Implication of the cause of differences in 3D structures of proteins with high sequence identity based on analyses of amino ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Masanari Matsuoka, Masatake Sugita, Takeshi Kikuchi

ABSTRACT

BACKGROUND: Proteins that share a high sequence homology while exhibiting drastically different 3D structures are investigated in this study. Recently, artificial proteins related to the sequences of the GA and IgG binding GB domains of human serum albumin have been designed. These artificial proteins, referred to as GA and GB, share 98% amino acid sequence identity but exhibit different 3D structures, namely, a 3α bundle versus a 4β + α structure. Discriminating between their 3D structures based on their amino acid sequences is a very difficult problem. In the present work, in addition to using bioinformatics techniques, an analysis based on inter-residue average distance statistics is used to address this problem. RESULTS: It was hard to distinguish which structure a given sequence would take only with the results of ordinary analyses like BLAST and conservation analyses. However, in addition to these analyses, with the analysis based on the inter-residue average distance statistics and our sequence tendency analysis, we could infer which part would play an important role in its structural formation. CONCLUSIONS: The results suggest possible determinants of the different 3D structures for sequences with high sequence identity. The possibility of discriminating between the 3D structures based on the given sequences is also discussed. More... »

PAGES

654

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1756-0500-7-654

DOI

http://dx.doi.org/10.1186/1756-0500-7-654

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048255828

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25231773


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrophobic and Hydrophilic Interactions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Structure, Secondary", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Homology, Amino Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Serum Albumin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Serum Albumin, Human", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Structural Homology, Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Structure-Activity Relationship", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Japan Society for the Promotion of Science", 
          "id": "https://www.grid.ac/institutes/grid.54432.34", 
          "name": [
            "Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, Japan", 
            "Japan Society for the Promotion of Science (JSPS) Research Fellow DC2, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsuoka", 
        "givenName": "Masanari", 
        "id": "sg:person.01044540766.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044540766.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ritsumeikan University", 
          "id": "https://www.grid.ac/institutes/grid.262576.2", 
          "name": [
            "Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sugita", 
        "givenName": "Masatake", 
        "id": "sg:person.013702335215.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013702335215.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ritsumeikan University", 
          "id": "https://www.grid.ac/institutes/grid.262576.2", 
          "name": [
            "Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kikuchi", 
        "givenName": "Takeshi", 
        "id": "sg:person.01155332325.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155332325.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1110/ps.0205402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000827840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00894-007-0185-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001121461", 
          "https://doi.org/10.1007/s00894-007-0185-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00894-007-0185-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001121461", 
          "https://doi.org/10.1007/s00894-007-0185-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2001.4602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008342596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2003.09.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011724460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(05)80360-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013618994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.10378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016995219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1997.1620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018876685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00726-008-0082-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019053273", 
          "https://doi.org/10.1007/s00726-008-0082-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00726-008-0082-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019053273", 
          "https://doi.org/10.1007/s00726-008-0082-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00726-008-0082-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019053273", 
          "https://doi.org/10.1007/s00726-008-0082-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-0278(98)00072-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022095790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-0278(98)00072-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022095790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/protein/12.2.85", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023574386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025085837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025085837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.24294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025384328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01024890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025492285", 
          "https://doi.org/10.1007/bf01024890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(02)01379-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030387851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(02)01379-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030387851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2000.3693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037505797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.20658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038188024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.20658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038188024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2001.5037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041459518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1096-987x(19960130)17:2<226::aid-jcc9>3.0.co;2-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041964792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.str.2011.11.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044345807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6807-14-15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045045837", 
          "https://doi.org/10.1186/1472-6807-14-15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2936832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048400877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi060409m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055201870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi060409m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055201870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi2015663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055204683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi2015663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055204683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja049510+", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055838109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja049510+", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055838109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2780154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057866521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1875036201105010059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069237731"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: Proteins that share a high sequence homology while exhibiting drastically different 3D structures are investigated in this study. Recently, artificial proteins related to the sequences of the GA and IgG binding GB domains of human serum albumin have been designed. These artificial proteins, referred to as GA and GB, share 98% amino acid sequence identity but exhibit different 3D structures, namely, a 3\u03b1 bundle versus a 4\u03b2 + \u03b1 structure. Discriminating between their 3D structures based on their amino acid sequences is a very difficult problem. In the present work, in addition to using bioinformatics techniques, an analysis based on inter-residue average distance statistics is used to address this problem.\nRESULTS: It was hard to distinguish which structure a given sequence would take only with the results of ordinary analyses like BLAST and conservation analyses. However, in addition to these analyses, with the analysis based on the inter-residue average distance statistics and our sequence tendency analysis, we could infer which part would play an important role in its structural formation.\nCONCLUSIONS: The results suggest possible determinants of the different 3D structures for sequences with high sequence identity. The possibility of discriminating between the 3D structures based on the given sequences is also discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1756-0500-7-654", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6137361", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5812432", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5553911", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1039457", 
        "issn": [
          "1756-0500"
        ], 
        "name": "BMC Research Notes", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Implication of the cause of differences in 3D structures of proteins with high sequence identity based on analyses of amino acid sequences and 3D structures", 
    "pagination": "654", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e5e2606fc72db5eadf6006a852f27a01a82623cff839f084005e67d736579af0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25231773"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101462768"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1756-0500-7-654"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048255828"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1756-0500-7-654", 
      "https://app.dimensions.ai/details/publication/pub.1048255828"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54325_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2F1756-0500-7-654"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1756-0500-7-654'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1756-0500-7-654'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1756-0500-7-654'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1756-0500-7-654'


