Genetic characterization of Theileria equi infecting horses in North America: evidence for a limited source of U.S. introductions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-02-11

AUTHORS

Carina M Hall, Joseph D Busch, Glen A Scoles, Kristina A Palma-Cagle, Massaro W Ueti, Lowell S Kappmeyer, David M Wagner

ABSTRACT

BACKGROUND: Theileria equi is a tick-borne apicomplexan hemoparasite that causes equine piroplasmosis. This parasite has a worldwide distribution but the United States was considered to be free of this disease until recently. METHODS: We used samples from 37 horses to determine genetic relationships among North American T. equi using the 18S rRNA gene and microsatellites. We developed a DNA fingerprinting panel of 18 microsatellite markers using the first complete genome sequence of T. equi. RESULTS: A maximum parsimony analysis of 18S rRNA sequences grouped the samples into two major clades. The first clade (n = 36) revealed a high degree of nucleotide similarity in U.S. T. equi, with just 0-2 single nucleotide polymorphisms (SNPs) among samples. The remaining sample fell into a second clade that was genetically divergent (48 SNPs) from the other U.S. samples. This sample was collected at the Texas border, but may have originated in Mexico. We genotyped T. equi from the U.S. using microsatellite markers and found a moderate amount of genetic diversity (2-8 alleles per locus). The field samples were mostly from a 2009 Texas outbreak (n = 22) although samples from five other states were also included in this study. Using Weir and Cockerham's FST estimator (θ) we found strong population differentiation of the Texas and Georgia subpopulations (θ = 0.414), which was supported by a neighbor-joining tree created with predominant single haplotypes. Single-clone infections were found in 27 of the 37 samples (73%), allowing us to identify 15 unique genotypes. CONCLUSIONS: The placement of most T. equi into one monophyletic clade by 18S is suggestive of a limited source of introduction into the U.S. When applied to a broader cross section of worldwide samples, these molecular tools should improve source tracking of T. equi outbreaks and may help prevent the spread of this tick-borne parasite. More... »

