Blurring contact maps of thousands of proteins: what we can learn by reconstructing 3D structure View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Marco Vassura, Pietro Di Lena, Luciano Margara, Maria Mirto, Giovanni Aloisio, Piero Fariselli, Rita Casadio

ABSTRACT

BACKGROUND: The present knowledge of protein structures at atomic level derives from some 60,000 molecules. Yet the exponential ever growing set of hypothetical protein sequences comprises some 10 million chains and this makes the problem of protein structure prediction one of the challenging goals of bioinformatics. In this context, the protein representation with contact maps is an intermediate step of fold recognition and constitutes the input of contact map predictors. However contact map representations require fast and reliable methods to reconstruct the specific folding of the protein backbone. METHODS: In this paper, by adopting a GRID technology, our algorithm for 3D reconstruction FT-COMAR is benchmarked on a huge set of non redundant proteins (1716) taking random noise into consideration and this makes our computation the largest ever performed for the task at hand. RESULTS: We can observe the effects of introducing random noise on 3D reconstruction and derive some considerations useful for future implementations. The dimension of the protein set allows also statistical considerations after grouping per SCOP structural classes. CONCLUSIONS: All together our data indicate that the quality of 3D reconstruction is unaffected by deleting up to an average 75% of the real contacts while only few percentage of randomly generated contacts in place of non-contacts are sufficient to hamper 3D reconstruction. More... »

PAGES

1

References to SciGraph publications

  • 2007. Fault Tolerance for Large Scale Protein 3D Reconstruction from Contact Maps in ALGORITHMS IN BIOINFORMATICS
  • 1999-10. Distance Geometry Optimization for Protein Structures in JOURNAL OF GLOBAL OPTIMIZATION
  • 2008. The Pros and Cons of Predicting Protein Contact Maps in PROTEIN STRUCTURE PREDICTION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1756-0381-4-1

    DOI

    http://dx.doi.org/10.1186/1756-0381-4-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1025117326