 

This table displays all metadata directly associated to this object as RDF triples.

238 TRIPLES      21 PREDICATES      71 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1756-0500-7-654 schema:about N012c7281f2e1424499f5776d43bb2995
2 N038d34df33c24986852bf1fe17bf2c51
3 N06df073f61f344529b0dfa03c5fcbb5e
4 N090cbbed7c5b4b9fa35523265ccd61a8
5 N1ee06636850341e4a624b81d5389d6b4
6 N25b6f92a24f34dfaa5e999125eacdacd
7 N2c66dfb06f4b41b79bc0afd96f7c67e2
8 N3618380e7a0445258eb98f668f33c33d
9 N4c5ab17d25a34ca1a2d6a80adecbf84d
10 N5458fca37f9f466cbb17d1d07365e57b
11 N897e6eee3bb04728916ef289892850d6
12 Na5e13384d1514c238d0b988c2736b6ce
13 Nc96fbedb712941bfb08912e7c068584a
14 Ncf9bae114c5a41f2b84ab3f887c0f6ea
15 Nd1a3383c019a4fe4ab07fa31386c91ca
16 Ndab6c61002e14944b963b674479763b9
17 anzsrc-for:08
18 anzsrc-for:0801
19 schema:author N3c627d5934be404db1c05c5ac8c70a9f
20 schema:citation sg:pub.10.1007/bf01024890
21 sg:pub.10.1007/s00726-008-0082-1
22 sg:pub.10.1007/s00894-007-0185-8
23 sg:pub.10.1186/1472-6807-14-15
24 https://doi.org/10.1002/(sici)1096-987x(19960130)17:2<226::aid-jcc9>3.0.co;2-y
25 https://doi.org/10.1002/pro.303
26 https://doi.org/10.1002/prot.10378
27 https://doi.org/10.1002/prot.20658
28 https://doi.org/10.1002/prot.24294
29 https://doi.org/10.1006/jmbi.1997.1620
30 https://doi.org/10.1006/jmbi.2000.3693
31 https://doi.org/10.1006/jmbi.2001.4602
32 https://doi.org/10.1006/jmbi.2001.5037
33 https://doi.org/10.1016/j.jmb.2003.09.047
34 https://doi.org/10.1016/j.str.2011.11.018
35 https://doi.org/10.1016/s0022-2836(02)01379-7
36 https://doi.org/10.1016/s0022-2836(05)80360-2
37 https://doi.org/10.1016/s1359-0278(98)00072-8
38 https://doi.org/10.1021/bi060409m
39 https://doi.org/10.1021/bi2015663
40 https://doi.org/10.1021/ja049510+
41 https://doi.org/10.1063/1.2780154
42 https://doi.org/10.1063/1.2936832
43 https://doi.org/10.1093/protein/12.2.85
44 https://doi.org/10.1110/ps.0205402
45 https://doi.org/10.2174/1875036201105010059
46 schema:datePublished 2014-12
47 schema:datePublishedReg 2014-12-01
48 schema:description BACKGROUND: Proteins that share a high sequence homology while exhibiting drastically different 3D structures are investigated in this study. Recently, artificial proteins related to the sequences of the GA and IgG binding GB domains of human serum albumin have been designed. These artificial proteins, referred to as GA and GB, share 98% amino acid sequence identity but exhibit different 3D structures, namely, a 3α bundle versus a 4β + α structure. Discriminating between their 3D structures based on their amino acid sequences is a very difficult problem. In the present work, in addition to using bioinformatics techniques, an analysis based on inter-residue average distance statistics is used to address this problem. RESULTS: It was hard to distinguish which structure a given sequence would take only with the results of ordinary analyses like BLAST and conservation analyses. However, in addition to these analyses, with the analysis based on the inter-residue average distance statistics and our sequence tendency analysis, we could infer which part would play an important role in its structural formation. CONCLUSIONS: The results suggest possible determinants of the different 3D structures for sequences with high sequence identity. The possibility of discriminating between the 3D structures based on the given sequences is also discussed.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree true
52 schema:isPartOf N0f0314ce30764cb0946db5742eb8a389
53 N643dd22313754750ba2bd9c4157561e7
54 sg:journal.1039457
55 schema:name Implication of the cause of differences in 3D structures of proteins with high sequence identity based on analyses of amino acid sequences and 3D structures
56 schema:pagination 654
57 schema:productId N2674ac922b0a410bbbd8df9d1af85838
58 N45d898f923b04d22a8d9d0a92f324aea
59 N513a7e6dd5764dcabcec68be1df9ed02
60 Nabba7df8bd2149e88ab0adc36ae6a677
61 Ne90d0ebcd2f6448b9bfff1896b035262
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048255828
63 https://doi.org/10.1186/1756-0500-7-654
64 schema:sdDatePublished 2019-04-11T10:19
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N854c47e4a9494ed686ca3a40865ddd55
67 schema:url https://link.springer.com/10.1186%2F1756-0500-7-654
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N012c7281f2e1424499f5776d43bb2995 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Sequence Homology, Amino Acid
73 rdf:type schema:DefinedTerm
74 N038d34df33c24986852bf1fe17bf2c51 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Structural Homology, Protein
