How do alignment programs perform on sequencing data with varying qualities and from repetitive regions? View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12

AUTHORS

Xiaoqing Yu, Kishore Guda, Joseph Willis, Martina Veigl, Zhenghe Wang, Sanford Markowitz, Mark D Adams, Shuying Sun

ABSTRACT

BACKGROUND: Next-generation sequencing technologies generate a significant number of short reads that are utilized to address a variety of biological questions. However, quite often, sequencing reads tend to have low quality at the 3' end and are generated from the repetitive regions of a genome. It is unclear how different alignment programs perform under these different cases. In order to investigate this question, we use both real data and simulated data with the above issues to evaluate the performance of four commonly used algorithms: SOAP2, Bowtie, BWA, and Novoalign. METHODS: The performance of different alignment algorithms are measured in terms of concordance between any pair of aligners (for real sequencing data without known truth) and the accuracy of simulated read alignment. RESULTS: Our results show that, for sequencing data with reads that have relatively good quality or that have had low quality bases trimmed off, all four alignment programs perform similarly. We have also demonstrated that trimming off low quality ends markedly increases the number of aligned reads and improves the consistency among different aligners as well, especially for low quality data. However, Novoalign is more sensitive to the improvement of data quality. Trimming off low quality ends significantly increases the concordance between Novoalign and other aligners. As for aligning reads from repetitive regions, our simulation data show that reads from repetitive regions tend to be aligned incorrectly, and suppressing reads with multiple hits can improve alignment accuracy. CONCLUSIONS: This study provides a systematic comparison of commonly used alignment algorithms in the context of sequencing data with varying qualities and from repetitive regions. Our approach can be applied to different sequencing data sets generated from different platforms. It can also be utilized to study the performance of other alignment programs. More... »

PAGES

6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1756-0381-5-6

DOI

http://dx.doi.org/10.1186/1756-0381-5-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016117161

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22709551


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Case Western Reserve University", 
          "id": "https://www.grid.ac/institutes/grid.67105.35", 
          "name": [
            "Department of Epidemiology and Biostatistics, Case Western Reserve University, 44106, Cleveland, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Xiaoqing", 
        "id": "sg:person.0667336135.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667336135.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Case Western Reserve University", 
          "id": "https://www.grid.ac/institutes/grid.67105.35", 
          "name": [
            "Case Comprehensive Cancer Center, Case Western Reserve University, 44106, Cleveland, OH, USA", 
            "Department of Medicine, Case Western Reserve University, 44106, Cleveland, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guda", 
        "givenName": "Kishore", 
        "id": "sg:person.01221066401.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221066401.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Case Western Reserve University", 
          "id": "https://www.grid.ac/institutes/grid.67105.35", 
          "name": [
            "Department of Pathology, Case Western Reserve University, 44106, Cleveland, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Willis", 
        "givenName": "Joseph", 
        "id": "sg:person.016325241637.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016325241637.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Case Western Reserve University", 
          "id": "https://www.grid.ac/institutes/grid.67105.35", 
          "name": [
            "Case Comprehensive Cancer Center, Case Western Reserve University, 44106, Cleveland, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Veigl", 
        "givenName": "Martina", 
        "id": "sg:person.01150465741.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150465741.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "J. Craig Venter Institute", 
          "id": "https://www.grid.ac/institutes/grid.469946.0", 
          "name": [
            "J. Craig Venter Institute, 10355 Science Center Dr, 92121, San Diego, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Zhenghe", 
        "id": "sg:person.011025730727.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011025730727.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Case Western Reserve University", 
          "id": "https://www.grid.ac/institutes/grid.67105.35", 
          "name": [
            "Department of Medicine, Case Western Reserve University, 44106, Cleveland, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Markowitz", 
        "givenName": "Sanford", 
        "id": "sg:person.015750001717.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015750001717.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "J. Craig Venter Institute", 
          "id": "https://www.grid.ac/institutes/grid.469946.0", 
          "name": [
            "J. Craig Venter Institute, 10355 Science Center Dr, 92121, San Diego, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Adams", 
        "givenName": "Mark D", 
        "id": "sg:person.01165146610.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165146610.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Case Western Reserve University", 
          "id": "https://www.grid.ac/institutes/grid.67105.35", 
          "name": [
            "Department of Epidemiology and Biostatistics, Case Western Reserve University, 44106, Cleveland, OH, USA", 
            "Case Comprehensive Cancer Center, Case Western Reserve University, 44106, Cleveland, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Shuying", 