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/21232136


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Bologna", 
              "id": "https://www.grid.ac/institutes/grid.6292.f", 
              "name": [
                "Department of Computer Science, University of Bologna, Bologna, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vassura", 
            "givenName": "Marco", 
            "id": "sg:person.01130664753.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130664753.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Bologna", 
              "id": "https://www.grid.ac/institutes/grid.6292.f", 
              "name": [
                "Department of Computer Science, University of Bologna, Bologna, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Di Lena", 
            "givenName": "Pietro", 
            "id": "sg:person.01301214601.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301214601.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Bologna", 
              "id": "https://www.grid.ac/institutes/grid.6292.f", 
              "name": [
                "Department of Computer Science, University of Bologna, Bologna, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Margara", 
            "givenName": "Luciano", 
            "id": "sg:person.013142050277.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013142050277.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Salento", 
              "id": "https://www.grid.ac/institutes/grid.9906.6", 
              "name": [
                "Lecce & SPACI Consortium, Department of Innovation Engineering, University of Salento, Lecce, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mirto", 
            "givenName": "Maria", 
            "id": "sg:person.013367070743.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013367070743.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Salento", 
              "id": "https://www.grid.ac/institutes/grid.9906.6", 
              "name": [
                "Lecce & SPACI Consortium, Department of Innovation Engineering, University of Salento, Lecce, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aloisio", 
            "givenName": "Giovanni", 
            "id": "sg:person.010013573543.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010013573543.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Bologna", 
              "id": "https://www.grid.ac/institutes/grid.6292.f", 
              "name": [
                "Biocomputing Group, Department of Biology, University of Bologna, Bologna, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fariselli", 
            "givenName": "Piero", 
            "id": "sg:person.01347332413.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347332413.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Bologna", 
              "id": "https://www.grid.ac/institutes/grid.6292.f", 
              "name": [
                "Biocomputing Group, Department of Biology, University of Bologna, Bologna, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Casadio", 
            "givenName": "Rita", 
            "id": "sg:person.0675702613.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675702613.15"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s1359-0278(97)00041-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001124166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1000584", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005251074"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prot.21637", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006117905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.future.2004.09.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008130963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008380219900", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016639822", 
              "https://doi.org/10.1023/a:1008380219900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0925-7721(97)00014-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019481973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmbi.1993.1332", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021358555"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74126-8_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023694245", 
              "https://doi.org/10.1007/978-3-540-74126-8_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74126-8_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023694245", 
              "https://doi.org/10.1007/978-3-540-74126-8_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.future.2006.05.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024464934"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1097-0134(199710)29:2<240::aid-prot11>3.0.co;2-o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026136453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-59745-574-9_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032370664", 
              "https://doi.org/10.1007/978-1-59745-574-9_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-59745-574-9_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032370664", 
              "https://doi.org/10.1007/978-1-59745-574-9_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkh039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033933776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkh039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033933776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btn115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034533554"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0083-6729(00)58025-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046010317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/25.17.3389", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047265454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp068963t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056070221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp068963t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056070221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/cmb.2006.13.631", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059245496"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcbb.2008.27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061540648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077532675", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/hicss.1994.323564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095567715"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-12", 
        "datePublishedReg": "2011-12-01", 
