Blurring contact maps of thousands of proteins: what we can learn by reconstructing 3D structure View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Marco Vassura, Pietro Di Lena, Luciano Margara, Maria Mirto, Giovanni Aloisio, Piero Fariselli, Rita Casadio

ABSTRACT

BACKGROUND: The present knowledge of protein structures at atomic level derives from some 60,000 molecules. Yet the exponential ever growing set of hypothetical protein sequences comprises some 10 million chains and this makes the problem of protein structure prediction one of the challenging goals of bioinformatics. In this context, the protein representation with contact maps is an intermediate step of fold recognition and constitutes the input of contact map predictors. However contact map representations require fast and reliable methods to reconstruct the specific folding of the protein backbone. METHODS: In this paper, by adopting a GRID technology, our algorithm for 3D reconstruction FT-COMAR is benchmarked on a huge set of non redundant proteins (1716) taking random noise into consideration and this makes our computation the largest ever performed for the task at hand. RESULTS: We can observe the effects of introducing random noise on 3D reconstruction and derive some considerations useful for future implementations. The dimension of the protein set allows also statistical considerations after grouping per SCOP structural classes. CONCLUSIONS: All together our data indicate that the quality of 3D reconstruction is unaffected by deleting up to an average 75% of the real contacts while only few percentage of randomly generated contacts in place of non-contacts are sufficient to hamper 3D reconstruction. More... »

PAGES

1

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1756-0381-4-1

DOI

http://dx.doi.org/10.1186/1756-0381-4-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025117326