        "id": "sg:person.01212001432.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212001432.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005347125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.3.440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006017712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.194201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008144266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010875176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012031985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012266713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(05)80360-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013618994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016441007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017557113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbq015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019203929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbq015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019203929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(70)90057-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021169618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021908406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029688589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032165726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035989827", 
          "https://doi.org/10.1038/ng.437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035989827", 
          "https://doi.org/10.1038/ng.437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038266369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.088823.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039050145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039097186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-s10-o7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042447408", 
          "https://doi.org/10.1186/1471-2105-9-s10-o7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044211863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.078212.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047542880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-3-r25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049583368", 
          "https://doi.org/10.1186/gb-2009-10-3-r25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth0810-576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052651674", 
          "https://doi.org/10.1038/nmeth0810-576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sfcs.2000.892127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093824115"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-12", 
    "datePublishedReg": "2012-12-01", 
    "description": "BACKGROUND: Next-generation sequencing technologies generate a significant number of short reads that are utilized to address a variety of biological questions. However, quite often, sequencing reads tend to have low quality at the 3' end and are generated from the repetitive regions of a genome. It is unclear how different alignment programs perform under these different cases. In order to investigate this question, we use both real data and simulated data with the above issues to evaluate the performance of four commonly used algorithms: SOAP2, Bowtie, BWA, and Novoalign.\nMETHODS: The performance of different alignment algorithms are measured in terms of concordance between any pair of aligners (for real sequencing data without known truth) and the accuracy of simulated read alignment.\nRESULTS: Our results show that, for sequencing data with reads that have relatively good quality or that have had low quality bases trimmed off, all four alignment programs perform similarly. We have also demonstrated that trimming off low quality ends markedly increases the number of aligned reads and improves the consistency among different aligners as well, especially for low quality data. However, Novoalign is more sensitive to the improvement of data quality. Trimming off low quality ends significantly increases the concordance between Novoalign and other aligners. As for aligning reads from repetitive regions, our simulation data show that reads from repetitive regions tend to be aligned incorrectly, and suppressing reads with multiple hits can improve alignment accuracy.\nCONCLUSIONS: This study provides a systematic comparison of commonly used alignment algorithms in the context of sequencing data with varying qualities and from repetitive regions. Our approach can be applied to different sequencing data sets generated from different platforms. It can also be utilized to study the performance of other alignment programs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1756-0381-5-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2705139", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2440245", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1039156", 
        "issn": [
          "1756-0381"
        ], 
        "name": "BioData Mining", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "How do alignment programs perform on sequencing data with varying qualities and from repetitive regions?", 
    "pagination": "6", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4ccb3c75d9cb1bd71ed8e73e4d3a8a360664db00ef5535418e8c865199bab1ab"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22709551"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101319161"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1756-0381-5-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016117161"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1756-0381-5-6", 
      "https://app.dimensions.ai/details/publication/pub.1016117161"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1756-0381-5-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1756-0381-5-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1756-0381-5-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1756-0381-5-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1756-0381-5-6'


