Nest expansion assay: a cancer systems biology approach to in vitro invasion measurements View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-12

AUTHORS

Yoonseok Kam, Audrey Karperien, Brandy Weidow, Lourdes Estrada, Alexander R Anderson, Vito Quaranta

ABSTRACT

BACKGROUND: Traditional in vitro cell invasion assays focus on measuring one cell parameter at a time and are often less than ideal in terms of reproducibility and quantification. Further, many techniques are not suitable for quantifying the advancing margin of collectively migrating cells, arguably the most important area of activity during tumor invasion. We have developed and applied a highly quantitative, standardized, reproducible Nest Expansion Assay (NEA) to measure cancer cell invasion in vitro, which builds upon established wound-healing techniques. This assay involves creating uniform circular "nests" of cells within a monolayer of cells using a stabilized, silicone-tipped drill press, and quantifying the margin expansion into an overlaid extracellular matrix (ECM)-like component using computer-assisted applications. FINDINGS: The NEA was applied to two human-derived breast cell lines, MCF10A and MCF10A-CA1d, which exhibit opposite degrees of tumorigenicity and invasion in vivo. Assays were performed to incorporate various microenvironmental conditions, in order to test their influence on cell behavior and measures. Two types of computer-driven image analysis were performed using Java's freely available ImageJ software and its FracLac plugin to capture nest expansion and fractal dimension, respectively - which are both taken as indicators of invasiveness. Both analyses confirmed that the NEA is highly reproducible, and that the ECM component is key in defining invasive cell behavior. Interestingly, both analyses also detected significant differences between non-invasive and invasive cell lines, across various microenvironments, and over time. CONCLUSION: The spatial nature of the NEA makes its outcome susceptible to the global influence of many cellular parameters at once (e.g., motility, protease secretion, cell-cell adhesion). We propose the NEA as a mid-throughput technique for screening and simultaneous examination of factors contributing to cancer cell invasion, particularly suitable for parameterizing and validating Cancer Systems Biology approaches such as mathematical modeling. More... »

