Identification of the likely translational start of Mycobacterium tuberculosis GyrB View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-07-15

AUTHORS

Shantanu Karkare, Amanda C Brown, Tanya Parish, Anthony Maxwell

ABSTRACT

BACKGROUND: Bacterial DNA gyrase is a validated target for antibacterial chemotherapy. It consists of two subunits, GyrA and GyrB, which form an A₂B₂ complex in the active enzyme. Sequence alignment of Mycobacterium tuberculosis GyrB with other bacterial GyrBs predicts the presence of 40 potential additional amino acids at the GyrB N-terminus. There are discrepancies between the M. tuberculosis GyrB sequences retrieved from different databases, including sequences annotated with or without the additional 40 amino acids. This has resulted in differences in the GyrB sequence numbering that has led to the reporting of previously known fluoroquinolone-resistance mutations as novel mutations. FINDINGS: We have expressed M. tuberculosis GyrB with and without the extra 40 amino acids in Escherichia coli and shown that both can be produced as soluble, active proteins. Supercoiling and other assays of the two proteins show no differences, suggesting that the additional 40 amino acids have no effect on the enzyme in vitro. RT-PCR analysis of M. tuberculosis mRNA shows that transcripts that could yield both the longer and shorter protein are present. However, promoter analysis showed that only the promoter elements leading to the shorter GyrB (lacking the additional 40 amino acids) had significant activity. CONCLUSION: We conclude that the most probable translational start codon for M. tuberculosis GyrB is GTG (Val) which results in translation of a protein of 674 amino acids (74 kDa). More... »