PAGES

35-35

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1756-3305-6-35

DOI

http://dx.doi.org/10.1186/1756-3305-6-35

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002055697

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23399005


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coinfection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Fingerprinting", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Protozoan", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Markers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetics, Population", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Georgia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Haplotypes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Horse Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Horses", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microsatellite Repeats", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Protozoan", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Ribosomal, 18S", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Texas", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Theileria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Theileriasis", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center for Microbial Genetics and Genomics, Northern Arizona University, 1298 S Knoles Drive, 86011, Flagstaff, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.261120.6", 
          "name": [
            "Center for Microbial Genetics and Genomics, Northern Arizona University, 1298 S Knoles Drive, 86011, Flagstaff, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hall", 
        "givenName": "Carina M", 
        "id": "sg:person.0702225155.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702225155.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Microbial Genetics and Genomics, Northern Arizona University, 1298 S Knoles Drive, 86011, Flagstaff, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.261120.6", 
          "name": [
            "Center for Microbial Genetics and Genomics, Northern Arizona University, 1298 S Knoles Drive, 86011, Flagstaff, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Busch", 
        "givenName": "Joseph D", 
        "id": "sg:person.01170166374.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170166374.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "USDA-ARS, Animal Disease Research Unit, 3003 Animal Disease Biotechnology Facility, Washington State University, 99164, Pullman, WA, USA", 
          "id": "http://www.grid.ac/institutes/grid.30064.31", 
          "name": [
            "USDA-ARS, Animal Disease Research Unit, 3003 Animal Disease Biotechnology Facility, Washington State University, 99164, Pullman, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scoles", 
        "givenName": "Glen A", 
        "id": "sg:person.01120263115.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120263115.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Microbial Genetics and Genomics, Northern Arizona University, 1298 S Knoles Drive, 86011, Flagstaff, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.261120.6", 
          "name": [
            "Center for Microbial Genetics and Genomics, Northern Arizona University, 1298 S Knoles Drive, 86011, Flagstaff, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Palma-Cagle", 
        "givenName": "Kristina A", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "USDA-ARS, Animal Disease Research Unit, 3003 Animal Disease Biotechnology Facility, Washington State University, 99164, Pullman, WA, USA", 
          "id": "http://www.grid.ac/institutes/grid.30064.31", 
          "name": [
            "USDA-ARS, Animal Disease Research Unit, 3003 Animal Disease Biotechnology Facility, Washington State University, 99164, Pullman, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ueti", 
        "givenName": "Massaro W", 
        "id": "sg:person.01342214703.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342214703.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "USDA-ARS, Animal Disease Research Unit, 3003 Animal Disease Biotechnology Facility, Washington State University, 99164, Pullman, WA, USA", 
          "id": "http://www.grid.ac/institutes/grid.30064.31", 
          "name": [
            "USDA-ARS, Animal Disease Research Unit, 3003 Animal Disease Biotechnology Facility, Washington State University, 99164, Pullman, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kappmeyer", 
        "givenName": "Lowell S", 
        "id": "sg:person.01274101503.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274101503.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Microbial Genetics and Genomics, Northern Arizona University, 1298 S Knoles Drive, 86011, Flagstaff, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.261120.6", 
          "name": [
            "Center for Microbial Genetics and Genomics, Northern Arizona University, 1298 S Knoles Drive, 86011, Flagstaff, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wagner", 
        "givenName": "David M", 
        "id": "sg:person.0623653057.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623653057.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00436-007-0726-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007583213", 
          "https://doi.org/10.1007/s00436-007-0726-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00436-009-1691-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035738602", 
          "https://doi.org/10.1007/s00436-009-1691-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-13-603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011981452", 
