Perioperative patient safety indicators and hospital surgical volumes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-02-28

AUTHORS

Takefumi Kitazawa, Kunichika Matsumoto, Shigeru Fujita, Ai Yoshida, Shuhei Iida, Hirotoshi Nishizawa, Tomonori Hasegawa

ABSTRACT

BACKGROUND: Since the late 1990s, patient safety has been an important policy issue in developed countries. To evaluate the effectiveness of the activities of patient safety, it is necessary to quantitatively assess the incidence of adverse events by types of failure mode using tangible data. The purpose of this study is to calculate patient safety indicators (PSIs) using the Japanese Diagnosis Procedure Combination/per-diem payment system (DPC/PDPS) reimbursement data and to elucidate the relationship between perioperative PSIs and hospital surgical volume. METHODS: DPC/PDPS data of the Medi-Target project managed by the All Japan Hospital Association were used. An observational study was conducted where PSIs were calculated using an algorithm proposed by the US Agency for Healthcare Research and Quality. We analyzed data of 1,383,872 patients from 188 hospitals who were discharged from January 2008 to December 2010. RESULTS: Among 20 provider level PSIs, four PSIs (three perioperative PSIs and decubitus ulcer) and mortality rates of postoperative patients were related to surgical volume. Low-volume hospitals (less than 33rd percentiles surgical volume per month) had higher mortality rates (5.7%, 95% confidence interval (CI), 3.9% to 7.4%) than mid- (2.9%, 95% CI, 2.6% to 3.3%) or high-volume hospitals (2.7%, 95% CI, 2.5% to 2.9%). Low-volume hospitals had more deaths among surgical inpatients with serious treatable complications (38.5%, 95% CI, 33.7% to 43.2%) than high-volume hospitals (21.4%, 95% CI, 19.0% to 23.9%). Also Low-volume hospitals had lower proportion of difficult surgeries (54.9%, 95% CI, 50.1% to 59.8%) compared with high-volume hospitals (63.4%, 95% CI, 62.3% to 64.6%). In low-volume hospitals, limited experience may have led to insufficient care for postoperative complications. CONCLUSIONS: We demonstrated that PSIs can be calculated using DPC/PDPS data and perioperative PSIs were related to hospital surgical volume. Further investigations focusing on identifying risk factors for poor PSIs and effective support to these hospitals are needed. More... »

PAGES

117-117

References to SciGraph publications

  • 2007-12-11. An attempt to analyze the relation between hospital surgical volume and clinical outcome in GENERAL THORACIC AND CARDIOVASCULAR SURGERY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1756-0500-7-117

