On the identification of potential regulatory variants within genome wide association candidate SNP sets View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Chih-yu Chen, I-Shou Chang, Chao A Hsiung, Wyeth W Wasserman

ABSTRACT

BACKGROUND: Genome wide association studies (GWAS) are a population-scale approach to the identification of segments of the genome in which genetic variations may contribute to disease risk. Current methods focus on the discovery of single nucleotide polymorphisms (SNPs) associated with disease traits. As there are many SNPs within identified risk loci, and the majority of these are situated within non-coding regions, a key challenge is to identify and prioritize variants affecting regulatory sequences that are likely to contribute to the phenotype assessed. METHODS: We focused investigation on SNPs within lung and breast cancer GWAS loci that reached genome-wide significance for potential roles in gene regulation with a specific focus on SNPs likely to disrupt transcription factor binding sites. Within risk loci, the regulatory potential of sub-regions was classified using relevant open chromatin and epigenetic high throughput sequencing data sets from the ENCODE project in available cancer and normal cell lines. Furthermore, transcription factor affinity altering variants were predicted by comparison of position weight matrix scores between disease and reference alleles. Lastly, ChIP-seq data of transcription associated factors and topological domains were included as binding evidence and potential gene target inference. RESULTS: The sets of SNPs, including both the disease-associated markers and those in high linkage disequilibrium with them, were significantly over-represented in regulatory sequences of cancer and/or normal cells; however, over-representation was generally not restricted to disease-relevant tissue specific regions. The calculated regulatory potential, allelic binding affinity scores and ChIP-seq binding evidence were the three criteria used to prioritize candidates. Fitting all three criteria, we highlighted breast cancer susceptibility SNPs and a borderline lung cancer relevant SNP located in cancer-specific enhancers overlapping multiple distinct transcription associated factor ChIP-seq binding sites. CONCLUSION: Incorporating high throughput sequencing epigenetic and transcription factor data sets from both cancer and normal cells into cancer genetic studies reveals potential functional SNPs and informs subsequent characterization efforts. More... »