PAGES

274-274

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1756-0500-6-274

DOI

http://dx.doi.org/10.1186/1756-0500-6-274

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006272628

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23856181


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Gyrase", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Primers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mycobacterium tuberculosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Promoter Regions, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Biosynthesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Real-Time Polymerase Chain Reaction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Homology, Nucleic Acid", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Present address: Novartis Institute of Biomedical Research, Basel 4056, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.419481.1", 
          "name": [
            "Department of Biological Chemistry, John Innes Centre Norwich Research Park, Norwich NR4 7UH, UK", 
            "Present address: Novartis Institute of Biomedical Research, Basel 4056, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karkare", 
        "givenName": "Shantanu", 
        "id": "sg:person.01310256130.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310256130.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Present address: Oxford Gene Technology, Begbroke Science Park, Begbroke Hill, Woodstock Road, Begbroke OX5 1PF, UK", 
          "id": "http://www.grid.ac/institutes/grid.423319.e", 
          "name": [
            "Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK", 
            "Present address: Oxford Gene Technology, Begbroke Science Park, Begbroke Hill, Woodstock Road, Begbroke OX5 1PF, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brown", 
        "givenName": "Amanda C", 
        "id": "sg:person.01324622305.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324622305.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK", 
          "id": "http://www.grid.ac/institutes/grid.4868.2", 
          "name": [
            "Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parish", 
        "givenName": "Tanya", 
        "id": "sg:person.01124452712.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124452712.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biological Chemistry, John Innes Centre Norwich Research Park, Norwich NR4 7UH, UK", 
          "id": "http://www.grid.ac/institutes/grid.420132.6", 
          "name": [
            "Department of Biological Chemistry, John Innes Centre Norwich Research Park, Norwich NR4 7UH, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maxwell", 
        "givenName": "Anthony", 
        "id": "sg:person.01274446176.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274446176.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-59745-207-6_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005149834", 
          "https://doi.org/10.1007/978-1-59745-207-6_18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/31159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035640914", 
          "https://doi.org/10.1038/31159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037369743", 
          "https://doi.org/10.1038/nrmicro1919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00253-011-3557-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012784409", 
          "https://doi.org/10.1007/s00253-011-3557-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-07-15", 
    "datePublishedReg": "2013-07-15", 
    "description": "BACKGROUND: Bacterial DNA gyrase is a validated target for antibacterial chemotherapy. It consists of two subunits, GyrA and GyrB, which form an A\u2082B\u2082 complex in the active enzyme. Sequence alignment of Mycobacterium tuberculosis GyrB with other bacterial GyrBs predicts the presence of 40 potential additional amino acids at the GyrB N-terminus. There are discrepancies between the M. tuberculosis GyrB sequences retrieved from different databases, including sequences annotated with or without the additional 40 amino acids. This has resulted in differences in the GyrB sequence numbering that has led to the reporting of previously known fluoroquinolone-resistance mutations as novel mutations.\nFINDINGS: We have expressed M. tuberculosis GyrB with and without the extra 40 amino acids in Escherichia coli and shown that both can be produced as soluble, active proteins. Supercoiling and other assays of the two proteins show no differences, suggesting that the additional 40 amino acids have no effect on the enzyme in vitro. RT-PCR analysis of M. tuberculosis mRNA shows that transcripts that could yield both the longer and shorter protein are present. However, promoter analysis showed that only the promoter elements leading to the shorter GyrB (lacking the additional 40 amino acids) had significant activity.\nCONCLUSION: We conclude that the most probable translational start codon for M. tuberculosis GyrB is GTG (Val) which results in translation of a protein of 674 amino acids (74 kDa).", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1756-0500-6-274", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1039457", 
        "issn": [
          "1756-0500"
        ], 
        "name": "BMC Research Notes", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "fluoroquinolone resistance mutations", 
      "RT-PCR analysis", 
      "antibacterial chemotherapy", 
      "novel mutations", 
      "amino acids", 
      "tuberculosis mRNA", 
      "bacterial DNA gyrase", 
      "significant activity", 
      "additional amino acids", 
      "chemotherapy", 
      "protein", 
      "mutations", 
      "DNA gyrase", 
      "gyrA", 
      "differences", 
      "acid", 
      "gyrB", 
      "mRNA", 
      "assays", 
      "enzyme", 
      "Escherichia coli", 
      "reporting", 
      "promoter analysis", 
      "target", 
      "activity", 
      "start", 
      "different databases", 
      "database", 
      "effect", 
      "analysis", 
      "gyrase", 
      "transcripts", 
      "presence", 
      "active protein", 
      "subunits", 
      "promoter elements", 
      "translational start codon", 
      "identification", 
      "coli", 
      "gyrB sequences", 
      "shorter protein", 
      "discrepancy", 
      "GyrB N", 
      "active enzyme", 
      "sequence", 
      "translation", 
      "terminus", 
      "codon", 
      "start codon", 
      "GTG", 
      "complexes", 
      "translational start", 
      "alignment", 
      "sequence alignment", 
      "supercoiling", 
      "elements", 
      "Mycobacterium tuberculosis GyrB", 
      "tuberculosis GyrB", 
      "bacterial GyrBs", 
      "potential additional amino acids", 
      "tuberculosis GyrB sequences", 
      "shorter GyrB", 
      "probable translational start codon", 
      "likely translational start"
    ], 
    "name": "Identification of the likely translational start of Mycobacterium tuberculosis GyrB", 
    "pagination": "274-274", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006272628"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1756-0500-6-274"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23856181"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1756-0500-6-274", 
      "https://app.dimensions.ai/details/publication/pub.1006272628"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_595.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1756-0500-6-274"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1756-0500-6-274'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1756-0500-6-274'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1756-0500-6-274'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1756-0500-6-274'


 

This table displays all metadata directly associated to this object as RDF triples.