    DOI

    http://dx.doi.org/10.1186/1756-0500-7-117

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1021904647

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/24581330


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Public Health and Health Services", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hospital Mortality", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Length of Stay", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Linear Models", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Multivariate Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Patient Safety", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Perioperative Period", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quality of Health Care", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Risk Assessment", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Risk Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Safety Management", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Surgery Department, Hospital", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Social Medicine, Toho University School of Medicine, 5-21-16, Omori-nishi, Ota-ku, Tokyo 143-8540, Japan", 
              "id": "http://www.grid.ac/institutes/grid.265050.4", 
              "name": [
                "Department of Social Medicine, Toho University School of Medicine, 5-21-16, Omori-nishi, Ota-ku, Tokyo 143-8540, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kitazawa", 
            "givenName": "Takefumi", 
            "id": "sg:person.0610471606.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610471606.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Social Medicine, Toho University School of Medicine, 5-21-16, Omori-nishi, Ota-ku, Tokyo 143-8540, Japan", 
              "id": "http://www.grid.ac/institutes/grid.265050.4", 
              "name": [
                "Department of Social Medicine, Toho University School of Medicine, 5-21-16, Omori-nishi, Ota-ku, Tokyo 143-8540, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Matsumoto", 
            "givenName": "Kunichika", 
            "id": "sg:person.01157346051.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157346051.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Social Medicine, Toho University School of Medicine, 5-21-16, Omori-nishi, Ota-ku, Tokyo 143-8540, Japan", 
              "id": "http://www.grid.ac/institutes/grid.265050.4", 
              "name": [
                "Department of Social Medicine, Toho University School of Medicine, 5-21-16, Omori-nishi, Ota-ku, Tokyo 143-8540, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fujita", 
            "givenName": "Shigeru", 
            "id": "sg:person.01046534626.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046534626.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "All Japan Hospital Association, Sumitomo Fudosan Sarugaku-cho Building 7F, 2-8-8, Sarugaku-cho, Chiyoda-ku, Tokyo 101-8378, Japan", 
              "id": "http://www.grid.ac/institutes/grid.452572.3", 
              "name": [
                "Department of Social Medicine, Toho University School of Medicine, 5-21-16, Omori-nishi, Ota-ku, Tokyo 143-8540, Japan", 
                "All Japan Hospital Association, Sumitomo Fudosan Sarugaku-cho Building 7F, 2-8-8, Sarugaku-cho, Chiyoda-ku, Tokyo 101-8378, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yoshida", 
            "givenName": "Ai", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Healthcare Quality Improvement, Tokyo Healthcare Foundation, 1-24-1, Asahigaoka, Nerima-ku, Tokyo 176-8530, Japan", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "All Japan Hospital Association, Sumitomo Fudosan Sarugaku-cho Building 7F, 2-8-8, Sarugaku-cho, Chiyoda-ku, Tokyo 101-8378, Japan", 
                "Institute for Healthcare Quality Improvement, Tokyo Healthcare Foundation, 1-24-1, Asahigaoka, Nerima-ku, Tokyo 176-8530, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Iida", 
            "givenName": "Shuhei", 
            "id": "sg:person.01332671240.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332671240.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "All Japan Hospital Association, Sumitomo Fudosan Sarugaku-cho Building 7F, 2-8-8, Sarugaku-cho, Chiyoda-ku, Tokyo 101-8378, Japan", 
              "id": "http://www.grid.ac/institutes/grid.452572.3", 
              "name": [
                "All Japan Hospital Association, Sumitomo Fudosan Sarugaku-cho Building 7F, 2-8-8, Sarugaku-cho, Chiyoda-ku, Tokyo 101-8378, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nishizawa", 
            "givenName": "Hirotoshi", 
            "id": "sg:person.010322316665.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010322316665.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Social Medicine, Toho University School of Medicine, 5-21-16, Omori-nishi, Ota-ku, Tokyo 143-8540, Japan", 
              "id": "http://www.grid.ac/institutes/grid.265050.4", 
              "name": [
                "Department of Social Medicine, Toho University School of Medicine, 5-21-16, Omori-nishi, Ota-ku, Tokyo 143-8540, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hasegawa", 
            "givenName": "Tomonori", 
            "id": "sg:person.01036374525.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036374525.97"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11748-007-0172-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050925843", 
              "https://doi.org/10.1007/s11748-007-0172-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-02-28", 
        "datePublishedReg": "2014-02-28", 