 

This table displays all metadata directly associated to this object as RDF triples.

203 TRIPLES      21 PREDICATES      53 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1756-0381-5-6 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N43104761046341788027f49608170b4b
4 schema:citation sg:pub.10.1038/ng.437
5 sg:pub.10.1038/nmeth0810-576
6 sg:pub.10.1186/1471-2105-9-s10-o7
7 sg:pub.10.1186/gb-2009-10-3-r25
8 https://doi.org/10.1016/0022-2836(70)90057-4
9 https://doi.org/10.1016/s0022-2836(05)80360-2
10 https://doi.org/10.1093/bib/bbq015
11 https://doi.org/10.1093/bioinformatics/18.3.440
12 https://doi.org/10.1093/bioinformatics/btn025
13 https://doi.org/10.1093/bioinformatics/btn032
14 https://doi.org/10.1093/bioinformatics/btn416
15 https://doi.org/10.1093/bioinformatics/btn429
16 https://doi.org/10.1093/bioinformatics/btp236
17 https://doi.org/10.1093/bioinformatics/btp324
18 https://doi.org/10.1093/bioinformatics/btp336
19 https://doi.org/10.1093/bioinformatics/btp486
20 https://doi.org/10.1093/bioinformatics/btp698
21 https://doi.org/10.1093/bioinformatics/btp706
22 https://doi.org/10.1093/bioinformatics/btr477
23 https://doi.org/10.1101/gr.078212.108
24 https://doi.org/10.1101/gr.088823.108
25 https://doi.org/10.1101/gr.194201
26 https://doi.org/10.1109/sfcs.2000.892127
27 https://doi.org/10.1371/journal.pcbi.1000386
28 schema:datePublished 2012-12
29 schema:datePublishedReg 2012-12-01
30 schema:description BACKGROUND: Next-generation sequencing technologies generate a significant number of short reads that are utilized to address a variety of biological questions. However, quite often, sequencing reads tend to have low quality at the 3' end and are generated from the repetitive regions of a genome. It is unclear how different alignment programs perform under these different cases. In order to investigate this question, we use both real data and simulated data with the above issues to evaluate the performance of four commonly used algorithms: SOAP2, Bowtie, BWA, and Novoalign. METHODS: The performance of different alignment algorithms are measured in terms of concordance between any pair of aligners (for real sequencing data without known truth) and the accuracy of simulated read alignment. RESULTS: Our results show that, for sequencing data with reads that have relatively good quality or that have had low quality bases trimmed off, all four alignment programs perform similarly. We have also demonstrated that trimming off low quality ends markedly increases the number of aligned reads and improves the consistency among different aligners as well, especially for low quality data. However, Novoalign is more sensitive to the improvement of data quality. Trimming off low quality ends significantly increases the concordance between Novoalign and other aligners. As for aligning reads from repetitive regions, our simulation data show that reads from repetitive regions tend to be aligned incorrectly, and suppressing reads with multiple hits can improve alignment accuracy. CONCLUSIONS: This study provides a systematic comparison of commonly used alignment algorithms in the context of sequencing data with varying qualities and from repetitive regions. Our approach can be applied to different sequencing data sets generated from different platforms. It can also be utilized to study the performance of other alignment programs.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf N74485325112847a09d66db8acf488ad5
35 Nf89b00e40dff4b2083fda9be2230e827
36 sg:journal.1039156
37 schema:name How do alignment programs perform on sequencing data with varying qualities and from repetitive regions?
38 schema:pagination 6
39 schema:productId N2c36510fe9fc4458860de8b536930345
40 N3bc2344bc1464f3c918f904b27c92a7a
41 N5decd552e258465790bd1a388a2e8b1b
42 Na43f0d20dc664a62a9a882bd17868961
43 Ne2af01e3d6224549b5fc8cf481b46c81
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016117161
45 https://doi.org/10.1186/1756-0381-5-6
46 schema:sdDatePublished 2019-04-10T18:20
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N376910f002b846a8baf7116c34e684c1
49 schema:url http://link.springer.com/10.1186%2F1756-0381-5-6
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N039ea126e8824f749ce5f522254065ff rdf:first sg:person.011025730727.71
54 rdf:rest N6ebf75f002c9422b86d27445f5da3003
55 N05d6ae9b3f0b47d8af9f94335d19e911 rdf:first sg:person.01165146610.23
56 rdf:rest N66042bf8f0c741db886b76ddf835ad3d
57 N09afe8ca14634ea78ea63fc24c2ca08f rdf:first sg:person.01221066401.33
58 rdf:rest Ncf5b17c63df741a9abecaa4aadc847c4
59 N2c36510fe9fc4458860de8b536930345 schema:name doi
60 schema:value 10.1186/1756-0381-5-6
61 rdf:type schema:PropertyValue
62 N376910f002b846a8baf7116c34e684c1 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N3bc2344bc1464f3c918f904b27c92a7a schema:name nlm_unique_id
65 schema:value 101319161
66 rdf:type schema:PropertyValue
67 N43104761046341788027f49608170b4b rdf:first sg:person.0667336135.62
68 rdf:rest N09afe8ca14634ea78ea63fc24c2ca08f
69 N5decd552e258465790bd1a388a2e8b1b schema:name readcube_id
70 schema:value 4ccb3c75d9cb1bd71ed8e73e4d3a8a360664db00ef5535418e8c865199bab1ab
71 rdf:type schema:PropertyValue
72 N66042bf8f0c741db886b76ddf835ad3d rdf:first sg:person.01212001432.84
73 rdf:rest rdf:nil
74 N6ebf75f002c9422b86d27445f5da3003 rdf:first sg:person.015750001717.89
75 rdf:rest N05d6ae9b3f0b47d8af9f94335d19e911
76 N74485325112847a09d66db8acf488ad5 schema:issueNumber 1
77 rdf:type schema:PublicationIssue
78 Na43f0d20dc664a62a9a882bd17868961 schema:name dimensions_id
79 schema:value pub.1016117161
80 rdf:type schema:PropertyValue
81 Ncf5b17c63df741a9abecaa4aadc847c4 rdf:first sg:person.016325241637.20
82 rdf:rest Nfd27344fae3346b39055522f65dd62d6
83 Ne2af01e3d6224549b5fc8cf481b46c81 schema:name pubmed_id
84 schema:value 22709551
85 rdf:type schema:PropertyValue
86 Nf89b00e40dff4b2083fda9be2230e827 schema:volumeNumber 5
87 rdf:type schema:PublicationVolume
88 Nfd27344fae3346b39055522f65dd62d6 rdf:first sg:person.01150465741.65
89 rdf:rest N039ea126e8824f749ce5f522254065ff
90 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
91 schema:name Information and Computing Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
94 schema:name Information Systems
95 rdf:type schema:DefinedTerm
96 sg:grant.2440245 http://pending.schema.org/fundedItem sg:pub.10.1186/1756-0381-5-6
97 rdf:type schema:MonetaryGrant