        "description": "BACKGROUND: The present knowledge of protein structures at atomic level derives from some 60,000 molecules. Yet the exponential ever growing set of hypothetical protein sequences comprises some 10 million chains and this makes the problem of protein structure prediction one of the challenging goals of bioinformatics. In this context, the protein representation with contact maps is an intermediate step of fold recognition and constitutes the input of contact map predictors. However contact map representations require fast and reliable methods to reconstruct the specific folding of the protein backbone.\nMETHODS: In this paper, by adopting a GRID technology, our algorithm for 3D reconstruction FT-COMAR is benchmarked on a huge set of non redundant proteins (1716) taking random noise into consideration and this makes our computation the largest ever performed for the task at hand.\nRESULTS: We can observe the effects of introducing random noise on 3D reconstruction and derive some considerations useful for future implementations. The dimension of the protein set allows also statistical considerations after grouping per SCOP structural classes.\nCONCLUSIONS: All together our data indicate that the quality of 3D reconstruction is unaffected by deleting up to an average 75% of the real contacts while only few percentage of randomly generated contacts in place of non-contacts are sufficient to hamper 3D reconstruction.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/1756-0381-4-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1039156", 
            "issn": [
              "1756-0381"
            ], 
            "name": "BioData Mining", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "name": "Blurring contact maps of thousands of proteins: what we can learn by reconstructing 3D structure", 
        "pagination": "1", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "77a8de84fb3ff0f27560337d105d975bb10459846237f6c8d4ecfd081f4adbbe"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "21232136"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101319161"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1756-0381-4-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1025117326"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1756-0381-4-1", 
          "https://app.dimensions.ai/details/publication/pub.1025117326"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:42", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000512.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2F1756-0381-4-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1756-0381-4-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1756-0381-4-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1756-0381-4-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1756-0381-4-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    176 TRIPLES      21 PREDICATES      49 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1756-0381-4-1 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nfc302ec2043548bf8ebc07b8a9fb9f92
    4 schema:citation sg:pub.10.1007/978-1-59745-574-9_8
    5 sg:pub.10.1007/978-3-540-74126-8_4
    6 sg:pub.10.1023/a:1008380219900
    7 https://app.dimensions.ai/details/publication/pub.1077532675
    8 https://doi.org/10.1002/(sici)1097-0134(199710)29:2<240::aid-prot11>3.0.co;2-o
    9 https://doi.org/10.1002/prot.21637
    10 https://doi.org/10.1006/jmbi.1993.1332
    11 https://doi.org/10.1016/j.future.2004.09.010
    12 https://doi.org/10.1016/j.future.2006.05.001
    13 https://doi.org/10.1016/s0083-6729(00)58025-x
    14 https://doi.org/10.1016/s0925-7721(97)00014-x
    15 https://doi.org/10.1016/s1359-0278(97)00041-2
    16 https://doi.org/10.1021/jp068963t
    17 https://doi.org/10.1089/cmb.2006.13.631
    18 https://doi.org/10.1093/bioinformatics/btn115
    19 https://doi.org/10.1093/nar/25.17.3389
    20 https://doi.org/10.1093/nar/gkh039
    21 https://doi.org/10.1109/hicss.1994.323564
    22 https://doi.org/10.1109/tcbb.2008.27
    23 https://doi.org/10.1371/journal.pcbi.1000584
    24 schema:datePublished 2011-12
    25 schema:datePublishedReg 2011-12-01
    26 schema:description BACKGROUND: The present knowledge of protein structures at atomic level derives from some 60,000 molecules. Yet the exponential ever growing set of hypothetical protein sequences comprises some 10 million chains and this makes the problem of protein structure prediction one of the challenging goals of bioinformatics. In this context, the protein representation with contact maps is an intermediate step of fold recognition and constitutes the input of contact map predictors. However contact map representations require fast and reliable methods to reconstruct the specific folding of the protein backbone. METHODS: In this paper, by adopting a GRID technology, our algorithm for 3D reconstruction FT-COMAR is benchmarked on a huge set of non redundant proteins (1716) taking random noise into consideration and this makes our computation the largest ever performed for the task at hand. RESULTS: We can observe the effects of introducing random noise on 3D reconstruction and derive some considerations useful for future implementations. The dimension of the protein set allows also statistical considerations after grouping per SCOP structural classes. CONCLUSIONS: All together our data indicate that the quality of 3D reconstruction is unaffected by deleting up to an average 75% of the real contacts while only few percentage of randomly generated contacts in place of non-contacts are sufficient to hamper 3D reconstruction.
    27 schema:genre research_article
    28 schema:inLanguage en
    29 schema:isAccessibleForFree true
    30 schema:isPartOf N00ed169f46c043ac8a57cb94c4bf23a0
    31 N759afb6717da4dac9d05a89ead310087
    32 sg:journal.1039156
    33 schema:name Blurring contact maps of thousands of proteins: what we can learn by reconstructing 3D structure
    34 schema:pagination 1
    35 schema:productId N185fbe9d047f462c80efc139719ce03e
    36 N5cd7aad14cc04c63a23d1f1515864419
    37 N8b8b3105aaa345efb528533867153c36
    38 N9aab8019e2fe48e48004f5b967974619
    39 Nfe70bd3d3af94f8a94bcac85611635be
    40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025117326
    41 https://doi.org/10.1186/1756-0381-4-1
    42 schema:sdDatePublished 2019-04-10T16:42
    43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    44 schema:sdPublisher N20f19e977624454084e8e4813752d816
    45 schema:url http://link.springer.com/10.1186%2F1756-0381-4-1
    46 sgo:license sg:explorer/license/
    47 sgo:sdDataset articles
    48 rdf:type schema:ScholarlyArticle
    49 N00ed169f46c043ac8a57cb94c4bf23a0 schema:issueNumber 1
    50 rdf:type schema:PublicationIssue
    51 N185fbe9d047f462c80efc139719ce03e schema:name dimensions_id
    52 schema:value pub.1025117326
    53 rdf:type schema:PropertyValue
    54 N20f19e977624454084e8e4813752d816 schema:name Springer Nature - SN SciGraph project
    55 rdf:type schema:Organization
    56 N26c64ae5c5f24a3a9037bb4792ebe157 rdf:first sg:person.0675702613.15
    57 rdf:rest rdf:nil
    58 N41c835b50f79476aabfce6fec67318f0 rdf:first sg:person.010013573543.47
    59 rdf:rest N53b946cb0a6f49c795c279cfa216c100