76 rdf:type schema:DefinedTerm
77 N06df073f61f344529b0dfa03c5fcbb5e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Serum Albumin, Human
79 rdf:type schema:DefinedTerm
80 N090cbbed7c5b4b9fa35523265ccd61a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Serum Albumin
82 rdf:type schema:DefinedTerm
83 N0f0314ce30764cb0946db5742eb8a389 schema:issueNumber 1
84 rdf:type schema:PublicationIssue
85 N1ee06636850341e4a624b81d5389d6b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Molecular Sequence Data
87 rdf:type schema:DefinedTerm
88 N25b6f92a24f34dfaa5e999125eacdacd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Computational Biology
90 rdf:type schema:DefinedTerm
91 N2674ac922b0a410bbbd8df9d1af85838 schema:name readcube_id
92 schema:value e5e2606fc72db5eadf6006a852f27a01a82623cff839f084005e67d736579af0
93 rdf:type schema:PropertyValue
94 N2c66dfb06f4b41b79bc0afd96f7c67e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Protein Structure, Secondary
96 rdf:type schema:DefinedTerm
97 N3618380e7a0445258eb98f668f33c33d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Databases, Protein
99 rdf:type schema:DefinedTerm
100 N3c627d5934be404db1c05c5ac8c70a9f rdf:first sg:person.01044540766.79
101 rdf:rest Nc5f5de9ce6f641f2bdab0aa9b7963328
102 N3f5d81d10c7c4001a3e29ed9791f1e9d rdf:first sg:person.01155332325.16
103 rdf:rest rdf:nil
104 N45d898f923b04d22a8d9d0a92f324aea schema:name dimensions_id
105 schema:value pub.1048255828
106 rdf:type schema:PropertyValue
107 N4c5ab17d25a34ca1a2d6a80adecbf84d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Humans
109 rdf:type schema:DefinedTerm
110 N513a7e6dd5764dcabcec68be1df9ed02 schema:name nlm_unique_id
111 schema:value 101462768
112 rdf:type schema:PropertyValue
113 N5458fca37f9f466cbb17d1d07365e57b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Sequence Analysis, Protein
115 rdf:type schema:DefinedTerm
116 N643dd22313754750ba2bd9c4157561e7 schema:volumeNumber 7
117 rdf:type schema:PublicationVolume
118 N854c47e4a9494ed686ca3a40865ddd55 schema:name Springer Nature - SN SciGraph project
119 rdf:type schema:Organization
120 N897e6eee3bb04728916ef289892850d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Sequence Alignment
122 rdf:type schema:DefinedTerm
123 Na5e13384d1514c238d0b988c2736b6ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Structure-Activity Relationship
125 rdf:type schema:DefinedTerm
126 Nabba7df8bd2149e88ab0adc36ae6a677 schema:name doi
127 schema:value 10.1186/1756-0500-7-654
128 rdf:type schema:PropertyValue
129 Nc5f5de9ce6f641f2bdab0aa9b7963328 rdf:first sg:person.013702335215.49
130 rdf:rest N3f5d81d10c7c4001a3e29ed9791f1e9d
131 Nc96fbedb712941bfb08912e7c068584a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Hydrophobic and Hydrophilic Interactions
133 rdf:type schema:DefinedTerm
134 Ncf9bae114c5a41f2b84ab3f887c0f6ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Amino Acid Sequence
136 rdf:type schema:DefinedTerm
137 Nd1a3383c019a4fe4ab07fa31386c91ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Models, Molecular
139 rdf:type schema:DefinedTerm
140 Ndab6c61002e14944b963b674479763b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Computer Simulation
142 rdf:type schema:DefinedTerm
143 Ne90d0ebcd2f6448b9bfff1896b035262 schema:name pubmed_id
144 schema:value 25231773
145 rdf:type schema:PropertyValue
146 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
147 schema:name Information and Computing Sciences
148 rdf:type schema:DefinedTerm
149 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
150 schema:name Artificial Intelligence and Image Processing
151 rdf:type schema:DefinedTerm
152 sg:grant.5553911 http://pending.schema.org/fundedItem sg:pub.10.1186/1756-0500-7-654
153 rdf:type schema:MonetaryGrant
154 sg:grant.5812432 http://pending.schema.org/fundedItem sg:pub.10.1186/1756-0500-7-654
155 rdf:type schema:MonetaryGrant
156 sg:grant.6137361 http://pending.schema.org/fundedItem sg:pub.10.1186/1756-0500-7-654
157 rdf:type schema:MonetaryGrant
158 sg:journal.1039457 schema:issn 1756-0500
159 schema:name BMC Research Notes
160 rdf:type schema:Periodical
161 sg:person.01044540766.79 schema:affiliation https://www.grid.ac/institutes/grid.54432.34
162 schema:familyName Matsuoka
163 schema:givenName Masanari
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044540766.79
165 rdf:type schema:Person
166 sg:person.01155332325.16 schema:affiliation https://www.grid.ac/institutes/grid.262576.2
167 schema:familyName Kikuchi
168 schema:givenName Takeshi