217 TRIPLES      22 PREDICATES      105 URIs      91 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1756-0500-6-274 schema:about N0c61eded48dd44959469bc8d55430d85
2 N479629826c4a4a528292f49941029702
3 N6002023fad6d46c4bfff4160c5b93cc1
4 N7e636fb6e970400faee1cb33e6f1c14c
5 N85103912bee9441eb7114857c5dace1e
6 N892e5570646443509a2171017d0e8c52
7 N8c667bed05b54a4fad725ccaf2df4007
8 Nb58838918c9248e1bc16e18122a9b8b9
9 Nfbe8c70ea3d34a869017494d14722e9a
10 anzsrc-for:06
11 anzsrc-for:0601
12 anzsrc-for:11
13 anzsrc-for:1108
14 schema:author Ndb9eb83d116942e4b17768299b9bc7ad
15 schema:citation sg:pub.10.1007/978-1-59745-207-6_18
16 sg:pub.10.1007/s00253-011-3557-z
17 sg:pub.10.1038/31159
18 sg:pub.10.1038/nrmicro1919
19 schema:datePublished 2013-07-15
20 schema:datePublishedReg 2013-07-15
21 schema:description BACKGROUND: Bacterial DNA gyrase is a validated target for antibacterial chemotherapy. It consists of two subunits, GyrA and GyrB, which form an A₂B₂ complex in the active enzyme. Sequence alignment of Mycobacterium tuberculosis GyrB with other bacterial GyrBs predicts the presence of 40 potential additional amino acids at the GyrB N-terminus. There are discrepancies between the M. tuberculosis GyrB sequences retrieved from different databases, including sequences annotated with or without the additional 40 amino acids. This has resulted in differences in the GyrB sequence numbering that has led to the reporting of previously known fluoroquinolone-resistance mutations as novel mutations. FINDINGS: We have expressed M. tuberculosis GyrB with and without the extra 40 amino acids in Escherichia coli and shown that both can be produced as soluble, active proteins. Supercoiling and other assays of the two proteins show no differences, suggesting that the additional 40 amino acids have no effect on the enzyme in vitro. RT-PCR analysis of M. tuberculosis mRNA shows that transcripts that could yield both the longer and shorter protein are present. However, promoter analysis showed that only the promoter elements leading to the shorter GyrB (lacking the additional 40 amino acids) had significant activity. CONCLUSION: We conclude that the most probable translational start codon for M. tuberculosis GyrB is GTG (Val) which results in translation of a protein of 674 amino acids (74 kDa).
22 schema:genre article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N807de930fba4450cadde4cf89046f7c4
26 N9ee440f145b045dab30159d5d79fc331
27 sg:journal.1039457
28 schema:keywords DNA gyrase
29 Escherichia coli
30 GTG
31 GyrB N
32 Mycobacterium tuberculosis GyrB
33 RT-PCR analysis
34 acid
35 active enzyme
36 active protein
37 activity
38 additional amino acids
39 alignment
40 amino acids
41 analysis
42 antibacterial chemotherapy
43 assays
44 bacterial DNA gyrase
45 bacterial GyrBs
46 chemotherapy
47 codon
48 coli
49 complexes
50 database
51 differences
52 different databases
53 discrepancy
54 effect
55 elements
56 enzyme
57 fluoroquinolone resistance mutations
58 gyrA
59 gyrB
60 gyrB sequences
61 gyrase
62 identification
63 likely translational start
64 mRNA
65 mutations
66 novel mutations
67 potential additional amino acids
68 presence
69 probable translational start codon
70 promoter analysis
71 promoter elements
72 protein
73 reporting
74 sequence
75 sequence alignment
76 shorter GyrB
77 shorter protein
78 significant activity
79 start
80 start codon
81 subunits
82 supercoiling
83 target
84 terminus
85 transcripts
86 translation
87 translational start
88 translational start codon
89 tuberculosis GyrB
90 tuberculosis GyrB sequences
91 tuberculosis mRNA
92 schema:name Identification of the likely translational start of Mycobacterium tuberculosis GyrB
93 schema:pagination 274-274
94 schema:productId N5016263f283044698f2f65e7b83d309f
95 N7c090acdf43f4d03bf08c8a28e641da0
96 N9c6d6e52ace84babb37ff99de91b363c
97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006272628
98 https://doi.org/10.1186/1756-0500-6-274
99 schema:sdDatePublished 2021-11-01T18:20
100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
101 schema:sdPublisher N0d3c7c2addde4b1f857bb63767a73347
102 schema:url https://doi.org/10.1186/1756-0500-6-274
103 sgo:license sg:explorer/license/
104 sgo:sdDataset articles
105 rdf:type schema:ScholarlyArticle
106 N0c61eded48dd44959469bc8d55430d85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name DNA Primers
108 rdf:type schema:DefinedTerm
109 N0d3c7c2addde4b1f857bb63767a73347 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 N39af76948896438bbe4c594f6c42bcc7 rdf:first sg:person.01274446176.29
112 rdf:rest rdf:nil
113 N479629826c4a4a528292f49941029702 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Mycobacterium tuberculosis
115 rdf:type schema:DefinedTerm
116 N5016263f283044698f2f65e7b83d309f schema:name pubmed_id
117 schema:value 23856181
118 rdf:type schema:PropertyValue
119 N6002023fad6d46c4bfff4160c5b93cc1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name DNA Gyrase
121 rdf:type schema:DefinedTerm
122 N6f53fea08dee48b8a8e489ea63037a1f rdf:first sg:person.01124452712.62
123 rdf:rest N39af76948896438bbe4c594f6c42bcc7