PAGES

34

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1755-8794-7-34

DOI

http://dx.doi.org/10.1186/1755-8794-7-34

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035899473

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24920305


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alleles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromatin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromatin Immunoprecipitation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Intergenic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Enhancer Elements, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Predisposition to Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Human", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome-Wide Association Study", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "High-Throughput Nucleotide Sequencing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Annotation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Position-Specific Scoring Matrices", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Binding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regulatory Sequences, Nucleic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of British Columbia", 
          "id": "https://www.grid.ac/institutes/grid.17091.3e", 
          "name": [
            "Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada", 
            "Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Chih-yu", 
        "id": "sg:person.013307242554.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013307242554.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Health Research Institutes", 
          "id": "https://www.grid.ac/institutes/grid.59784.37", 
          "name": [
            "National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "I-Shou", 
        "id": "sg:person.01131717340.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131717340.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Health Research Institutes", 
          "id": "https://www.grid.ac/institutes/grid.59784.37", 
          "name": [
            "Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hsiung", 
        "givenName": "Chao A", 
        "id": "sg:person.01150301254.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150301254.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of British Columbia", 
          "id": "https://www.grid.ac/institutes/grid.17091.3e", 
          "name": [
            "Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada", 
            "Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wasserman", 
        "givenName": "Wyeth W", 
        "id": "sg:person.01164162122.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164162122.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1371/journal.pone.0063925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000112171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1217277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001335291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.1049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001402794", 
          "https://doi.org/10.1038/ng.1049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.2563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001447315", 
          "https://doi.org/10.1038/ng.2563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad928101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002330480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003714959", 
          "https://doi.org/10.1038/nmeth.1906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aanat.2010.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003871127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0031127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004018559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004787340", 
          "https://doi.org/10.1038/nature11049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005091941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2012-13-9-r49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005632195", 
          "https://doi.org/10.1186/gb-2012-13-9-r49"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.136127.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007044518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr1012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008353709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010017851", 
          "https://doi.org/10.1038/ng1966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014777139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2004-5-10-r80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018457673", 
          "https://doi.org/10.1186/gb-2004-5-10-r80"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2009.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019097678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019511895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1755-8794-5-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020487384", 
          "https://doi.org/10.1186/1755-8794-5-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1755-8794-5-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020487384", 
          "https://doi.org/10.1186/1755-8794-5-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021031479", 
          "https://doi.org/10.1038/nature07730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022158752", 
          "https://doi.org/10.1038/nature12787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/emmm.201100187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022881432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023938796", 
          "https://doi.org/10.1038/nature07829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023938796", 
          "https://doi.org/10.1038/nature07829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2013.10.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024647736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.1890410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024970193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1004018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025537100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026900777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-13-152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027633460", 
          "https://doi.org/10.1186/1471-2164-13-152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028790868", 
          "https://doi.org/10.1038/nature11245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029123553", 
          "https://doi.org/10.1038/nrg1315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029123553", 
          "https://doi.org/10.1038/nrg1315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029971202", 
          "https://doi.org/10.1038/nmeth.1937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0054359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030618476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.155127.113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032517307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gm281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032852217", 
          "https://doi.org/10.1186/gm281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033504535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.137323.112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034124863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036657357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037453195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0040005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039254257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks1089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039358249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040271530", 
          "https://doi.org/10.1038/nature11082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041478010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr1182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042462658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1530509100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044620917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.8.1135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046379219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.leukres.2011.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046735598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1016071107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047051560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bone.2011.10.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048475026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkf578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049849470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1202746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050186337", 
          "https://doi.org/10.1038/sj.onc.1202746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1202746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050186337", 
          "https://doi.org/10.1038/sj.onc.1202746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.135665.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050340897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.105361.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051822451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052960118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1871520611313020013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069218716"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: Genome wide association studies (GWAS) are a population-scale approach to the identification of segments of the genome in which genetic variations may contribute to disease risk. Current methods focus on the discovery of single nucleotide polymorphisms (SNPs) associated with disease traits. As there are many SNPs within identified risk loci, and the majority of these are situated within non-coding regions, a key challenge is to identify and prioritize variants affecting regulatory sequences that are likely to contribute to the phenotype assessed.\nMETHODS: We focused investigation on SNPs within lung and breast cancer GWAS loci that reached genome-wide significance for potential roles in gene regulation with a specific focus on SNPs likely to disrupt transcription factor binding sites. Within risk loci, the regulatory potential of sub-regions was classified using relevant open chromatin and epigenetic high throughput sequencing data sets from the ENCODE project in available cancer and normal cell lines. Furthermore, transcription factor affinity altering variants were predicted by comparison of position weight matrix scores between disease and reference alleles. Lastly, ChIP-seq data of transcription associated factors and topological domains were included as binding evidence and potential gene target inference.\nRESULTS: The sets of SNPs, including both the disease-associated markers and those in high linkage disequilibrium with them, were significantly over-represented in regulatory sequences of cancer and/or normal cells; however, over-representation was generally not restricted to disease-relevant tissue specific regions. The calculated regulatory potential, allelic binding affinity scores and ChIP-seq binding evidence were the three criteria used to prioritize candidates. Fitting all three criteria, we highlighted breast cancer susceptibility SNPs and a borderline lung cancer relevant SNP located in cancer-specific enhancers overlapping multiple distinct transcription associated factor ChIP-seq binding sites.\nCONCLUSION: Incorporating high throughput sequencing epigenetic and transcription factor data sets from both cancer and normal cells into cancer genetic studies reveals potential functional SNPs and informs subsequent characterization efforts.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1755-8794-7-34", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2520061", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1039191", 
        "issn": [
          "1755-8794"
        ], 
        "name": "BMC Medical Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "On the identification of potential regulatory variants within genome wide association candidate SNP sets", 
    "pagination": "34", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ab037f9cb69d5a7ccb5c574a51a09fad5df09bcce8eacc2038e96bf7e082b4fb"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24920305"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101319628"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1755-8794-7-34"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035899473"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1755-8794-7-34", 
      "https://app.dimensions.ai/details/publication/pub.1035899473"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1755-8794-7-34"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-7-34'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-7-34'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-7-34'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-7-34'


 

This table displays all metadata directly associated to this object as RDF triples.