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155332325.16
170 rdf:type schema:Person
171 sg:person.013702335215.49 schema:affiliation https://www.grid.ac/institutes/grid.262576.2
172 schema:familyName Sugita
173 schema:givenName Masatake
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013702335215.49
175 rdf:type schema:Person
176 sg:pub.10.1007/bf01024890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025492285
177 https://doi.org/10.1007/bf01024890
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/s00726-008-0082-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019053273
180 https://doi.org/10.1007/s00726-008-0082-1
181 rdf:type schema:CreativeWork
182 sg:pub.10.1007/s00894-007-0185-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001121461
183 https://doi.org/10.1007/s00894-007-0185-8
184 rdf:type schema:CreativeWork
185 sg:pub.10.1186/1472-6807-14-15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045045837
186 https://doi.org/10.1186/1472-6807-14-15
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1002/(sici)1096-987x(19960130)17:2<226::aid-jcc9>3.0.co;2-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1041964792
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1002/pro.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025085837
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1002/prot.10378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016995219
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1002/prot.20658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038188024
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1002/prot.24294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025384328
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1006/jmbi.1997.1620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018876685
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1006/jmbi.2000.3693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037505797
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1006/jmbi.2001.4602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008342596
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1006/jmbi.2001.5037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041459518
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.jmb.2003.09.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011724460
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.str.2011.11.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044345807
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/s0022-2836(02)01379-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030387851
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/s0022-2836(05)80360-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013618994
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/s1359-0278(98)00072-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022095790
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1021/bi060409m schema:sameAs https://app.dimensions.ai/details/publication/pub.1055201870
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1021/bi2015663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055204683
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1021/ja049510+ schema:sameAs https://app.dimensions.ai/details/publication/pub.1055838109
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1063/1.2780154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057866521
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1063/1.2936832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048400877
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1093/protein/12.2.85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023574386
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1110/ps.0205402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000827840
229 rdf:type schema:CreativeWork
230 https://doi.org/10.2174/1875036201105010059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069237731
231 rdf:type schema:CreativeWork
232 https://www.grid.ac/institutes/grid.262576.2 schema:alternateName Ritsumeikan University
233 schema:name Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, Japan
234 rdf:type schema:Organization
235 https://www.grid.ac/institutes/grid.54432.34 schema:alternateName Japan Society for the Promotion of Science
236 schema:name Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, Japan
237 Japan Society for the Promotion of Science (JSPS) Research Fellow DC2, Tokyo, Japan
238 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...