PhosCalc: A tool for evaluating the sites of peptide phosphorylation from Mass Spectrometer data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-12

AUTHORS

Daniel MacLean, Michael A Burrell, David J Studholme, Alexandra ME Jones

ABSTRACT

BACKGROUND: We have created a software implementation of a published and verified method for assigning probabilities to potential phosphorylation sites on peptides using mass spectrometric data. Our tool, named PhosCalc, determines the number of possible phosphorylation sites and calculates the theoretical masses for the b and y fragment ions of a user-provided peptide sequence. A corresponding user-provided mass spectrum is examined to determine which putative b and y ions have support in the spectrum and a probability score is calculated for each combination of phosphorylation sites. FINDINGS: We test the implementation using spectra of phosphopeptides from bovine beta-casein and we compare the results from the implementation to those from manually curated and verified phosphopeptides from our own experiments. We find that the PhosCalc scores are capable of helping a user to identify phosphorylated sites and can remove a bottleneck in high throughput proteomics analyses. CONCLUSION: PhosCalc is available as a web-based interface for examining up to 100 peptides and as a downloadable tool for examining larger numbers of peptides. PhosCalc can be used to speed up identification of phosphorylation sites and can be easily integrated into data handling pipelines making it a very useful tool for those involved in phosphoproteomic research. More... »

PAGES

30

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1756-0500-1-30

DOI

http://dx.doi.org/10.1186/1756-0500-1-30

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025100966

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18710483


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "John Innes Centre", 
          "id": "https://www.grid.ac/institutes/grid.14830.3e", 
          "name": [
            "The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, NR4 7UH, Norwich, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "MacLean", 
        "givenName": "Daniel", 
        "id": "sg:person.013574744257.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013574744257.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "John Innes Centre", 
          "id": "https://www.grid.ac/institutes/grid.14830.3e", 
          "name": [
            "The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, NR4 7UH, Norwich, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burrell", 
        "givenName": "Michael A", 
        "id": "sg:person.01213010325.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213010325.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "John Innes Centre", 
          "id": "https://www.grid.ac/institutes/grid.14830.3e", 
          "name": [
            "The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, NR4 7UH, Norwich, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Studholme", 
        "givenName": "David J", 
        "id": "sg:person.01047645057.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047645057.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "John Innes Centre", 
          "id": "https://www.grid.ac/institutes/grid.14830.3e", 
          "name": [
            "The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, NR4 7UH, Norwich, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jones", 
        "givenName": "Alexandra ME", 
        "id": "sg:person.01106277754.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106277754.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nbt1006-1226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001976044", 
          "https://doi.org/10.1038/nbt1006-1226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1006-1226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001976044", 
          "https://doi.org/10.1038/nbt1006-1226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011188595", 
          "https://doi.org/10.1038/nbt1240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011188595", 
          "https://doi.org/10.1038/nbt1240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.m700164-mcp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011360346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.104.023150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015353525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0405549101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030141766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.t300006-mcp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031753600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm1468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049058911", 
          "https://doi.org/10.1038/nrm1468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm1468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049058911", 
          "https://doi.org/10.1038/nrm1468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2006.09.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049593784"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12", 
    "datePublishedReg": "2008-12-01", 
    "description": "BACKGROUND: We have created a software implementation of a published and verified method for assigning probabilities to potential phosphorylation sites on peptides using mass spectrometric data. Our tool, named PhosCalc, determines the number of possible phosphorylation sites and calculates the theoretical masses for the b and y fragment ions of a user-provided peptide sequence. A corresponding user-provided mass spectrum is examined to determine which putative b and y ions have support in the spectrum and a probability score is calculated for each combination of phosphorylation sites.\nFINDINGS: We test the implementation using spectra of phosphopeptides from bovine beta-casein and we compare the results from the implementation to those from manually curated and verified phosphopeptides from our own experiments. We find that the PhosCalc scores are capable of helping a user to identify phosphorylated sites and can remove a bottleneck in high throughput proteomics analyses.\nCONCLUSION: PhosCalc is available as a web-based interface for examining up to 100 peptides and as a downloadable tool for examining larger numbers of peptides. PhosCalc can be used to speed up identification of phosphorylation sites and can be easily integrated into data handling pipelines making it a very useful tool for those involved in phosphoproteomic research.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1756-0500-1-30", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1039457", 
        "issn": [
          "1756-0500"
        ], 
        "name": "BMC Research Notes", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "PhosCalc: A tool for evaluating the sites of peptide phosphorylation from Mass Spectrometer data", 
    "pagination": "30", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7794d0ece36d6c753430c02d878741ecb3524b56ab5859a286ea2b068dd56d24"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18710483"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101462768"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1756-0500-1-30"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025100966"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1756-0500-1-30", 
      "https://app.dimensions.ai/details/publication/pub.1025100966"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1756-0500-1-30"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1756-0500-1-30'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1756-0500-1-30'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1756-0500-1-30'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1756-0500-1-30'