PAGES

130

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1756-0500-2-130

DOI

http://dx.doi.org/10.1186/1756-0500-2-130

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019288269

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19594934


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moffitt Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.468198.a", 
          "name": [
            "Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kam", 
        "givenName": "Yoonseok", 
        "id": "sg:person.0763001113.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763001113.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Charles Sturt University", 
          "id": "https://www.grid.ac/institutes/grid.1037.5", 
          "name": [
            "School of Community Health, Charles Sturt University, Albury, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karperien", 
        "givenName": "Audrey", 
        "id": "sg:person.01212725112.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212725112.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vanderbilt University", 
          "id": "https://www.grid.ac/institutes/grid.152326.1", 
          "name": [
            "Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weidow", 
        "givenName": "Brandy", 
        "id": "sg:person.01055025504.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055025504.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vanderbilt University", 
          "id": "https://www.grid.ac/institutes/grid.152326.1", 
          "name": [
            "Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Estrada", 
        "givenName": "Lourdes", 
        "id": "sg:person.01077227513.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077227513.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moffitt Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.468198.a", 
          "name": [
            "Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Anderson", 
        "givenName": "Alexander R", 
        "id": "sg:person.011335507432.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011335507432.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vanderbilt University", 
          "id": "https://www.grid.ac/institutes/grid.152326.1", 
          "name": [
            "Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA", 
            "Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Quaranta", 
        "givenName": "Vito", 
        "id": "sg:person.01353411545.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353411545.60"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1006461422273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001709147", 
          "https://doi.org/10.1023/a:1006461422273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0344-0338(11)80080-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002547484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003500438", 
          "https://doi.org/10.1038/nature04872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003500438", 
          "https://doi.org/10.1038/nature04872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003500438", 
          "https://doi.org/10.1038/nature04872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/7/4/028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008774190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1750-1164-2-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010084391", 
          "https://doi.org/10.1186/1750-1164-2-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10278-006-0860-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012258523", 
          "https://doi.org/10.1007/s10278-006-0860-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10278-006-0860-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012258523", 
          "https://doi.org/10.1007/s10278-006-0860-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-7580.2007.00804.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012727211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpcell.00411.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013907683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2184.2001.00202.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016806934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0141-5425(92)90057-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019732731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/sj.jcbfm.9600332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020919643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/sj.jcbfm.9600332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020919643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2003.09.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022434244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1064829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025305622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1385/1-59259-860-9:097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027931648", 
          "https://doi.org/10.1385/1-59259-860-9:097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1939-165x.2006.tb00162.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031807616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2006.09.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035115066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1385/1-59259-063-2:321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040907679", 
          "https://doi.org/10.1385/1-59259-063-2:321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/18/18/s09", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042195166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2407-8-198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043314878", 
          "https://doi.org/10.1186/1471-2407-8-198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0307588100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046318353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02344723", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051902241", 
          "https://doi.org/10.1007/bf02344723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02344723", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051902241", 
          "https://doi.org/10.1007/bf02344723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/85.21.1725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059818260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.70.061911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060732298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.70.061911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060732298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076974793", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081146764", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082950053", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-12", 
    "datePublishedReg": "2009-12-01", 