        "description": "BACKGROUND: Since the late 1990s, patient safety has been an important policy issue in developed countries. To evaluate the effectiveness of the activities of patient safety, it is necessary to quantitatively assess the incidence of adverse events by types of failure mode using tangible data. The purpose of this study is to calculate patient safety indicators (PSIs) using the Japanese Diagnosis Procedure Combination/per-diem payment system (DPC/PDPS) reimbursement data and to elucidate the relationship between perioperative PSIs and hospital surgical volume.\nMETHODS: DPC/PDPS data of the Medi-Target project managed by the All Japan Hospital Association were used. An observational study was conducted where PSIs were calculated using an algorithm proposed by the US Agency for Healthcare Research and Quality. We analyzed data of 1,383,872 patients from 188 hospitals who were discharged from January 2008 to December 2010.\nRESULTS: Among 20 provider level PSIs, four PSIs (three perioperative PSIs and decubitus ulcer) and mortality rates of postoperative patients were related to surgical volume. Low-volume hospitals (less than 33rd percentiles surgical volume per month) had higher mortality rates (5.7%, 95% confidence interval (CI), 3.9% to 7.4%) than mid- (2.9%, 95% CI, 2.6% to 3.3%) or high-volume hospitals (2.7%, 95% CI, 2.5% to 2.9%). Low-volume hospitals had more deaths among surgical inpatients with serious treatable complications (38.5%, 95% CI, 33.7% to 43.2%) than high-volume hospitals (21.4%, 95% CI, 19.0% to 23.9%). Also Low-volume hospitals had lower proportion of difficult surgeries (54.9%, 95% CI, 50.1% to 59.8%) compared with high-volume hospitals (63.4%, 95% CI, 62.3% to 64.6%). In low-volume hospitals, limited experience may have led to insufficient care for postoperative complications.\nCONCLUSIONS: We demonstrated that PSIs can be calculated using DPC/PDPS data and perioperative PSIs were related to hospital surgical volume. Further investigations focusing on identifying risk factors for poor PSIs and effective support to these hospitals are needed.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/1756-0500-7-117", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6121761", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1039457", 
            "issn": [
              "1756-0500"
            ], 
            "name": "BMC Research Notes", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "keywords": [
          "low-volume hospitals", 
          "patient safety indicators", 
          "hospital surgical volume", 
          "high-volume hospitals", 
          "surgical volume", 
          "mortality rate", 
          "patient safety", 
          "high mortality rate", 
          "Japan Hospital Association", 
          "treatable complication", 
          "postoperative complications", 
          "adverse events", 
          "postoperative patients", 
          "surgical inpatients", 
          "Diagnosis Procedure Combination/", 
          "risk factors", 
          "difficult surgery", 
          "observational study", 
          "more deaths", 
          "safety indicators", 
          "reimbursement data", 
          "hospital", 
          "Healthcare Research", 
          "combination/", 
          "Hospital Association", 
          "limited experience", 
          "complications", 
          "patients", 
          "further investigation", 
          "insufficient care", 
          "lower proportion", 
          "US Agency", 
          "safety", 
          "surgery", 
          "inpatients", 
          "incidence", 
          "care", 
          "death", 
          "volume", 
          "study", 
          "association", 
          "rate", 
          "data", 
          "proportion", 
          "indicators", 
          "factors", 
          "activity", 
          "events", 
          "effective support", 
          "experience", 
          "purpose", 
          "support", 
          "quality", 
          "relationship", 
          "effectiveness", 
          "types", 
          "countries", 
          "mid", 
          "investigation", 
          "late 1990s", 
          "research", 
          "agencies", 
          "tangible data", 
          "issues", 
          "important policy issue", 
          "policy issues", 
          "project", 
          "mode", 
          "failure modes", 
          "algorithm", 
          "Japanese Diagnosis Procedure Combination/", 
          "Procedure Combination/", 
          "diem payment system (DPC/PDPS) reimbursement data", 
          "payment system (DPC/PDPS) reimbursement data", 
          "system (DPC/PDPS) reimbursement data", 
          "perioperative PSIs", 
          "DPC/PDPS data", 
          "PDPS data", 
          "Medi-Target project", 
          "All Japan Hospital Association", 
          "provider level PSIs", 
          "level PSIs", 
          "serious treatable complications", 
          "poor PSIs"
        ], 
        "name": "Perioperative patient safety indicators and hospital surgical volumes", 
        "pagination": "117-117", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1021904647"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1756-0500-7-117"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "24581330"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1756-0500-7-117", 
          "https://app.dimensions.ai/details/publication/pub.1021904647"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_619.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/1756-0500-7-117"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1756-0500-7-117'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1756-0500-7-117'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1756-0500-7-117'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1756-0500-7-117'