    60 N53b946cb0a6f49c795c279cfa216c100 rdf:first sg:person.01347332413.06
    61 rdf:rest N26c64ae5c5f24a3a9037bb4792ebe157
    62 N5cd7aad14cc04c63a23d1f1515864419 schema:name nlm_unique_id
    63 schema:value 101319161
    64 rdf:type schema:PropertyValue
    65 N759afb6717da4dac9d05a89ead310087 schema:volumeNumber 4
    66 rdf:type schema:PublicationVolume
    67 N83203e679fb84e82ae2a8c6a87f35f31 rdf:first sg:person.013367070743.12
    68 rdf:rest N41c835b50f79476aabfce6fec67318f0
    69 N8b8b3105aaa345efb528533867153c36 schema:name readcube_id
    70 schema:value 77a8de84fb3ff0f27560337d105d975bb10459846237f6c8d4ecfd081f4adbbe
    71 rdf:type schema:PropertyValue
    72 N8bb31c53a26b411f8d63055ff6f40dbd rdf:first sg:person.01301214601.87
    73 rdf:rest N90e8dcaeef2c4a8584d438bc9e51b529
    74 N90e8dcaeef2c4a8584d438bc9e51b529 rdf:first sg:person.013142050277.95
    75 rdf:rest N83203e679fb84e82ae2a8c6a87f35f31
    76 N9aab8019e2fe48e48004f5b967974619 schema:name pubmed_id
    77 schema:value 21232136
    78 rdf:type schema:PropertyValue
    79 Nfc302ec2043548bf8ebc07b8a9fb9f92 rdf:first sg:person.01130664753.59
    80 rdf:rest N8bb31c53a26b411f8d63055ff6f40dbd
    81 Nfe70bd3d3af94f8a94bcac85611635be schema:name doi
    82 schema:value 10.1186/1756-0381-4-1
    83 rdf:type schema:PropertyValue
    84 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Information and Computing Sciences
    86 rdf:type schema:DefinedTerm
    87 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Artificial Intelligence and Image Processing
    89 rdf:type schema:DefinedTerm
    90 sg:journal.1039156 schema:issn 1756-0381
    91 schema:name BioData Mining
    92 rdf:type schema:Periodical
    93 sg:person.010013573543.47 schema:affiliation https://www.grid.ac/institutes/grid.9906.6
    94 schema:familyName Aloisio
    95 schema:givenName Giovanni
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010013573543.47
    97 rdf:type schema:Person
    98 sg:person.01130664753.59 schema:affiliation https://www.grid.ac/institutes/grid.6292.f
    99 schema:familyName Vassura
    100 schema:givenName Marco
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130664753.59
    102 rdf:type schema:Person
    103 sg:person.01301214601.87 schema:affiliation https://www.grid.ac/institutes/grid.6292.f
    104 schema:familyName Di Lena
    105 schema:givenName Pietro
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301214601.87
    107 rdf:type schema:Person
    108 sg:person.013142050277.95 schema:affiliation https://www.grid.ac/institutes/grid.6292.f
    109 schema:familyName Margara
    110 schema:givenName Luciano
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013142050277.95
    112 rdf:type schema:Person
    113 sg:person.013367070743.12 schema:affiliation https://www.grid.ac/institutes/grid.9906.6
    114 schema:familyName Mirto
    115 schema:givenName Maria
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013367070743.12
    117 rdf:type schema:Person
    118 sg:person.01347332413.06 schema:affiliation https://www.grid.ac/institutes/grid.6292.f
    119 schema:familyName Fariselli
    120 schema:givenName Piero
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347332413.06
    122 rdf:type schema:Person
    123 sg:person.0675702613.15 schema:affiliation https://www.grid.ac/institutes/grid.6292.f
    124 schema:familyName Casadio
    125 schema:givenName Rita
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675702613.15
    127 rdf:type schema:Person
    128 sg:pub.10.1007/978-1-59745-574-9_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032370664
    129 https://doi.org/10.1007/978-1-59745-574-9_8
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/978-3-540-74126-8_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023694245
    132 https://doi.org/10.1007/978-3-540-74126-8_4
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1023/a:1008380219900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016639822
    135 https://doi.org/10.1023/a:1008380219900
    136 rdf:type schema:CreativeWork
    137 https://app.dimensions.ai/details/publication/pub.1077532675 schema:CreativeWork
    138 https://doi.org/10.1002/(sici)1097-0134(199710)29:2<240::aid-prot11>3.0.co;2-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1026136453
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1002/prot.21637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006117905
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1006/jmbi.1993.1332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021358555
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/j.future.2004.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008130963
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.future.2006.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024464934
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/s0083-6729(00)58025-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046010317
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/s0925-7721(97)00014-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019481973
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/s1359-0278(97)00041-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001124166
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1021/jp068963t schema:sameAs https://app.dimensions.ai/details/publication/pub.1056070221
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1089/cmb.2006.13.631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245496
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1093/bioinformatics/btn115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034533554
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1093/nar/25.17.3389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047265454
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1093/nar/gkh039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033933776
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1109/hicss.1994.323564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095567715
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1109/tcbb.2008.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061540648
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1371/journal.pcbi.1000584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005251074
    169 rdf:type schema:CreativeWork
    170 https://www.grid.ac/institutes/grid.6292.f schema:alternateName University of Bologna
    171 schema:name Biocomputing Group, Department of Biology, University of Bologna, Bologna, Italy
    172 Department of Computer Science, University of Bologna, Bologna, Italy
    173 rdf:type schema:Organization
    174 https://www.grid.ac/institutes/grid.9906.6 schema:alternateName University of Salento
    175 schema:name Lecce & SPACI Consortium, Department of Innovation Engineering, University of Salento, Lecce, Italy
    176 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...