    "description": "BACKGROUND: Traditional in vitro cell invasion assays focus on measuring one cell parameter at a time and are often less than ideal in terms of reproducibility and quantification. Further, many techniques are not suitable for quantifying the advancing margin of collectively migrating cells, arguably the most important area of activity during tumor invasion. We have developed and applied a highly quantitative, standardized, reproducible Nest Expansion Assay (NEA) to measure cancer cell invasion in vitro, which builds upon established wound-healing techniques. This assay involves creating uniform circular \"nests\" of cells within a monolayer of cells using a stabilized, silicone-tipped drill press, and quantifying the margin expansion into an overlaid extracellular matrix (ECM)-like component using computer-assisted applications.\nFINDINGS: The NEA was applied to two human-derived breast cell lines, MCF10A and MCF10A-CA1d, which exhibit opposite degrees of tumorigenicity and invasion in vivo. Assays were performed to incorporate various microenvironmental conditions, in order to test their influence on cell behavior and measures. Two types of computer-driven image analysis were performed using Java's freely available ImageJ software and its FracLac plugin to capture nest expansion and fractal dimension, respectively - which are both taken as indicators of invasiveness. Both analyses confirmed that the NEA is highly reproducible, and that the ECM component is key in defining invasive cell behavior. Interestingly, both analyses also detected significant differences between non-invasive and invasive cell lines, across various microenvironments, and over time.\nCONCLUSION: The spatial nature of the NEA makes its outcome susceptible to the global influence of many cellular parameters at once (e.g., motility, protease secretion, cell-cell adhesion). We propose the NEA as a mid-throughput technique for screening and simultaneous examination of factors contributing to cancer cell invasion, particularly suitable for parameterizing and validating Cancer Systems Biology approaches such as mathematical modeling.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1756-0500-2-130", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2699027", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1039457", 
        "issn": [
          "1756-0500"
        ], 
        "name": "BMC Research Notes", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "Nest expansion assay: a cancer systems biology approach to in vitro invasion measurements", 
    "pagination": "130", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5be7102ee9a1378338a27238b0b66731d0e59d80c418f42074bfed3e72f79541"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19594934"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101462768"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1756-0500-2-130"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019288269"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1756-0500-2-130", 
      "https://app.dimensions.ai/details/publication/pub.1019288269"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1756-0500-2-130"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1756-0500-2-130'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1756-0500-2-130'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1756-0500-2-130'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1756-0500-2-130'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      21 PREDICATES      55 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1756-0500-2-130 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N1cb048672d1a40be88c0674f497437e5
4 schema:citation sg:pub.10.1007/bf02344723
5 sg:pub.10.1007/s10278-006-0860-9
6 sg:pub.10.1023/a:1006461422273
7 sg:pub.10.1038/nature04872
8 sg:pub.10.1186/1471-2407-8-198
9 sg:pub.10.1186/1750-1164-2-1
10 sg:pub.10.1385/1-59259-063-2:321
11 sg:pub.10.1385/1-59259-860-9:097
12 https://app.dimensions.ai/details/publication/pub.1076974793
13 https://app.dimensions.ai/details/publication/pub.1081146764
14 https://app.dimensions.ai/details/publication/pub.1082950053
15 https://doi.org/10.1016/0141-5425(92)90057-r
16 https://doi.org/10.1016/j.cell.2006.09.042
17 https://doi.org/10.1016/j.chaos.2003.09.020
18 https://doi.org/10.1016/s0344-0338(11)80080-4
19 https://doi.org/10.1038/sj.jcbfm.9600332
20 https://doi.org/10.1046/j.1365-2184.2001.00202.x
21 https://doi.org/10.1073/pnas.0307588100
22 https://doi.org/10.1088/0953-8984/18/18/s09
23 https://doi.org/10.1088/0957-4484/7/4/028
24 https://doi.org/10.1093/jnci/85.21.1725
25 https://doi.org/10.1103/physreve.70.061911
26 https://doi.org/10.1111/j.1469-7580.2007.00804.x
27 https://doi.org/10.1111/j.1939-165x.2006.tb00162.x
28 https://doi.org/10.1126/science.1064829
29 https://doi.org/10.1152/ajpcell.00411.2005
30 schema:datePublished 2009-12
31 schema:datePublishedReg 2009-12-01
32 schema:description BACKGROUND: Traditional in vitro cell invasion assays focus on measuring one cell parameter at a time and are often less than ideal in terms of reproducibility and quantification. Further, many techniques are not suitable for quantifying the advancing margin of collectively migrating cells, arguably the most important area of activity during tumor invasion. We have developed and applied a highly quantitative, standardized, reproducible Nest Expansion Assay (NEA) to measure cancer cell invasion in vitro, which builds upon established wound-healing techniques. This assay involves creating uniform circular "nests" of cells within a monolayer of cells using a stabilized, silicone-tipped drill press, and quantifying the margin expansion into an overlaid extracellular matrix (ECM)-like component using computer-assisted applications. FINDINGS: The NEA was applied to two human-derived breast cell lines, MCF10A and MCF10A-CA1d, which exhibit opposite degrees of tumorigenicity and invasion in vivo. Assays were performed to incorporate various microenvironmental conditions, in order to test their influence on cell behavior and measures. Two types of computer-driven image analysis were performed using Java's freely available ImageJ software and its FracLac plugin to capture nest expansion and fractal dimension, respectively - which are both taken as indicators of invasiveness. Both analyses confirmed that the NEA is highly reproducible, and that the ECM component is key in defining invasive cell behavior. Interestingly, both analyses also detected significant differences between non-invasive and invasive cell lines, across various microenvironments, and over time. CONCLUSION: The spatial nature of the NEA makes its outcome susceptible to the global influence of many cellular parameters at once (e.g., motility, protease secretion, cell-cell adhesion). We propose the NEA as a mid-throughput technique for screening and simultaneous examination of factors contributing to cancer cell invasion, particularly suitable for parameterizing and validating Cancer Systems Biology approaches such as mathematical modeling.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N1183aebff05c40218b50c2b591875e38
37 Nec66355e55c94f00a3b05c05e8840e27
38 sg:journal.1039457
39 schema:name Nest expansion assay: a cancer systems biology approach to in vitro invasion measurements
40 schema:pagination 130
41 schema:productId N33949813665a4cccb81c885a99c4c57f
42 N7ed96178bb41454681cfa43ad247cfd1
43 Nc09a7af387d448e7893670c11ff84316
44 Nd5f62c9e5e5b43b09aeabff401a72c9d
45 Nf2ba488066ab4c23aab614427e0dcc12
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019288269
47 https://doi.org/10.1186/1756-0500-2-130
48 schema:sdDatePublished 2019-04-11T00:16
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N2e166fbc55924adba701bfd3ea54b273
51 schema:url http://link.springer.com/10.1186%2F1756-0500-2-130
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N0a1b9dd1941e4a84b5e0db3fb636c385 rdf:first sg:person.011335507432.72
56 rdf:rest N890ceaeae1ec468193297ae80e8a74ca
57 N1183aebff05c40218b50c2b591875e38 schema:issueNumber 1
58 rdf:type schema:PublicationIssue
59 N1cb048672d1a40be88c0674f497437e5 rdf:first sg:person.0763001113.85