     

    This table displays all metadata directly associated to this object as RDF triples.

    272 TRIPLES      22 PREDICATES      129 URIs      119 LITERALS      24 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1756-0500-7-117 schema:about N144b6445248b48e092bf393ea571348a
    2 N190fa8d678134545bc8186c2bc432ae4
    3 N37cce60def5e4fe7a7b90446ca420e2c
    4 N3e8e5548e96546c282aa2c1f3a8fd967
    5 N4350a4c5b96c4913b752e119ae9ed7d5
    6 N54536c6cf9b4499096f3ac8c44a1984c
    7 N59b89c8effbe4548a598f3dda1845c1a
    8 N7ff7700c769445e9a8886b418b8dcd09
    9 N89c8df6b763c4d25b518e113b16b3223
    10 N9871940dfe194d06beea63fe2006329f
    11 Nbb7e441145994c9d96ad65af464db854
    12 Nbc5e4307bda94ac28dc3838992449eba
    13 Nc407d7f3b212469390a2a0c9dc245029
    14 Ncde171d067314386a6b45f163946f92b
    15 Nd95b253cb89a41a68ceadb7bebe5cb04
    16 Ne317bcff77ae48fe88538b7cac3937b8
    17 Nfdbde51556f04f5a8807c5f40236de9f
    18 anzsrc-for:11
    19 anzsrc-for:1103
    20 anzsrc-for:1117
    21 schema:author Nb7f857b0886942ad93bd4a0c0bca558c
    22 schema:citation sg:pub.10.1007/s11748-007-0172-0
    23 schema:datePublished 2014-02-28
    24 schema:datePublishedReg 2014-02-28
    25 schema:description BACKGROUND: Since the late 1990s, patient safety has been an important policy issue in developed countries. To evaluate the effectiveness of the activities of patient safety, it is necessary to quantitatively assess the incidence of adverse events by types of failure mode using tangible data. The purpose of this study is to calculate patient safety indicators (PSIs) using the Japanese Diagnosis Procedure Combination/per-diem payment system (DPC/PDPS) reimbursement data and to elucidate the relationship between perioperative PSIs and hospital surgical volume. METHODS: DPC/PDPS data of the Medi-Target project managed by the All Japan Hospital Association were used. An observational study was conducted where PSIs were calculated using an algorithm proposed by the US Agency for Healthcare Research and Quality. We analyzed data of 1,383,872 patients from 188 hospitals who were discharged from January 2008 to December 2010. RESULTS: Among 20 provider level PSIs, four PSIs (three perioperative PSIs and decubitus ulcer) and mortality rates of postoperative patients were related to surgical volume. Low-volume hospitals (less than 33rd percentiles surgical volume per month) had higher mortality rates (5.7%, 95% confidence interval (CI), 3.9% to 7.4%) than mid- (2.9%, 95% CI, 2.6% to 3.3%) or high-volume hospitals (2.7%, 95% CI, 2.5% to 2.9%). Low-volume hospitals had more deaths among surgical inpatients with serious treatable complications (38.5%, 95% CI, 33.7% to 43.2%) than high-volume hospitals (21.4%, 95% CI, 19.0% to 23.9%). Also Low-volume hospitals had lower proportion of difficult surgeries (54.9%, 95% CI, 50.1% to 59.8%) compared with high-volume hospitals (63.4%, 95% CI, 62.3% to 64.6%). In low-volume hospitals, limited experience may have led to insufficient care for postoperative complications. CONCLUSIONS: We demonstrated that PSIs can be calculated using DPC/PDPS data and perioperative PSIs were related to hospital surgical volume. Further investigations focusing on identifying risk factors for poor PSIs and effective support to these hospitals are needed.
    26 schema:genre article
    27 schema:inLanguage en
    28 schema:isAccessibleForFree true
    29 schema:isPartOf N9581a9b19cc7463f83fb9a4a7922c57c
    30 Nf8bb656eaf8849b6a7dc6bd1e6485ed7
    31 sg:journal.1039457
    32 schema:keywords All Japan Hospital Association
    33 DPC/PDPS data
    34 Diagnosis Procedure Combination/
    35 Healthcare Research
    36 Hospital Association
    37 Japan Hospital Association
    38 Japanese Diagnosis Procedure Combination/
    39 Medi-Target project
    40 PDPS data
    41 Procedure Combination/
    42 US Agency
    43 activity
    44 adverse events
    45 agencies
    46 algorithm
    47 association
    48 care
    49 combination/
    50 complications
    51 countries
    52 data
    53 death
    54 diem payment system (DPC/PDPS) reimbursement data
    55 difficult surgery
    56 effective support
    57 effectiveness
    58 events
    59 experience
    60 factors
    61 failure modes
    62 further investigation
    63 high mortality rate
    64 high-volume hospitals
    65 hospital
    66 hospital surgical volume
    67 important policy issue
    68 incidence
    69 indicators
    70 inpatients
    71 insufficient care
    72 investigation
    73 issues
    74 late 1990s
    75 level PSIs
    76 limited experience
    77 low-volume hospitals
    78 lower proportion
    79 mid
    80 mode
    81 more deaths
    82 mortality rate
    83 observational study
    84 patient safety
    85 patient safety indicators