          "https://doi.org/10.1186/1471-2164-13-603"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-02-11", 
    "datePublishedReg": "2013-02-11", 
    "description": "BACKGROUND: Theileria equi is a tick-borne apicomplexan hemoparasite that causes equine piroplasmosis. This parasite has a worldwide distribution but the United States was considered to be free of this disease until recently.\nMETHODS: We used samples from 37 horses to determine genetic relationships among North American T. equi using the 18S rRNA gene and microsatellites. We developed a DNA fingerprinting panel of 18 microsatellite markers using the first complete genome sequence of T. equi.\nRESULTS: A maximum parsimony analysis of 18S rRNA sequences grouped the samples into two major clades. The first clade (n = 36) revealed a high degree of nucleotide similarity in U.S. T. equi, with just 0-2 single nucleotide polymorphisms (SNPs) among samples. The remaining sample fell into a second clade that was genetically divergent (48 SNPs) from the other U.S. samples. This sample was collected at the Texas border, but may have originated in Mexico. We genotyped T. equi from the U.S. using microsatellite markers and found a moderate amount of genetic diversity (2-8 alleles per locus). The field samples were mostly from a 2009 Texas outbreak (n = 22) although samples from five other states were also included in this study. Using Weir and Cockerham's FST estimator (\u03b8) we found strong population differentiation of the Texas and Georgia subpopulations (\u03b8 = 0.414), which was supported by a neighbor-joining tree created with predominant single haplotypes. Single-clone infections were found in 27 of the 37 samples (73%), allowing us to identify 15 unique genotypes.\nCONCLUSIONS: The placement of most T. equi into one monophyletic clade by 18S is suggestive of a limited source of introduction into the U.S. When applied to a broader cross section of worldwide samples, these molecular tools should improve source tracking of T. equi outbreaks and may help prevent the spread of this tick-borne parasite.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1756-3305-6-35", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1039458", 
        "issn": [
          "1756-3305"
        ], 
        "name": "Parasites & Vectors", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "tick-borne parasite", 
      "microsatellite markers", 
      "FST estimators", 
      "single nucleotide polymorphisms", 
      "equine piroplasmosis", 
      "Theileria equi", 
      "Texas outbreak", 
      "U.S. introduction", 
      "limited sources", 
      "Texas border", 
      "unique genotypes", 
      "genetic diversity", 
      "equi", 
      "molecular tools", 
      "genetic relationships", 
      "first complete genome sequence", 
      "genetic characterization", 
      "worldwide distribution", 
      "neighbor-joining tree", 
      "complete genome sequence", 
      "single-clone infections", 
      "nucleotide similarity", 
      "North America", 
      "field samples", 
      "genome sequence", 
      "horses", 
      "nucleotide polymorphisms", 
      "strong population differentiation", 
      "single haplotype", 
      "outbreak", 
      "population differentiation", 
      "maximum parsimony analysis", 
      "parasites", 
      "source tracking", 
      "piroplasmosis", 
      "rRNA gene", 
      "Theileria", 
      "hemoparasites", 
      "broad cross section", 
      "major clades", 
      "monophyletic clade", 
      "first clade", 
      "second clade", 
      "genotypes", 
      "parsimony analysis", 
      "rRNA sequences", 
      "clade", 
      "trees", 
      "moderate amount", 
      "United States", 
      "worldwide sample", 
      "microsatellites", 
      "diversity", 
      "U.S.", 
      "Mexico", 
      "markers", 
      "America", 
      "Texas", 
      "source", 
      "spread", 
      "sequence", 
      "introduction", 
      "high degree", 
      "weir", 
      "polymorphism", 
      "haplotypes", 
      "genes", 
      "infection", 
      "differentiation", 
      "amount", 
      "samples", 
      "disease", 
      "similarity", 
      "panel", 
      "subpopulations", 
      "tool", 
      "distribution", 
      "characterization", 
      "relationship", 
      "study", 
      "state", 
      "border", 
      "evidence", 
      "analysis", 
      "degree", 
      "U.S. sample", 
      "placement", 
      "sections", 
      "tracking", 
      "estimator", 
      "cross sections", 
      "tick-borne apicomplexan hemoparasite", 
      "apicomplexan hemoparasite", 
      "DNA fingerprinting panel", 
      "fingerprinting panel", 
      "U.S. T. equi", 
      "T. equi", 
      "Cockerham's FST estimator", 
      "Georgia subpopulations", 
      "predominant single haplotypes", 
      "equi outbreaks"
    ], 
    "name": "Genetic characterization of Theileria equi infecting horses in North America: evidence for a limited source of U.S. introductions", 
    "pagination": "35-35", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002055697"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1756-3305-6-35"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23399005"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1756-3305-6-35", 
      "https://app.dimensions.ai/details/publication/pub.1002055697"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_599.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1756-3305-6-35"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1756-3305-6-35'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1756-3305-6-35'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1756-3305-6-35'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1756-3305-6-35'