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21232136


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Bologna", 
          "id": "https://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "Department of Computer Science, University of Bologna, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vassura", 
        "givenName": "Marco", 
        "id": "sg:person.01130664753.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130664753.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bologna", 
          "id": "https://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "Department of Computer Science, University of Bologna, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Di Lena", 
        "givenName": "Pietro", 
        "id": "sg:person.01301214601.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301214601.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bologna", 
          "id": "https://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "Department of Computer Science, University of Bologna, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Margara", 
        "givenName": "Luciano", 
        "id": "sg:person.013142050277.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013142050277.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Salento", 
          "id": "https://www.grid.ac/institutes/grid.9906.6", 
          "name": [
            "Lecce & SPACI Consortium, Department of Innovation Engineering, University of Salento, Lecce, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mirto", 
        "givenName": "Maria", 
        "id": "sg:person.013367070743.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013367070743.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Salento", 
          "id": "https://www.grid.ac/institutes/grid.9906.6", 
          "name": [
            "Lecce & SPACI Consortium, Department of Innovation Engineering, University of Salento, Lecce, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aloisio", 
        "givenName": "Giovanni", 
        "id": "sg:person.010013573543.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010013573543.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bologna", 
          "id": "https://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "Biocomputing Group, Department of Biology, University of Bologna, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fariselli", 
        "givenName": "Piero", 
        "id": "sg:person.01347332413.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347332413.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bologna", 
          "id": "https://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "Biocomputing Group, Department of Biology, University of Bologna, Bologna, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Casadio", 
        "givenName": "Rita", 
        "id": "sg:person.0675702613.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675702613.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s1359-0278(97)00041-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001124166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000584", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005251074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.21637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006117905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.future.2004.09.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008130963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008380219900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016639822", 
          "https://doi.org/10.1023/a:1008380219900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-7721(97)00014-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019481973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1993.1332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021358555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74126-8_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023694245", 
          "https://doi.org/10.1007/978-3-540-74126-8_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74126-8_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023694245", 
          "https://doi.org/10.1007/978-3-540-74126-8_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.future.2006.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024464934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0134(199710)29:2<240::aid-prot11>3.0.co;2-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026136453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-59745-574-9_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032370664", 
          "https://doi.org/10.1007/978-1-59745-574-9_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-59745-574-9_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032370664", 
          "https://doi.org/10.1007/978-1-59745-574-9_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033933776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033933776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034533554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0083-6729(00)58025-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046010317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/25.17.3389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047265454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp068963t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056070221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp068963t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056070221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.2006.13.631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059245496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcbb.2008.27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061540648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077532675", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/hicss.1994.323564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095567715"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "BACKGROUND: The present knowledge of protein structures at atomic level derives from some 60,000 molecules. Yet the exponential ever growing set of hypothetical protein sequences comprises some 10 million chains and this makes the problem of protein structure prediction one of the challenging goals of bioinformatics. In this context, the protein representation with contact maps is an intermediate step of fold recognition and constitutes the input of contact map predictors. However contact map representations require fast and reliable methods to reconstruct the specific folding of the protein backbone.