    86 patients
    87 payment system (DPC/PDPS) reimbursement data
    88 perioperative PSIs
    89 policy issues
    90 poor PSIs
    91 postoperative complications
    92 postoperative patients
    93 project
    94 proportion
    95 provider level PSIs
    96 purpose
    97 quality
    98 rate
    99 reimbursement data
    100 relationship
    101 research
    102 risk factors
    103 safety
    104 safety indicators
    105 serious treatable complications
    106 study
    107 support
    108 surgery
    109 surgical inpatients
    110 surgical volume
    111 system (DPC/PDPS) reimbursement data
    112 tangible data
    113 treatable complication
    114 types
    115 volume
    116 schema:name Perioperative patient safety indicators and hospital surgical volumes
    117 schema:pagination 117-117
    118 schema:productId N6cd831bc0a794753a099393f70701b5e
    119 Ne1307f2bfa0444939ac8ca435348ed86
    120 Nee47d08a3fe6477da4f6c1bb70233bd2
    121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021904647
    122 https://doi.org/10.1186/1756-0500-7-117
    123 schema:sdDatePublished 2021-12-01T19:29
    124 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    125 schema:sdPublisher N5acedb3646204c548b3e309ba11d1f15
    126 schema:url https://doi.org/10.1186/1756-0500-7-117
    127 sgo:license sg:explorer/license/
    128 sgo:sdDataset articles
    129 rdf:type schema:ScholarlyArticle
    130 N144b6445248b48e092bf393ea571348a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Female
    132 rdf:type schema:DefinedTerm
    133 N190fa8d678134545bc8186c2bc432ae4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Surgery Department, Hospital
    135 rdf:type schema:DefinedTerm
    136 N1bdd8c4b1b3341bb98cb7908b98b40f2 rdf:first sg:person.01332671240.67
    137 rdf:rest Ndf429f7fbbb74f598f608737d4fa0b67
    138 N37cce60def5e4fe7a7b90446ca420e2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Risk Factors
    140 rdf:type schema:DefinedTerm
    141 N3e8e5548e96546c282aa2c1f3a8fd967 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Aged
    143 rdf:type schema:DefinedTerm
    144 N4350a4c5b96c4913b752e119ae9ed7d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Middle Aged
    146 rdf:type schema:DefinedTerm
    147 N54536c6cf9b4499096f3ac8c44a1984c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Male
    149 rdf:type schema:DefinedTerm
    150 N59b89c8effbe4548a598f3dda1845c1a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Linear Models
    152 rdf:type schema:DefinedTerm
    153 N5acedb3646204c548b3e309ba11d1f15 schema:name Springer Nature - SN SciGraph project
    154 rdf:type schema:Organization
    155 N5d8db69e27b9487caf6821cf5cc9c87c rdf:first Ne5b90c925cfe43789f04a204e1c4afe6
    156 rdf:rest N1bdd8c4b1b3341bb98cb7908b98b40f2
    157 N6c56ce2723ec40389c7092e537aa71fb rdf:first sg:person.01046534626.66
    158 rdf:rest N5d8db69e27b9487caf6821cf5cc9c87c
    159 N6cd831bc0a794753a099393f70701b5e schema:name pubmed_id
    160 schema:value 24581330
    161 rdf:type schema:PropertyValue
    162 N7ff7700c769445e9a8886b418b8dcd09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Risk Assessment
    164 rdf:type schema:DefinedTerm
    165 N89c8df6b763c4d25b518e113b16b3223 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Humans
    167 rdf:type schema:DefinedTerm
    168 N9581a9b19cc7463f83fb9a4a7922c57c schema:volumeNumber 7
    169 rdf:type schema:PublicationVolume
    170 N9871940dfe194d06beea63fe2006329f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Safety Management
    172 rdf:type schema:DefinedTerm
    173 Nb7f857b0886942ad93bd4a0c0bca558c rdf:first sg:person.0610471606.44
    174 rdf:rest Nd8a12da86e9f436bad80f9c90e692aa6
    175 Nbb7e441145994c9d96ad65af464db854 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Hospital Mortality
    177 rdf:type schema:DefinedTerm
    178 Nbc5e4307bda94ac28dc3838992449eba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Perioperative Period
    180 rdf:type schema:DefinedTerm
    181 Nc407d7f3b212469390a2a0c9dc245029 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Adult
    183 rdf:type schema:DefinedTerm
    184 Ncde171d067314386a6b45f163946f92b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name Length of Stay
    186 rdf:type schema:DefinedTerm
    187 Nd51cb4964d8d420982ce7e8854df1d66 rdf:first sg:person.01036374525.97
    188 rdf:rest rdf:nil
    189 Nd8a12da86e9f436bad80f9c90e692aa6 rdf:first sg:person.01157346051.05
    190 rdf:rest N6c56ce2723ec40389c7092e537aa71fb
    191 Nd95b253cb89a41a68ceadb7bebe5cb04 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    192 schema:name Quality of Health Care
    193 rdf:type schema:DefinedTerm
    194 Ndf429f7fbbb74f598f608737d4fa0b67 rdf:first sg:person.010322316665.27