 

This table displays all metadata directly associated to this object as RDF triples.

310 TRIPLES      22 PREDICATES      153 URIs      141 LITERALS      29 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1756-3305-6-35 schema:about N0ade02bc55ea4141b9e7d7ab403493dd
2 N0e2a76a14ee34f74a6f296912df5c3e7
3 N152ac4e3901f4653ab1130fa3bb44f46
4 N1abcaec00bba4bda842cf63c523f26c2
5 N2642eec950d14ff885e9112c30b10cd7
6 N2cf83ea3d73d4618a7ab45705f857ef1
7 N3a64e38c9ccd447e89365ccf75c2ccf3
8 N42254c485eab499fabcf9160682cf336
9 N47f24096a7884bffb9f9f1944a3bac55
10 N49731140fed94912a931ca20bbd488c8
11 N4a3fc22d74f1497894d2cc99a29b7f74
12 N545f45704d5345a385c7a44f3b5be66e
13 N7b1a54604ed1483d83655b7ba84305bd
14 N8c6db40ce8664daa95fb053844a08ccb
15 N9da7aac1cd0d4a05a7c5b8175ab84741
16 Nc47558fc634f4376aa7e63b1cf1242bc
17 Nc56614f646f24fc39eadc4ec85375c74
18 Nc7d89d587e51447da78a66bdf763aef4
19 Nd72577f3ea1845948e69cd802493fccf
20 Nd79ceb8a51c045adac1a33fb55dba32a
21 Ned64d23d3728436bae0b3164f06bfbf4
22 Nf84b47df979d4931946ce5e1fa75df4c
23 anzsrc-for:11
24 anzsrc-for:1108
25 anzsrc-for:1117
26 schema:author Ne890d32e28c6411e9e46f06e2ef841aa
27 schema:citation sg:pub.10.1007/s00436-007-0726-1
28 sg:pub.10.1007/s00436-009-1691-7
29 sg:pub.10.1186/1471-2164-13-603
30 schema:datePublished 2013-02-11
31 schema:datePublishedReg 2013-02-11
32 schema:description BACKGROUND: Theileria equi is a tick-borne apicomplexan hemoparasite that causes equine piroplasmosis. This parasite has a worldwide distribution but the United States was considered to be free of this disease until recently. METHODS: We used samples from 37 horses to determine genetic relationships among North American T. equi using the 18S rRNA gene and microsatellites. We developed a DNA fingerprinting panel of 18 microsatellite markers using the first complete genome sequence of T. equi. RESULTS: A maximum parsimony analysis of 18S rRNA sequences grouped the samples into two major clades. The first clade (n = 36) revealed a high degree of nucleotide similarity in U.S. T. equi, with just 0-2 single nucleotide polymorphisms (SNPs) among samples. The remaining sample fell into a second clade that was genetically divergent (48 SNPs) from the other U.S. samples. This sample was collected at the Texas border, but may have originated in Mexico. We genotyped T. equi from the U.S. using microsatellite markers and found a moderate amount of genetic diversity (2-8 alleles per locus). The field samples were mostly from a 2009 Texas outbreak (n = 22) although samples from five other states were also included in this study. Using Weir and Cockerham's FST estimator (θ) we found strong population differentiation of the Texas and Georgia subpopulations (θ = 0.414), which was supported by a neighbor-joining tree created with predominant single haplotypes. Single-clone infections were found in 27 of the 37 samples (73%), allowing us to identify 15 unique genotypes. CONCLUSIONS: The placement of most T. equi into one monophyletic clade by 18S is suggestive of a limited source of introduction into the U.S. When applied to a broader cross section of worldwide samples, these molecular tools should improve source tracking of T. equi outbreaks and may help prevent the spread of this tick-borne parasite.
33 schema:genre article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf Nbe0dc62ab1b9452a80ae4ae22e72a2ed
37 Nccd65e217c96407fbd535cdf27860864
38 sg:journal.1039458
39 schema:keywords America
40 Cockerham's FST estimator
41 DNA fingerprinting panel
42 FST estimators
43 Georgia subpopulations
44 Mexico
45 North America
46 T. equi
47 Texas
48 Texas border
49 Texas outbreak
50 Theileria
51 Theileria equi
52 U.S.
53 U.S. T. equi
54 U.S. introduction
55 U.S. sample
56 United States
57 amount
58 analysis
59 apicomplexan hemoparasite
60 border
61 broad cross section
62 characterization
63 clade
64 complete genome sequence
65 cross sections
66 degree
67 differentiation
68 disease
69 distribution
70 diversity
71 equi
72 equi outbreaks
73 equine piroplasmosis
74 estimator
75 evidence
76 field samples
77 fingerprinting panel
78 first clade
79 first complete genome sequence
80 genes
81 genetic characterization
82 genetic diversity
83 genetic relationships
84 genome sequence
85 genotypes
86 haplotypes
87 hemoparasites
88 high degree
89 horses
90 infection
91 introduction
92 limited sources
93 major clades
94 markers
95 maximum parsimony analysis
96 microsatellite markers
97 microsatellites
98 moderate amount
99 molecular tools
100 monophyletic clade
101 neighbor-joining tree
102 nucleotide polymorphisms
103 nucleotide similarity
104 outbreak
105 panel
106 parasites
107 parsimony analysis
108 piroplasmosis
109 placement