\nMETHODS: In this paper, by adopting a GRID technology, our algorithm for 3D reconstruction FT-COMAR is benchmarked on a huge set of non redundant proteins (1716) taking random noise into consideration and this makes our computation the largest ever performed for the task at hand.\nRESULTS: We can observe the effects of introducing random noise on 3D reconstruction and derive some considerations useful for future implementations. The dimension of the protein set allows also statistical considerations after grouping per SCOP structural classes.\nCONCLUSIONS: All together our data indicate that the quality of 3D reconstruction is unaffected by deleting up to an average 75% of the real contacts while only few percentage of randomly generated contacts in place of non-contacts are sufficient to hamper 3D reconstruction.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1756-0381-4-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1039156", 
        "issn": [
          "1756-0381"
        ], 
        "name": "BioData Mining", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Blurring contact maps of thousands of proteins: what we can learn by reconstructing 3D structure", 
    "pagination": "1", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "77a8de84fb3ff0f27560337d105d975bb10459846237f6c8d4ecfd081f4adbbe"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21232136"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101319161"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1756-0381-4-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025117326"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1756-0381-4-1", 
      "https://app.dimensions.ai/details/publication/pub.1025117326"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1756-0381-4-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1756-0381-4-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1756-0381-4-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1756-0381-4-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1756-0381-4-1'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      21 PREDICATES      49 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1756-0381-4-1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N8bf3bdff4bd043d283538d44ec93fdb3
4 schema:citation sg:pub.10.1007/978-1-59745-574-9_8
5 sg:pub.10.1007/978-3-540-74126-8_4
6 sg:pub.10.1023/a:1008380219900
7 https://app.dimensions.ai/details/publication/pub.1077532675
8 https://doi.org/10.1002/(sici)1097-0134(199710)29:2<240::aid-prot11>3.0.co;2-o
9 https://doi.org/10.1002/prot.21637
10 https://doi.org/10.1006/jmbi.1993.1332
11 https://doi.org/10.1016/j.future.2004.09.010
12 https://doi.org/10.1016/j.future.2006.05.001
13 https://doi.org/10.1016/s0083-6729(00)58025-x
14 https://doi.org/10.1016/s0925-7721(97)00014-x
15 https://doi.org/10.1016/s1359-0278(97)00041-2
16 https://doi.org/10.1021/jp068963t
17 https://doi.org/10.1089/cmb.2006.13.631
18 https://doi.org/10.1093/bioinformatics/btn115
19 https://doi.org/10.1093/nar/25.17.3389
20 https://doi.org/10.1093/nar/gkh039
21 https://doi.org/10.1109/hicss.1994.323564
22 https://doi.org/10.1109/tcbb.2008.27
23 https://doi.org/10.1371/journal.pcbi.1000584
24 schema:datePublished 2011-12
25 schema:datePublishedReg 2011-12-01
26 schema:description BACKGROUND: The present knowledge of protein structures at atomic level derives from some 60,000 molecules. Yet the exponential ever growing set of hypothetical protein sequences comprises some 10 million chains and this makes the problem of protein structure prediction one of the challenging goals of bioinformatics. In this context, the protein representation with contact maps is an intermediate step of fold recognition and constitutes the input of contact map predictors. However contact map representations require fast and reliable methods to reconstruct the specific folding of the protein backbone. METHODS: In this paper, by adopting a GRID technology, our algorithm for 3D reconstruction FT-COMAR is benchmarked on a huge set of non redundant proteins (1716) taking random noise into consideration and this makes our computation the largest ever performed for the task at hand. RESULTS: We can observe the effects of introducing random noise on 3D reconstruction and derive some considerations useful for future implementations. The dimension of the protein set allows also statistical considerations after grouping per SCOP structural classes. CONCLUSIONS: All together our data indicate that the quality of 3D reconstruction is unaffected by deleting up to an average 75% of the real contacts while only few percentage of randomly generated contacts in place of non-contacts are sufficient to hamper 3D reconstruction.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf Nb71e89549a3140eb9a08511b8d4168c5
31 Ndf96f18fc1594d2dbe7b806b3079e1c3
32 sg:journal.1039156
33 schema:name Blurring contact maps of thousands of proteins: what we can learn by reconstructing 3D structure
34 schema:pagination 1
35 schema:productId N32ce07269ea24a8eb8fd722446319f0a
36 N62035ebacbb244f78f278a95587495e3
37 N64d4b82639834dc0bec146c0a77747e1
38 N7ff824e966f842a4a96d3a98fc9ffd01
39 Na3dc491cdb7b4875817bd1c071d28e7e
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025117326
41 https://doi.org/10.1186/1756-0381-4-1
42 schema:sdDatePublished 2019-04-10T16:42
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N9f460e077eec45819deca40e74717144
45 schema:url http://link.springer.com/10.1186%2F1756-0381-4-1
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N1b6049a38f2045b9a643ea6713c07f3f rdf:first sg:person.0675702613.15
50 rdf:rest rdf:nil
51 N2203530eaf674627bcab0e89b2b27f7c rdf:first sg:person.013367070743.12
52 rdf:rest Nead5a05bc4d94346888cda19f984b175
53 N234a617869d4407ca45794280f25edfd rdf:first sg:person.013142050277.95
54 rdf:rest N2203530eaf674627bcab0e89b2b27f7c
55 N32ce07269ea24a8eb8fd722446319f0a schema:name doi
56 schema:value 10.1186/1756-0381-4-1
57 rdf:type schema:PropertyValue
58 N37102dca466949b3869a41f00b73db5a rdf:first sg:person.01301214601.87
59 rdf:rest N234a617869d4407ca45794280f25edfd
60 N62035ebacbb244f78f278a95587495e3 schema:name dimensions_id
61 schema:value pub.1025117326