60 rdf:rest Na58613814e1e4f35b8937ef82c1cc8d1
61 N2e166fbc55924adba701bfd3ea54b273 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N33949813665a4cccb81c885a99c4c57f schema:name nlm_unique_id
64 schema:value 101462768
65 rdf:type schema:PropertyValue
66 N7ed96178bb41454681cfa43ad247cfd1 schema:name dimensions_id
67 schema:value pub.1019288269
68 rdf:type schema:PropertyValue
69 N890ceaeae1ec468193297ae80e8a74ca rdf:first sg:person.01353411545.60
70 rdf:rest rdf:nil
71 N953f418d973948cf95f86c44276ee73a rdf:first sg:person.01055025504.10
72 rdf:rest Ndb5e8e574c2e44f1907ef48eca8d3a8b
73 Na58613814e1e4f35b8937ef82c1cc8d1 rdf:first sg:person.01212725112.58
74 rdf:rest N953f418d973948cf95f86c44276ee73a
75 Nc09a7af387d448e7893670c11ff84316 schema:name doi
76 schema:value 10.1186/1756-0500-2-130
77 rdf:type schema:PropertyValue
78 Nd5f62c9e5e5b43b09aeabff401a72c9d schema:name readcube_id
79 schema:value 5be7102ee9a1378338a27238b0b66731d0e59d80c418f42074bfed3e72f79541
80 rdf:type schema:PropertyValue
81 Ndb5e8e574c2e44f1907ef48eca8d3a8b rdf:first sg:person.01077227513.42
82 rdf:rest N0a1b9dd1941e4a84b5e0db3fb636c385
83 Nec66355e55c94f00a3b05c05e8840e27 schema:volumeNumber 2
84 rdf:type schema:PublicationVolume
85 Nf2ba488066ab4c23aab614427e0dcc12 schema:name pubmed_id
86 schema:value 19594934
87 rdf:type schema:PropertyValue
88 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
89 schema:name Biological Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
92 schema:name Biochemistry and Cell Biology
93 rdf:type schema:DefinedTerm
94 sg:grant.2699027 http://pending.schema.org/fundedItem sg:pub.10.1186/1756-0500-2-130
95 rdf:type schema:MonetaryGrant
96 sg:journal.1039457 schema:issn 1756-0500
97 schema:name BMC Research Notes
98 rdf:type schema:Periodical
99 sg:person.01055025504.10 schema:affiliation https://www.grid.ac/institutes/grid.152326.1
100 schema:familyName Weidow
101 schema:givenName Brandy
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055025504.10
103 rdf:type schema:Person
104 sg:person.01077227513.42 schema:affiliation https://www.grid.ac/institutes/grid.152326.1
105 schema:familyName Estrada
106 schema:givenName Lourdes
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077227513.42
108 rdf:type schema:Person
109 sg:person.011335507432.72 schema:affiliation https://www.grid.ac/institutes/grid.468198.a
110 schema:familyName Anderson
111 schema:givenName Alexander R
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011335507432.72
113 rdf:type schema:Person
114 sg:person.01212725112.58 schema:affiliation https://www.grid.ac/institutes/grid.1037.5
115 schema:familyName Karperien
116 schema:givenName Audrey
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212725112.58
118 rdf:type schema:Person
119 sg:person.01353411545.60 schema:affiliation https://www.grid.ac/institutes/grid.152326.1
120 schema:familyName Quaranta
121 schema:givenName Vito
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353411545.60
123 rdf:type schema:Person
124 sg:person.0763001113.85 schema:affiliation https://www.grid.ac/institutes/grid.468198.a
125 schema:familyName Kam
126 schema:givenName Yoonseok
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763001113.85
128 rdf:type schema:Person
129 sg:pub.10.1007/bf02344723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051902241
130 https://doi.org/10.1007/bf02344723
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s10278-006-0860-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012258523
133 https://doi.org/10.1007/s10278-006-0860-9
134 rdf:type schema:CreativeWork
135 sg:pub.10.1023/a:1006461422273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001709147
136 https://doi.org/10.1023/a:1006461422273
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nature04872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003500438
139 https://doi.org/10.1038/nature04872
140 rdf:type schema:CreativeWork
141 sg:pub.10.1186/1471-2407-8-198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043314878
142 https://doi.org/10.1186/1471-2407-8-198
143 rdf:type schema:CreativeWork
144 sg:pub.10.1186/1750-1164-2-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010084391
145 https://doi.org/10.1186/1750-1164-2-1
146 rdf:type schema:CreativeWork
147 sg:pub.10.1385/1-59259-063-2:321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040907679
148 https://doi.org/10.1385/1-59259-063-2:321
149 rdf:type schema:CreativeWork
150 sg:pub.10.1385/1-59259-860-9:097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027931648
151 https://doi.org/10.1385/1-59259-860-9:097
152 rdf:type schema:CreativeWork
153 https://app.dimensions.ai/details/publication/pub.1076974793 schema:CreativeWork
154 https://app.dimensions.ai/details/publication/pub.1081146764 schema:CreativeWork
155 https://app.dimensions.ai/details/publication/pub.1082950053 schema:CreativeWork
156 https://doi.org/10.1016/0141-5425(92)90057-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1019732731
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.cell.2006.09.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035115066
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.chaos.2003.09.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022434244
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/s0344-0338(11)80080-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002547484
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1038/sj.jcbfm.9600332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020919643
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1046/j.1365-2184.2001.00202.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016806934
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1073/pnas.0307588100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046318353
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1088/0953-8984/18/18/s09 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042195166
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1088/0957-4484/7/4/028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008774190
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1093/jnci/85.21.1725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059818260
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physreve.70.061911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060732298
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1111/j.1469-7580.2007.00804.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012727211
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1111/j.1939-165x.2006.tb00162.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031807616
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1126/science.1064829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025305622
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1152/ajpcell.00411.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013907683
185 rdf:type schema:CreativeWork
186 https://www.grid.ac/institutes/grid.1037.5 schema:alternateName Charles Sturt University
187 schema:name School of Community Health, Charles Sturt University, Albury, Australia
188 rdf:type schema:Organization
189 https://www.grid.ac/institutes/grid.152326.1 schema:alternateName Vanderbilt University
190 schema:name Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
191 Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
192 rdf:type schema:Organization
193 https://www.grid.ac/institutes/grid.468198.a schema:alternateName Moffitt Cancer Center
194 schema:name Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...