AdapterRemoval: easy cleaning of next-generation sequencing reads View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12

AUTHORS

Stinus Lindgreen

ABSTRACT

BACKGROUND: With the advent of next-generation sequencing there is an increased demand for tools to pre-process and handle the vast amounts of data generated. One recurring problem is adapter contamination in the reads, i.e. the partial or complete sequencing of adapter sequences. These adapter sequences have to be removed as they can hinder correct mapping of the reads and influence SNP calling and other downstream analyses. FINDINGS: We present a tool called AdapterRemoval which is able to pre-process both single and paired-end data. The program locates and removes adapter residues from the reads, it is able to combine paired reads if they overlap, and it can optionally trim low-quality nucleotides. Furthermore, it can look for adapter sequence in both the 5' and 3' ends of the reads. This is a flexible tool that can be tuned to accommodate different experimental settings and sequencing platforms producing FASTQ files. AdapterRemoval is shown to be good at trimming adapters from both single-end and paired-end data. CONCLUSIONS: AdapterRemoval is a comprehensive tool for analyzing next-generation sequencing data. It exhibits good performance both in terms of sensitivity and specificity. AdapterRemoval has already been used in various large projects and it is possible to extend it further to accommodate application-specific biases in the data. More... »

PAGES

337

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1756-0500-5-337

DOI

http://dx.doi.org/10.1186/1756-0500-5-337

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017672942

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22748135


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Canterbury", 
          "id": "https://www.grid.ac/institutes/grid.21006.35", 
          "name": [
            "Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, \u00d8ster Voldgade 5-7, 1350, Copenhagen K, Denmark", 
            "The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen, Denmark", 
            "School of Biological Sciences, University of Canterbury, Private Bag 4800, 8041, Christchurch, New Zealand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lindgreen", 
        "givenName": "Stinus", 
        "id": "sg:person.0635177211.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635177211.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1756-0500-3-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000022996", 
          "https://doi.org/10.1186/1756-0500-3-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004595205", 
          "https://doi.org/10.1186/1471-2105-11-341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012266713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016441007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygeno.2011.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017724343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.122747.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020096058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(70)90057-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021169618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021776500", 
          "https://doi.org/10.1038/nature08835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021776500", 
          "https://doi.org/10.1038/nature08835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac2010857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025516081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac2010857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025516081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-6754-9_5848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025624409", 
          "https://doi.org/10.1007/978-1-4020-6754-9_5848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2011-12-11-r112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027516867", 
          "https://doi.org/10.1186/gb-2011-12-11-r112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031241489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038266369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.8.3.186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038920266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039284641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044842298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045737797", 
          "https://doi.org/10.1186/1471-2105-11-38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-3-r25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049583368", 
          "https://doi.org/10.1186/gb-2009-10-3-r25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050205294", 
          "https://doi.org/10.1038/nature09710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050205294", 
          "https://doi.org/10.1038/nature09710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1211177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052025136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14806/ej.17.1.200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067372670"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-12", 
    "datePublishedReg": "2012-12-01", 
    "description": "BACKGROUND: With the advent of next-generation sequencing there is an increased demand for tools to pre-process and handle the vast amounts of data generated. One recurring problem is adapter contamination in the reads, i.e. the partial or complete sequencing of adapter sequences. These adapter sequences have to be removed as they can hinder correct mapping of the reads and influence SNP calling and other downstream analyses.\nFINDINGS: We present a tool called AdapterRemoval which is able to pre-process both single and paired-end data. The program locates and removes adapter residues from the reads, it is able to combine paired reads if they overlap, and it can optionally trim low-quality nucleotides. Furthermore, it can look for adapter sequence in both the 5' and 3' ends of the reads. This is a flexible tool that can be tuned to accommodate different experimental settings and sequencing platforms producing FASTQ files. AdapterRemoval is shown to be good at trimming adapters from both single-end and paired-end data.\nCONCLUSIONS: AdapterRemoval is a comprehensive tool for analyzing next-generation sequencing data. It exhibits good performance both in terms of sensitivity and specificity. AdapterRemoval has already been used in various large projects and it is possible to extend it further to accommodate application-specific biases in the data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1756-0500-5-337", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1039457", 
        "issn": [
          "1756-0500"
        ], 
        "name": "BMC Research Notes", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "AdapterRemoval: easy cleaning of next-generation sequencing reads", 
    "pagination": "337", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "543422c9e1b9168fabfb37bf084d591d8a8d9b7267a7a4cc71e1e3ea047f1bdf"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22748135"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101462768"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1756-0500-5-337"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017672942"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1756-0500-5-337", 
      "https://app.dimensions.ai/details/publication/pub.1017672942"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89822_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1186%2F1756-0500-5-337"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1756-0500-5-337'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1756-0500-5-337'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1756-0500-5-337'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1756-0500-5-337'


 

This table displays all metadata directly associated to this object as RDF triples.