98 sg:grant.2705139 http://pending.schema.org/fundedItem sg:pub.10.1186/1756-0381-5-6
99 rdf:type schema:MonetaryGrant
100 sg:journal.1039156 schema:issn 1756-0381
101 schema:name BioData Mining
102 rdf:type schema:Periodical
103 sg:person.011025730727.71 schema:affiliation https://www.grid.ac/institutes/grid.469946.0
104 schema:familyName Wang
105 schema:givenName Zhenghe
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011025730727.71
107 rdf:type schema:Person
108 sg:person.01150465741.65 schema:affiliation https://www.grid.ac/institutes/grid.67105.35
109 schema:familyName Veigl
110 schema:givenName Martina
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150465741.65
112 rdf:type schema:Person
113 sg:person.01165146610.23 schema:affiliation https://www.grid.ac/institutes/grid.469946.0
114 schema:familyName Adams
115 schema:givenName Mark D
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165146610.23
117 rdf:type schema:Person
118 sg:person.01212001432.84 schema:affiliation https://www.grid.ac/institutes/grid.67105.35
119 schema:familyName Sun
120 schema:givenName Shuying
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212001432.84
122 rdf:type schema:Person
123 sg:person.01221066401.33 schema:affiliation https://www.grid.ac/institutes/grid.67105.35
124 schema:familyName Guda
125 schema:givenName Kishore
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221066401.33
127 rdf:type schema:Person
128 sg:person.015750001717.89 schema:affiliation https://www.grid.ac/institutes/grid.67105.35
129 schema:familyName Markowitz
130 schema:givenName Sanford
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015750001717.89
132 rdf:type schema:Person
133 sg:person.016325241637.20 schema:affiliation https://www.grid.ac/institutes/grid.67105.35
134 schema:familyName Willis
135 schema:givenName Joseph
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016325241637.20
137 rdf:type schema:Person
138 sg:person.0667336135.62 schema:affiliation https://www.grid.ac/institutes/grid.67105.35
139 schema:familyName Yu
140 schema:givenName Xiaoqing
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667336135.62
142 rdf:type schema:Person
143 sg:pub.10.1038/ng.437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035989827
144 https://doi.org/10.1038/ng.437
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nmeth0810-576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052651674
147 https://doi.org/10.1038/nmeth0810-576
148 rdf:type schema:CreativeWork
149 sg:pub.10.1186/1471-2105-9-s10-o7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042447408
150 https://doi.org/10.1186/1471-2105-9-s10-o7
151 rdf:type schema:CreativeWork
152 sg:pub.10.1186/gb-2009-10-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049583368
153 https://doi.org/10.1186/gb-2009-10-3-r25
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/0022-2836(70)90057-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021169618
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/s0022-2836(05)80360-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013618994
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1093/bib/bbq015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019203929
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1093/bioinformatics/18.3.440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006017712
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1093/bioinformatics/btn025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012266713
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1093/bioinformatics/btn032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032165726
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1093/bioinformatics/btn416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021908406
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1093/bioinformatics/btn429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017557113
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1093/bioinformatics/btp236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029688589
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1093/bioinformatics/btp324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266369
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1093/bioinformatics/btp336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016441007
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1093/bioinformatics/btp486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044211863
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1093/bioinformatics/btp698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012031985
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1093/bioinformatics/btp706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005347125
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1093/bioinformatics/btr477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010875176
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1101/gr.078212.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047542880
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1101/gr.088823.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039050145
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1101/gr.194201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008144266
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/sfcs.2000.892127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093824115
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1371/journal.pcbi.1000386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039097186
194 rdf:type schema:CreativeWork
195 https://www.grid.ac/institutes/grid.469946.0 schema:alternateName J. Craig Venter Institute
196 schema:name J. Craig Venter Institute, 10355 Science Center Dr, 92121, San Diego, CA, USA
197 rdf:type schema:Organization
198 https://www.grid.ac/institutes/grid.67105.35 schema:alternateName Case Western Reserve University
199 schema:name Case Comprehensive Cancer Center, Case Western Reserve University, 44106, Cleveland, OH, USA
200 Department of Epidemiology and Biostatistics, Case Western Reserve University, 44106, Cleveland, OH, USA
201 Department of Medicine, Case Western Reserve University, 44106, Cleveland, OH, USA
202 Department of Pathology, Case Western Reserve University, 44106, Cleveland, OH, USA
203 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...