 

This table displays all metadata directly associated to this object as RDF triples.

116 TRIPLES      21 PREDICATES      37 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1756-0500-1-30 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nb71f6bfe41b845a8846de9cb811b4bd7
4 schema:citation sg:pub.10.1038/nbt1006-1226
5 sg:pub.10.1038/nbt1240
6 sg:pub.10.1038/nrm1468
7 https://doi.org/10.1016/j.cell.2006.09.026
8 https://doi.org/10.1073/pnas.0405549101
9 https://doi.org/10.1074/mcp.m700164-mcp200
10 https://doi.org/10.1074/mcp.t300006-mcp200
11 https://doi.org/10.1105/tpc.104.023150
12 schema:datePublished 2008-12
13 schema:datePublishedReg 2008-12-01
14 schema:description BACKGROUND: We have created a software implementation of a published and verified method for assigning probabilities to potential phosphorylation sites on peptides using mass spectrometric data. Our tool, named PhosCalc, determines the number of possible phosphorylation sites and calculates the theoretical masses for the b and y fragment ions of a user-provided peptide sequence. A corresponding user-provided mass spectrum is examined to determine which putative b and y ions have support in the spectrum and a probability score is calculated for each combination of phosphorylation sites. FINDINGS: We test the implementation using spectra of phosphopeptides from bovine beta-casein and we compare the results from the implementation to those from manually curated and verified phosphopeptides from our own experiments. We find that the PhosCalc scores are capable of helping a user to identify phosphorylated sites and can remove a bottleneck in high throughput proteomics analyses. CONCLUSION: PhosCalc is available as a web-based interface for examining up to 100 peptides and as a downloadable tool for examining larger numbers of peptides. PhosCalc can be used to speed up identification of phosphorylation sites and can be easily integrated into data handling pipelines making it a very useful tool for those involved in phosphoproteomic research.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf N972777fcd23449f48961bd0a6f82bad6
19 Nef2fce6cb67d46d8b8fcaffcebc8ff72
20 sg:journal.1039457
21 schema:name PhosCalc: A tool for evaluating the sites of peptide phosphorylation from Mass Spectrometer data
22 schema:pagination 30
23 schema:productId N7228e561af9c48428a57e37557441b80
24 N80ba11c4855747f59bb91891048ce95a
25 N99eab2c7883b42008c27b690ee3976ec
26 Nd6505a09ff364ce99cb8920183bfd139
27 Ndb84e0a5eb344534bee8f92cf184a040
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025100966
29 https://doi.org/10.1186/1756-0500-1-30
30 schema:sdDatePublished 2019-04-10T23:24
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N1f672cd23d4840268147f50951cc0322
33 schema:url http://link.springer.com/10.1186%2F1756-0500-1-30
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N036fad5480404bf8aefb9c81ac1398b2 rdf:first sg:person.01047645057.86
38 rdf:rest Na3c131de9a5d45e0973c63b80b2f8349
39 N1f672cd23d4840268147f50951cc0322 schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N7228e561af9c48428a57e37557441b80 schema:name dimensions_id
42 schema:value pub.1025100966
43 rdf:type schema:PropertyValue
44 N80ba11c4855747f59bb91891048ce95a schema:name doi
45 schema:value 10.1186/1756-0500-1-30
46 rdf:type schema:PropertyValue
47 N972777fcd23449f48961bd0a6f82bad6 schema:issueNumber 1
48 rdf:type schema:PublicationIssue
49 N99eab2c7883b42008c27b690ee3976ec schema:name pubmed_id