110 polymorphism
111 population differentiation
112 predominant single haplotypes
113 rRNA gene
114 rRNA sequences
115 relationship
116 samples
117 second clade
118 sections
119 sequence
120 similarity
121 single haplotype
122 single nucleotide polymorphisms
123 single-clone infections
124 source
125 source tracking
126 spread
127 state
128 strong population differentiation
129 study
130 subpopulations
131 tick-borne apicomplexan hemoparasite
132 tick-borne parasite
133 tool
134 tracking
135 trees
136 unique genotypes
137 weir
138 worldwide distribution
139 worldwide sample
140 schema:name Genetic characterization of Theileria equi infecting horses in North America: evidence for a limited source of U.S. introductions
141 schema:pagination 35-35
142 schema:productId N62d344b0f8a5419b8e16cce865403f38
143 N8dd0a2a6291d47b7b27614ac8ee4b6a1
144 Nc78abc6733fb414390dbf30701520f33
145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002055697
146 https://doi.org/10.1186/1756-3305-6-35
147 schema:sdDatePublished 2021-11-01T18:19
148 schema:sdLicense https://scigraph.springernature.com/explorer/license/
149 schema:sdPublisher N61351330390e4595adc05e787e04029c
150 schema:url https://doi.org/10.1186/1756-3305-6-35
151 sgo:license sg:explorer/license/
152 sgo:sdDataset articles
153 rdf:type schema:ScholarlyArticle
154 N0ade02bc55ea4141b9e7d7ab403493dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Texas
156 rdf:type schema:DefinedTerm
157 N0e2a76a14ee34f74a6f296912df5c3e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name DNA, Protozoan
159 rdf:type schema:DefinedTerm
160 N10092eb265a34092a2675b795bc1d101 rdf:first sg:person.01120263115.01
161 rdf:rest N17a06142155945deb274769f1de0bb10
162 N152ac4e3901f4653ab1130fa3bb44f46 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Horse Diseases
164 rdf:type schema:DefinedTerm
165 N17a06142155945deb274769f1de0bb10 rdf:first Nbc56f913888b4db8a0dd5182c6c42c59
166 rdf:rest N76c464b582bb42ccafc9148f67362f91
167 N1abcaec00bba4bda842cf63c523f26c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Horses
169 rdf:type schema:DefinedTerm
170 N2642eec950d14ff885e9112c30b10cd7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Animals
172 rdf:type schema:DefinedTerm
173 N281f317559654b0aa17a5208007d6aad rdf:first sg:person.01274101503.85
174 rdf:rest N43ecac2d62e04d388ecc94c07b24ae93
175 N2cf83ea3d73d4618a7ab45705f857ef1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name DNA Fingerprinting
177 rdf:type schema:DefinedTerm
178 N3a64e38c9ccd447e89365ccf75c2ccf3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Haplotypes
180 rdf:type schema:DefinedTerm
181 N42254c485eab499fabcf9160682cf336 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Base Sequence
183 rdf:type schema:DefinedTerm
184 N43ecac2d62e04d388ecc94c07b24ae93 rdf:first sg:person.0623653057.77
185 rdf:rest rdf:nil
186 N47f24096a7884bffb9f9f1944a3bac55 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Genotype
188 rdf:type schema:DefinedTerm
189 N49731140fed94912a931ca20bbd488c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Genetic Variation
191 rdf:type schema:DefinedTerm
192 N4a3fc22d74f1497894d2cc99a29b7f74 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name RNA, Ribosomal, 18S
194 rdf:type schema:DefinedTerm
195 N4ee29c1fc9ef42e494398ed7267f3dc3 rdf:first sg:person.01170166374.06
196 rdf:rest N10092eb265a34092a2675b795bc1d101
197 N545f45704d5345a385c7a44f3b5be66e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
198 schema:name Georgia
199 rdf:type schema:DefinedTerm
200 N61351330390e4595adc05e787e04029c schema:name Springer Nature - SN SciGraph project
201 rdf:type schema:Organization
202 N62d344b0f8a5419b8e16cce865403f38 schema:name dimensions_id
203 schema:value pub.1002055697
204 rdf:type schema:PropertyValue
205 N76c464b582bb42ccafc9148f67362f91 rdf:first sg:person.01342214703.64
206 rdf:rest N281f317559654b0aa17a5208007d6aad
207 N7b1a54604ed1483d83655b7ba84305bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
208 schema:name Phylogeny
209 rdf:type schema:DefinedTerm
210 N8c6db40ce8664daa95fb053844a08ccb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
211 schema:name Sequence Analysis, DNA
212 rdf:type schema:DefinedTerm
213 N8dd0a2a6291d47b7b27614ac8ee4b6a1 schema:name pubmed_id
214 schema:value 23399005
215 rdf:type schema:PropertyValue
216 N9da7aac1cd0d4a05a7c5b8175ab84741 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
217 schema:name Theileria
218 rdf:type schema:DefinedTerm
219 Nbc56f913888b4db8a0dd5182c6c42c59 schema:affiliation grid-institutes:grid.261120.6
220 schema:familyName Palma-Cagle
221 schema:givenName Kristina A
222 rdf:type schema:Person
223 Nbe0dc62ab1b9452a80ae4ae22e72a2ed schema:issueNumber 1