62 rdf:type schema:PropertyValue
63 N64d4b82639834dc0bec146c0a77747e1 schema:name nlm_unique_id
64 schema:value 101319161
65 rdf:type schema:PropertyValue
66 N7ff824e966f842a4a96d3a98fc9ffd01 schema:name pubmed_id
67 schema:value 21232136
68 rdf:type schema:PropertyValue
69 N8bf3bdff4bd043d283538d44ec93fdb3 rdf:first sg:person.01130664753.59
70 rdf:rest N37102dca466949b3869a41f00b73db5a
71 N9f460e077eec45819deca40e74717144 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 Na3dc491cdb7b4875817bd1c071d28e7e schema:name readcube_id
74 schema:value 77a8de84fb3ff0f27560337d105d975bb10459846237f6c8d4ecfd081f4adbbe
75 rdf:type schema:PropertyValue
76 Nb71e89549a3140eb9a08511b8d4168c5 schema:issueNumber 1
77 rdf:type schema:PublicationIssue
78 Ndf96f18fc1594d2dbe7b806b3079e1c3 schema:volumeNumber 4
79 rdf:type schema:PublicationVolume
80 Ne5cf402f30dd45b0ae1b47b6b0eb4351 rdf:first sg:person.01347332413.06
81 rdf:rest N1b6049a38f2045b9a643ea6713c07f3f
82 Nead5a05bc4d94346888cda19f984b175 rdf:first sg:person.010013573543.47
83 rdf:rest Ne5cf402f30dd45b0ae1b47b6b0eb4351
84 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
85 schema:name Information and Computing Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
88 schema:name Artificial Intelligence and Image Processing
89 rdf:type schema:DefinedTerm
90 sg:journal.1039156 schema:issn 1756-0381
91 schema:name BioData Mining
92 rdf:type schema:Periodical
93 sg:person.010013573543.47 schema:affiliation https://www.grid.ac/institutes/grid.9906.6
94 schema:familyName Aloisio
95 schema:givenName Giovanni
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010013573543.47
97 rdf:type schema:Person
98 sg:person.01130664753.59 schema:affiliation https://www.grid.ac/institutes/grid.6292.f
99 schema:familyName Vassura
100 schema:givenName Marco
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130664753.59
102 rdf:type schema:Person
103 sg:person.01301214601.87 schema:affiliation https://www.grid.ac/institutes/grid.6292.f
104 schema:familyName Di Lena
105 schema:givenName Pietro
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301214601.87
107 rdf:type schema:Person
108 sg:person.013142050277.95 schema:affiliation https://www.grid.ac/institutes/grid.6292.f
109 schema:familyName Margara
110 schema:givenName Luciano
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013142050277.95
112 rdf:type schema:Person
113 sg:person.013367070743.12 schema:affiliation https://www.grid.ac/institutes/grid.9906.6
114 schema:familyName Mirto
115 schema:givenName Maria
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013367070743.12
117 rdf:type schema:Person
118 sg:person.01347332413.06 schema:affiliation https://www.grid.ac/institutes/grid.6292.f
119 schema:familyName Fariselli
120 schema:givenName Piero
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347332413.06
122 rdf:type schema:Person
123 sg:person.0675702613.15 schema:affiliation https://www.grid.ac/institutes/grid.6292.f
124 schema:familyName Casadio
125 schema:givenName Rita
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675702613.15
127 rdf:type schema:Person
128 sg:pub.10.1007/978-1-59745-574-9_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032370664
129 https://doi.org/10.1007/978-1-59745-574-9_8
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/978-3-540-74126-8_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023694245
132 https://doi.org/10.1007/978-3-540-74126-8_4
133 rdf:type schema:CreativeWork
134 sg:pub.10.1023/a:1008380219900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016639822
135 https://doi.org/10.1023/a:1008380219900
136 rdf:type schema:CreativeWork
137 https://app.dimensions.ai/details/publication/pub.1077532675 schema:CreativeWork
138 https://doi.org/10.1002/(sici)1097-0134(199710)29:2<240::aid-prot11>3.0.co;2-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1026136453
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1002/prot.21637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006117905
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1006/jmbi.1993.1332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021358555
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.future.2004.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008130963
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.future.2006.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024464934
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/s0083-6729(00)58025-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046010317
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/s0925-7721(97)00014-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019481973
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/s1359-0278(97)00041-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001124166
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1021/jp068963t schema:sameAs https://app.dimensions.ai/details/publication/pub.1056070221
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1089/cmb.2006.13.631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245496
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1093/bioinformatics/btn115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034533554
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1093/nar/25.17.3389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047265454
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1093/nar/gkh039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033933776
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/hicss.1994.323564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095567715
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/tcbb.2008.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061540648
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1371/journal.pcbi.1000584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005251074
169 rdf:type schema:CreativeWork
170 https://www.grid.ac/institutes/grid.6292.f schema:alternateName University of Bologna
171 schema:name Biocomputing Group, Department of Biology, University of Bologna, Bologna, Italy
172 Department of Computer Science, University of Bologna, Bologna, Italy
173 rdf:type schema:Organization
174 https://www.grid.ac/institutes/grid.9906.6 schema:alternateName University of Salento
175 schema:name Lecce & SPACI Consortium, Department of Innovation Engineering, University of Salento, Lecce, Italy
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...