50 schema:value 18710483
51 rdf:type schema:PropertyValue
52 N9f1a1ba9719941298244022ad092178c rdf:first sg:person.01213010325.78
53 rdf:rest N036fad5480404bf8aefb9c81ac1398b2
54 Na3c131de9a5d45e0973c63b80b2f8349 rdf:first sg:person.01106277754.04
55 rdf:rest rdf:nil
56 Nb71f6bfe41b845a8846de9cb811b4bd7 rdf:first sg:person.013574744257.00
57 rdf:rest N9f1a1ba9719941298244022ad092178c
58 Nd6505a09ff364ce99cb8920183bfd139 schema:name readcube_id
59 schema:value 7794d0ece36d6c753430c02d878741ecb3524b56ab5859a286ea2b068dd56d24
60 rdf:type schema:PropertyValue
61 Ndb84e0a5eb344534bee8f92cf184a040 schema:name nlm_unique_id
62 schema:value 101462768
63 rdf:type schema:PropertyValue
64 Nef2fce6cb67d46d8b8fcaffcebc8ff72 schema:volumeNumber 1
65 rdf:type schema:PublicationVolume
66 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
67 schema:name Information and Computing Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
70 schema:name Artificial Intelligence and Image Processing
71 rdf:type schema:DefinedTerm
72 sg:journal.1039457 schema:issn 1756-0500
73 schema:name BMC Research Notes
74 rdf:type schema:Periodical
75 sg:person.01047645057.86 schema:affiliation https://www.grid.ac/institutes/grid.14830.3e
76 schema:familyName Studholme
77 schema:givenName David J
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047645057.86
79 rdf:type schema:Person
80 sg:person.01106277754.04 schema:affiliation https://www.grid.ac/institutes/grid.14830.3e
81 schema:familyName Jones
82 schema:givenName Alexandra ME
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106277754.04
84 rdf:type schema:Person
85 sg:person.01213010325.78 schema:affiliation https://www.grid.ac/institutes/grid.14830.3e
86 schema:familyName Burrell
87 schema:givenName Michael A
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213010325.78
89 rdf:type schema:Person
90 sg:person.013574744257.00 schema:affiliation https://www.grid.ac/institutes/grid.14830.3e
91 schema:familyName MacLean
92 schema:givenName Daniel
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013574744257.00
94 rdf:type schema:Person
95 sg:pub.10.1038/nbt1006-1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001976044
96 https://doi.org/10.1038/nbt1006-1226
97 rdf:type schema:CreativeWork
98 sg:pub.10.1038/nbt1240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011188595
99 https://doi.org/10.1038/nbt1240
100 rdf:type schema:CreativeWork
101 sg:pub.10.1038/nrm1468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049058911
102 https://doi.org/10.1038/nrm1468
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.cell.2006.09.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049593784
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1073/pnas.0405549101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030141766
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1074/mcp.m700164-mcp200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011360346
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1074/mcp.t300006-mcp200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031753600
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1105/tpc.104.023150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015353525
113 rdf:type schema:CreativeWork
114 https://www.grid.ac/institutes/grid.14830.3e schema:alternateName John Innes Centre
115 schema:name The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, NR4 7UH, Norwich, UK
116 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...