124 N7c090acdf43f4d03bf08c8a28e641da0 schema:name doi
125 schema:value 10.1186/1756-0500-6-274
126 rdf:type schema:PropertyValue
127 N7e636fb6e970400faee1cb33e6f1c14c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Promoter Regions, Genetic
129 rdf:type schema:DefinedTerm
130 N807de930fba4450cadde4cf89046f7c4 schema:volumeNumber 6
131 rdf:type schema:PublicationVolume
132 N80ee0537fc534c97974258c3eb2deeaa rdf:first sg:person.01324622305.60
133 rdf:rest N6f53fea08dee48b8a8e489ea63037a1f
134 N85103912bee9441eb7114857c5dace1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Real-Time Polymerase Chain Reaction
136 rdf:type schema:DefinedTerm
137 N892e5570646443509a2171017d0e8c52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Molecular Sequence Data
139 rdf:type schema:DefinedTerm
140 N8c667bed05b54a4fad725ccaf2df4007 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Base Sequence
142 rdf:type schema:DefinedTerm
143 N9c6d6e52ace84babb37ff99de91b363c schema:name dimensions_id
144 schema:value pub.1006272628
145 rdf:type schema:PropertyValue
146 N9ee440f145b045dab30159d5d79fc331 schema:issueNumber 1
147 rdf:type schema:PublicationIssue
148 Nb58838918c9248e1bc16e18122a9b8b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Sequence Homology, Nucleic Acid
150 rdf:type schema:DefinedTerm
151 Ndb9eb83d116942e4b17768299b9bc7ad rdf:first sg:person.01310256130.18
152 rdf:rest N80ee0537fc534c97974258c3eb2deeaa
153 Nfbe8c70ea3d34a869017494d14722e9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Protein Biosynthesis
155 rdf:type schema:DefinedTerm
156 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
157 schema:name Biological Sciences
158 rdf:type schema:DefinedTerm
159 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
160 schema:name Biochemistry and Cell Biology
161 rdf:type schema:DefinedTerm
162 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
163 schema:name Medical and Health Sciences
164 rdf:type schema:DefinedTerm
165 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
166 schema:name Medical Microbiology
167 rdf:type schema:DefinedTerm
168 sg:journal.1039457 schema:issn 1756-0500
169 schema:name BMC Research Notes
170 schema:publisher Springer Nature
171 rdf:type schema:Periodical
172 sg:person.01124452712.62 schema:affiliation grid-institutes:grid.4868.2
173 schema:familyName Parish
174 schema:givenName Tanya
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124452712.62
176 rdf:type schema:Person
177 sg:person.01274446176.29 schema:affiliation grid-institutes:grid.420132.6
178 schema:familyName Maxwell
179 schema:givenName Anthony
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274446176.29
181 rdf:type schema:Person
182 sg:person.01310256130.18 schema:affiliation grid-institutes:grid.419481.1
183 schema:familyName Karkare
184 schema:givenName Shantanu
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310256130.18
186 rdf:type schema:Person
187 sg:person.01324622305.60 schema:affiliation grid-institutes:grid.423319.e
188 schema:familyName Brown
189 schema:givenName Amanda C
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324622305.60
191 rdf:type schema:Person
192 sg:pub.10.1007/978-1-59745-207-6_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005149834
193 https://doi.org/10.1007/978-1-59745-207-6_18
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/s00253-011-3557-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1012784409
196 https://doi.org/10.1007/s00253-011-3557-z
197 rdf:type schema:CreativeWork
198 sg:pub.10.1038/31159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035640914
199 https://doi.org/10.1038/31159
200 rdf:type schema:CreativeWork
201 sg:pub.10.1038/nrmicro1919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037369743
202 https://doi.org/10.1038/nrmicro1919
203 rdf:type schema:CreativeWork
204 grid-institutes:grid.419481.1 schema:alternateName Present address: Novartis Institute of Biomedical Research, Basel 4056, Switzerland
205 schema:name Department of Biological Chemistry, John Innes Centre Norwich Research Park, Norwich NR4 7UH, UK
206 Present address: Novartis Institute of Biomedical Research, Basel 4056, Switzerland
207 rdf:type schema:Organization
208 grid-institutes:grid.420132.6 schema:alternateName Department of Biological Chemistry, John Innes Centre Norwich Research Park, Norwich NR4 7UH, UK
209 schema:name Department of Biological Chemistry, John Innes Centre Norwich Research Park, Norwich NR4 7UH, UK
210 rdf:type schema:Organization
211 grid-institutes:grid.423319.e schema:alternateName Present address: Oxford Gene Technology, Begbroke Science Park, Begbroke Hill, Woodstock Road, Begbroke OX5 1PF, UK
212 schema:name Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
213 Present address: Oxford Gene Technology, Begbroke Science Park, Begbroke Hill, Woodstock Road, Begbroke OX5 1PF, UK
214 rdf:type schema:Organization
215 grid-institutes:grid.4868.2 schema:alternateName Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
216 schema:name Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
217 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...