153 TRIPLES      21 PREDICATES      53 URIs      24 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1756-0500-5-337 schema:about N295e96d195eb45279b1dafed066c92f3
2 N686a9358607f4d7a993536d3f34123c8
3 Ncf3ef3eeb70545afa4c825d209b5c5bd
4 anzsrc-for:06
5 anzsrc-for:0604
6 schema:author N2b30eff3aa464bda8323a2ab0a7bfc4c
7 schema:citation sg:pub.10.1007/978-1-4020-6754-9_5848
8 sg:pub.10.1038/nature08835
9 sg:pub.10.1038/nature09710
10 sg:pub.10.1186/1471-2105-11-341
11 sg:pub.10.1186/1471-2105-11-38
12 sg:pub.10.1186/1756-0500-3-3
13 sg:pub.10.1186/gb-2009-10-3-r25
14 sg:pub.10.1186/gb-2011-12-11-r112
15 https://doi.org/10.1016/0022-2836(70)90057-4
16 https://doi.org/10.1016/j.ygeno.2011.05.009
17 https://doi.org/10.1021/ac2010857
18 https://doi.org/10.1093/bioinformatics/btn025
19 https://doi.org/10.1093/bioinformatics/btp324
20 https://doi.org/10.1093/bioinformatics/btp336
21 https://doi.org/10.1093/bioinformatics/btp450
22 https://doi.org/10.1093/bioinformatics/btp527
23 https://doi.org/10.1093/bioinformatics/btr507
24 https://doi.org/10.1101/gr.122747.111
25 https://doi.org/10.1101/gr.8.3.186
26 https://doi.org/10.1126/science.1211177
27 https://doi.org/10.14806/ej.17.1.200
28 schema:datePublished 2012-12
29 schema:datePublishedReg 2012-12-01
30 schema:description BACKGROUND: With the advent of next-generation sequencing there is an increased demand for tools to pre-process and handle the vast amounts of data generated. One recurring problem is adapter contamination in the reads, i.e. the partial or complete sequencing of adapter sequences. These adapter sequences have to be removed as they can hinder correct mapping of the reads and influence SNP calling and other downstream analyses. FINDINGS: We present a tool called AdapterRemoval which is able to pre-process both single and paired-end data. The program locates and removes adapter residues from the reads, it is able to combine paired reads if they overlap, and it can optionally trim low-quality nucleotides. Furthermore, it can look for adapter sequence in both the 5' and 3' ends of the reads. This is a flexible tool that can be tuned to accommodate different experimental settings and sequencing platforms producing FASTQ files. AdapterRemoval is shown to be good at trimming adapters from both single-end and paired-end data. CONCLUSIONS: AdapterRemoval is a comprehensive tool for analyzing next-generation sequencing data. It exhibits good performance both in terms of sensitivity and specificity. AdapterRemoval has already been used in various large projects and it is possible to extend it further to accommodate application-specific biases in the data.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf N94ff1cd730cb4b82964a667901f0f956
35 Nde3d1f014c064f2fb5eac98b934ab357
36 sg:journal.1039457
37 schema:name AdapterRemoval: easy cleaning of next-generation sequencing reads
38 schema:pagination 337
39 schema:productId N0fcbf32639144182b4698a4c813cef06
40 N5fe4c09e47ec4e47962308359bc6fdc6
41 N6fa56b901d174dc28b1e03470ceb5753
42 Naae316dfecfc4ca5be9f499cc915f829
43 Nf50672673e8546be9183eb76721f27d6
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017672942
45 https://doi.org/10.1186/1756-0500-5-337
46 schema:sdDatePublished 2019-04-11T10:02
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Na0e9a78965034c7fbfb24c0a9c5ed0c8
49 schema:url https://link.springer.com/10.1186%2F1756-0500-5-337
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N0fcbf32639144182b4698a4c813cef06 schema:name doi
54 schema:value 10.1186/1756-0500-5-337
55 rdf:type schema:PropertyValue
56 N295e96d195eb45279b1dafed066c92f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
57 schema:name Algorithms
58 rdf:type schema:DefinedTerm
59 N2b30eff3aa464bda8323a2ab0a7bfc4c rdf:first sg:person.0635177211.38
60 rdf:rest rdf:nil
61 N5fe4c09e47ec4e47962308359bc6fdc6 schema:name dimensions_id
62 schema:value pub.1017672942
63 rdf:type schema:PropertyValue
64 N686a9358607f4d7a993536d3f34123c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Sequence Analysis, DNA
66 rdf:type schema:DefinedTerm
67 N6fa56b901d174dc28b1e03470ceb5753 schema:name readcube_id
68 schema:value 543422c9e1b9168fabfb37bf084d591d8a8d9b7267a7a4cc71e1e3ea047f1bdf
69 rdf:type schema:PropertyValue
70 N94ff1cd730cb4b82964a667901f0f956 schema:volumeNumber 5
71 rdf:type schema:PublicationVolume
72 Na0e9a78965034c7fbfb24c0a9c5ed0c8 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Naae316dfecfc4ca5be9f499cc915f829 schema:name nlm_unique_id
75 schema:value 101462768
