffe7fd17
126 N4aa2864f54134180af994d50e63de17c schema:name doi
127 schema:value 10.1186/1756-8935-7-24
128 rdf:type schema:PropertyValue
129 N74abca1a3c74413ead5af508a27be6d9 schema:name pubmed_id
130 schema:value 25276231
131 rdf:type schema:PropertyValue
132 N779c66cbf4e84f31836a89e2e2b66c20 schema:name Springer Nature - SN SciGraph project
133 rdf:type schema:Organization
134 N8d81349f91ce4ec49147f45c9eb0a097 rdf:first sg:person.01122022346.06
135 rdf:rest Ne5913b25d90c4bfab6d0628d10ca4eca
136 Nc5df4a17dfbf402b93ff12399563d72b schema:volumeNumber 7
137 rdf:type schema:PublicationVolume
138 Nc6b82efa148e49d58d609a8217cd85ca schema:issueNumber 1
139 rdf:type schema:PublicationIssue
140 Ncd132d984caf46bdbf9c3d10a6bf7d08 rdf:first sg:person.01057767242.79
141 rdf:rest N19950a483db344288d6d8f3a4c6fb6de
142 Ne5913b25d90c4bfab6d0628d10ca4eca rdf:first sg:person.01330671364.80
143 rdf:rest Ncd132d984caf46bdbf9c3d10a6bf7d08
144 Ned232175d2284571955fdf4111a5abbd schema:name dimensions_id
145 schema:value pub.1020044913
146 rdf:type schema:PropertyValue
147 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
148 schema:name Biological Sciences
149 rdf:type schema:DefinedTerm
150 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
151 schema:name Genetics
152 rdf:type schema:DefinedTerm
153 sg:grant.3791289 http://pending.schema.org/fundedItem sg:pub.10.1186/1756-8935-7-24
154 rdf:type schema:MonetaryGrant
155 sg:journal.1039921 schema:issn 1756-8935
156 schema:name Epigenetics & Chromatin
157 schema:publisher Springer Nature
158 rdf:type schema:Periodical
159 sg:person.01057767242.79 schema:affiliation grid-institutes:grid.418185.1
160 schema:familyName Sampath
161 schema:givenName Srihari C
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057767242.79
163 rdf:type schema:Person
164 sg:person.01122022346.06 schema:affiliation grid-institutes:grid.418924.2
165 schema:familyName Di Giacomo
166 schema:givenName Monica
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122022346.06
168 rdf:type schema:Person
169 sg:person.01330671364.80 schema:affiliation grid-institutes:grid.418924.2
170 schema:familyName Comazzetto
171 schema:givenName Stefano
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330671364.80
173 rdf:type schema:Person
174 sg:person.0703516637.08 schema:affiliation grid-institutes:grid.418185.1
175 schema:familyName Sampath
176 schema:givenName Srinath C
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703516637.08
178 rdf:type schema:Person
179 sg:person.0743321646.78 schema:affiliation grid-institutes:grid.418924.2
180 schema:familyName O’Carroll
181 schema:givenName Dónal
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743321646.78
183 rdf:type schema:Person
184 sg:pub.10.1038/nature02886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031637176
185 https://doi.org/10.1038/nature02886
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/nature03238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020435351
188 https://doi.org/10.1038/nature03238
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nature08858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037699392
191 https://doi.org/10.1038/nature08858
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/nature10547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047903489
194 https://doi.org/10.1038/nature10547
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/nature10672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032835667
197 https://doi.org/10.1038/nature10672
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/nature11244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008081317
200 https://doi.org/10.1038/nature11244
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/ng1366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006671043
203 https://doi.org/10.1038/ng1366
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/ng1367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016166463
206 https://doi.org/10.1038/ng1367
207 rdf:type schema:CreativeWork
208 grid-institutes:grid.418185.1 schema:alternateName Genetics Department, Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
209 schema:name Genetics Department, Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
210 rdf:type schema:Organization
211 grid-institutes:grid.418924.2 schema:alternateName European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Via Ramarini 32, Monterotondo Scalo 00015, Italy
212 schema:name European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Via Ramarini 32, Monterotondo Scalo 00015, Italy
213 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...