    195 rdf:rest Nd51cb4964d8d420982ce7e8854df1d66
    196 Ne1307f2bfa0444939ac8ca435348ed86 schema:name dimensions_id
    197 schema:value pub.1021904647
    198 rdf:type schema:PropertyValue
    199 Ne317bcff77ae48fe88538b7cac3937b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    200 schema:name Patient Safety
    201 rdf:type schema:DefinedTerm
    202 Ne5b90c925cfe43789f04a204e1c4afe6 schema:affiliation grid-institutes:grid.452572.3
    203 schema:familyName Yoshida
    204 schema:givenName Ai
    205 rdf:type schema:Person
    206 Nee47d08a3fe6477da4f6c1bb70233bd2 schema:name doi
    207 schema:value 10.1186/1756-0500-7-117
    208 rdf:type schema:PropertyValue
    209 Nf8bb656eaf8849b6a7dc6bd1e6485ed7 schema:issueNumber 1
    210 rdf:type schema:PublicationIssue
    211 Nfdbde51556f04f5a8807c5f40236de9f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    212 schema:name Multivariate Analysis
    213 rdf:type schema:DefinedTerm
    214 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    215 schema:name Medical and Health Sciences
    216 rdf:type schema:DefinedTerm
    217 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    218 schema:name Clinical Sciences
    219 rdf:type schema:DefinedTerm
    220 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
    221 schema:name Public Health and Health Services
    222 rdf:type schema:DefinedTerm
    223 sg:grant.6121761 http://pending.schema.org/fundedItem sg:pub.10.1186/1756-0500-7-117
    224 rdf:type schema:MonetaryGrant
    225 sg:journal.1039457 schema:issn 1756-0500
    226 schema:name BMC Research Notes
    227 schema:publisher Springer Nature
    228 rdf:type schema:Periodical
    229 sg:person.010322316665.27 schema:affiliation grid-institutes:grid.452572.3
    230 schema:familyName Nishizawa
    231 schema:givenName Hirotoshi
    232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010322316665.27
    233 rdf:type schema:Person
    234 sg:person.01036374525.97 schema:affiliation grid-institutes:grid.265050.4
    235 schema:familyName Hasegawa
    236 schema:givenName Tomonori
    237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036374525.97
    238 rdf:type schema:Person
    239 sg:person.01046534626.66 schema:affiliation grid-institutes:grid.265050.4
    240 schema:familyName Fujita
    241 schema:givenName Shigeru
    242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046534626.66
    243 rdf:type schema:Person
    244 sg:person.01157346051.05 schema:affiliation grid-institutes:grid.265050.4
    245 schema:familyName Matsumoto
    246 schema:givenName Kunichika
    247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157346051.05
    248 rdf:type schema:Person
    249 sg:person.01332671240.67 schema:affiliation grid-institutes:None
    250 schema:familyName Iida
    251 schema:givenName Shuhei
    252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332671240.67
    253 rdf:type schema:Person
    254 sg:person.0610471606.44 schema:affiliation grid-institutes:grid.265050.4
    255 schema:familyName Kitazawa
    256 schema:givenName Takefumi
    257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610471606.44
    258 rdf:type schema:Person
    259 sg:pub.10.1007/s11748-007-0172-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050925843
    260 https://doi.org/10.1007/s11748-007-0172-0
    261 rdf:type schema:CreativeWork
    262 grid-institutes:None schema:alternateName Institute for Healthcare Quality Improvement, Tokyo Healthcare Foundation, 1-24-1, Asahigaoka, Nerima-ku, Tokyo 176-8530, Japan
    263 schema:name All Japan Hospital Association, Sumitomo Fudosan Sarugaku-cho Building 7F, 2-8-8, Sarugaku-cho, Chiyoda-ku, Tokyo 101-8378, Japan
    264 Institute for Healthcare Quality Improvement, Tokyo Healthcare Foundation, 1-24-1, Asahigaoka, Nerima-ku, Tokyo 176-8530, Japan
    265 rdf:type schema:Organization
    266 grid-institutes:grid.265050.4 schema:alternateName Department of Social Medicine, Toho University School of Medicine, 5-21-16, Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
    267 schema:name Department of Social Medicine, Toho University School of Medicine, 5-21-16, Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
    268 rdf:type schema:Organization
    269 grid-institutes:grid.452572.3 schema:alternateName All Japan Hospital Association, Sumitomo Fudosan Sarugaku-cho Building 7F, 2-8-8, Sarugaku-cho, Chiyoda-ku, Tokyo 101-8378, Japan
    270 schema:name All Japan Hospital Association, Sumitomo Fudosan Sarugaku-cho Building 7F, 2-8-8, Sarugaku-cho, Chiyoda-ku, Tokyo 101-8378, Japan
    271 Department of Social Medicine, Toho University School of Medicine, 5-21-16, Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
    272 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...