76 rdf:type schema:PropertyValue
77 Ncf3ef3eeb70545afa4c825d209b5c5bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Polymorphism, Single Nucleotide
79 rdf:type schema:DefinedTerm
80 Nde3d1f014c064f2fb5eac98b934ab357 schema:issueNumber 1
81 rdf:type schema:PublicationIssue
82 Nf50672673e8546be9183eb76721f27d6 schema:name pubmed_id
83 schema:value 22748135
84 rdf:type schema:PropertyValue
85 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
86 schema:name Biological Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
89 schema:name Genetics
90 rdf:type schema:DefinedTerm
91 sg:journal.1039457 schema:issn 1756-0500
92 schema:name BMC Research Notes
93 rdf:type schema:Periodical
94 sg:person.0635177211.38 schema:affiliation https://www.grid.ac/institutes/grid.21006.35
95 schema:familyName Lindgreen
96 schema:givenName Stinus
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635177211.38
98 rdf:type schema:Person
99 sg:pub.10.1007/978-1-4020-6754-9_5848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025624409
100 https://doi.org/10.1007/978-1-4020-6754-9_5848
101 rdf:type schema:CreativeWork
102 sg:pub.10.1038/nature08835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021776500
103 https://doi.org/10.1038/nature08835
104 rdf:type schema:CreativeWork
105 sg:pub.10.1038/nature09710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050205294
106 https://doi.org/10.1038/nature09710
107 rdf:type schema:CreativeWork
108 sg:pub.10.1186/1471-2105-11-341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004595205
109 https://doi.org/10.1186/1471-2105-11-341
110 rdf:type schema:CreativeWork
111 sg:pub.10.1186/1471-2105-11-38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045737797
112 https://doi.org/10.1186/1471-2105-11-38
113 rdf:type schema:CreativeWork
114 sg:pub.10.1186/1756-0500-3-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000022996
115 https://doi.org/10.1186/1756-0500-3-3
116 rdf:type schema:CreativeWork
117 sg:pub.10.1186/gb-2009-10-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049583368
118 https://doi.org/10.1186/gb-2009-10-3-r25
119 rdf:type schema:CreativeWork
120 sg:pub.10.1186/gb-2011-12-11-r112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027516867
121 https://doi.org/10.1186/gb-2011-12-11-r112
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/0022-2836(70)90057-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021169618
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.ygeno.2011.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017724343
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1021/ac2010857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025516081
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1093/bioinformatics/btn025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012266713
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1093/bioinformatics/btp324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266369
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1093/bioinformatics/btp336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016441007
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1093/bioinformatics/btp450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039284641
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1093/bioinformatics/btp527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044842298
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1093/bioinformatics/btr507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031241489
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1101/gr.122747.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020096058
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1101/gr.8.3.186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038920266
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1126/science.1211177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052025136
146 rdf:type schema:CreativeWork
147 https://doi.org/10.14806/ej.17.1.200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067372670
148 rdf:type schema:CreativeWork
149 https://www.grid.ac/institutes/grid.21006.35 schema:alternateName University of Canterbury
150 schema:name Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen K, Denmark
151 School of Biological Sciences, University of Canterbury, Private Bag 4800, 8041, Christchurch, New Zealand
152 The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen, Denmark
153 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...