224 rdf:type schema:PublicationIssue
225 Nc47558fc634f4376aa7e63b1cf1242bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
226 schema:name Microsatellite Repeats
227 rdf:type schema:DefinedTerm
228 Nc56614f646f24fc39eadc4ec85375c74 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
229 schema:name Genetic Markers
230 rdf:type schema:DefinedTerm
231 Nc78abc6733fb414390dbf30701520f33 schema:name doi
232 schema:value 10.1186/1756-3305-6-35
233 rdf:type schema:PropertyValue
234 Nc7d89d587e51447da78a66bdf763aef4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
235 schema:name Coinfection
236 rdf:type schema:DefinedTerm
237 Nccd65e217c96407fbd535cdf27860864 schema:volumeNumber 6
238 rdf:type schema:PublicationVolume
239 Nd72577f3ea1845948e69cd802493fccf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
240 schema:name Genetics, Population
241 rdf:type schema:DefinedTerm
242 Nd79ceb8a51c045adac1a33fb55dba32a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
243 schema:name Molecular Sequence Data
244 rdf:type schema:DefinedTerm
245 Ne890d32e28c6411e9e46f06e2ef841aa rdf:first sg:person.0702225155.32
246 rdf:rest N4ee29c1fc9ef42e494398ed7267f3dc3
247 Ned64d23d3728436bae0b3164f06bfbf4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
248 schema:name RNA, Protozoan
249 rdf:type schema:DefinedTerm
250 Nf84b47df979d4931946ce5e1fa75df4c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
251 schema:name Theileriasis
252 rdf:type schema:DefinedTerm
253 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
254 schema:name Medical and Health Sciences
255 rdf:type schema:DefinedTerm
256 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
257 schema:name Medical Microbiology
258 rdf:type schema:DefinedTerm
259 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
260 schema:name Public Health and Health Services
261 rdf:type schema:DefinedTerm
262 sg:journal.1039458 schema:issn 1756-3305
263 schema:name Parasites & Vectors
264 schema:publisher Springer Nature
265 rdf:type schema:Periodical
266 sg:person.01120263115.01 schema:affiliation grid-institutes:grid.30064.31
267 schema:familyName Scoles
268 schema:givenName Glen A
269 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120263115.01
270 rdf:type schema:Person
271 sg:person.01170166374.06 schema:affiliation grid-institutes:grid.261120.6
272 schema:familyName Busch
273 schema:givenName Joseph D
274 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170166374.06
275 rdf:type schema:Person
276 sg:person.01274101503.85 schema:affiliation grid-institutes:grid.30064.31
277 schema:familyName Kappmeyer
278 schema:givenName Lowell S
279 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274101503.85
280 rdf:type schema:Person
281 sg:person.01342214703.64 schema:affiliation grid-institutes:grid.30064.31
282 schema:familyName Ueti
283 schema:givenName Massaro W
284 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342214703.64
285 rdf:type schema:Person
286 sg:person.0623653057.77 schema:affiliation grid-institutes:grid.261120.6
287 schema:familyName Wagner
288 schema:givenName David M
289 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623653057.77
290 rdf:type schema:Person
291 sg:person.0702225155.32 schema:affiliation grid-institutes:grid.261120.6
292 schema:familyName Hall
293 schema:givenName Carina M
294 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702225155.32
295 rdf:type schema:Person
296 sg:pub.10.1007/s00436-007-0726-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007583213
297 https://doi.org/10.1007/s00436-007-0726-1
298 rdf:type schema:CreativeWork
299 sg:pub.10.1007/s00436-009-1691-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035738602
300 https://doi.org/10.1007/s00436-009-1691-7
301 rdf:type schema:CreativeWork
302 sg:pub.10.1186/1471-2164-13-603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011981452
303 https://doi.org/10.1186/1471-2164-13-603
304 rdf:type schema:CreativeWork
305 grid-institutes:grid.261120.6 schema:alternateName Center for Microbial Genetics and Genomics, Northern Arizona University, 1298 S Knoles Drive, 86011, Flagstaff, AZ, USA
306 schema:name Center for Microbial Genetics and Genomics, Northern Arizona University, 1298 S Knoles Drive, 86011, Flagstaff, AZ, USA
307 rdf:type schema:Organization
308 grid-institutes:grid.30064.31 schema:alternateName USDA-ARS, Animal Disease Research Unit, 3003 Animal Disease Biotechnology Facility, Washington State University, 99164, Pullman, WA, USA
309 schema:name USDA-ARS, Animal Disease Research Unit, 3003 Animal Disease Biotechnology Facility, Washington State University, 99164, Pullman, WA, USA
310 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...