349 TRIPLES      21 PREDICATES      101 URIs      39 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1755-8794-7-34 schema:about N036fed3d95d743b584df94f02e0d9e9a
2 N103de650c2df4200a9e6f802856c1485
3 N30bee6f0fee341b8b7e524a7737716a9
4 N37b0924f1574404f827d7cbe3f5564f0
5 N3da534ab350044989af4df6e9340f413
6 N521dfdb5909c445a82eecd0cadea37ef
7 N885848f54cf04788a99663ecbf8e9871
8 N8e562c912fd141208ef7e944d8d5e7f6
9 N907524e05cb041dbbf5e8148103789c3
10 N9d304c4e26ed4eedbd5287063097d13d
11 N9d63ffc8e33a4dafa79c8834fb04021c
12 N9e22ce27ea8e43f8b785c24ac45bf23e
13 Nb38f8d35a68e4df5a2ab301892149e57
14 Nb58b5c6e77bf4245b928035b7eba4cf6
15 Nb5b951d2a5434e5cb110348d203de6b3
16 Ne558ca0caf6d48bcb67f10bf825249c9
17 Ne722dc5769034e73ad9a19d19da1deef
18 Nfd6bfdde9e9241a886f19b5a788e8c8f
19 anzsrc-for:06
20 anzsrc-for:0604
21 schema:author N33e6edffe280487fa3c2c2b5fa09db37
22 schema:citation sg:pub.10.1038/nature07730
23 sg:pub.10.1038/nature07829
24 sg:pub.10.1038/nature11049
25 sg:pub.10.1038/nature11082
26 sg:pub.10.1038/nature11245
27 sg:pub.10.1038/nature12787
28 sg:pub.10.1038/ng.1049
29 sg:pub.10.1038/ng.2563
30 sg:pub.10.1038/ng1966
31 sg:pub.10.1038/nmeth.1906
32 sg:pub.10.1038/nmeth.1937
33 sg:pub.10.1038/nrg1315
34 sg:pub.10.1038/sj.onc.1202746
35 sg:pub.10.1186/1471-2164-13-152
36 sg:pub.10.1186/1755-8794-5-3
37 sg:pub.10.1186/gb-2004-5-10-r80
38 sg:pub.10.1186/gb-2012-13-9-r49
39 sg:pub.10.1186/gm281
40 https://doi.org/10.1002/emmm.201100187
41 https://doi.org/10.1016/j.aanat.2010.07.010
42 https://doi.org/10.1016/j.ajhg.2009.09.012
43 https://doi.org/10.1016/j.ajhg.2013.10.012
44 https://doi.org/10.1016/j.bone.2011.10.012
45 https://doi.org/10.1016/j.leukres.2011.04.006
46 https://doi.org/10.1073/pnas.1016071107
47 https://doi.org/10.1073/pnas.1530509100
48 https://doi.org/10.1093/bioinformatics/18.8.1135
49 https://doi.org/10.1093/bioinformatics/btn564
50 https://doi.org/10.1093/bioinformatics/bts521
51 https://doi.org/10.1093/bioinformatics/btt356
52 https://doi.org/10.1093/nar/gkf578
53 https://doi.org/10.1093/nar/gkj144
54 https://doi.org/10.1093/nar/gkp950
55 https://doi.org/10.1093/nar/gkr1012
56 https://doi.org/10.1093/nar/gkr1182
57 https://doi.org/10.1093/nar/gkr476
58 https://doi.org/10.1093/nar/gkr917
59 https://doi.org/10.1093/nar/gks1089
60 https://doi.org/10.1093/nar/gks542
61 https://doi.org/10.1093/nar/gkt997
62 https://doi.org/10.1101/gad.1890410
63 https://doi.org/10.1101/gad928101
64 https://doi.org/10.1101/gr.105361.110
65 https://doi.org/10.1101/gr.135665.111
66 https://doi.org/10.1101/gr.136127.111
67 https://doi.org/10.1101/gr.137323.112
68 https://doi.org/10.1101/gr.155127.113
69 https://doi.org/10.1126/science.1217277
70 https://doi.org/10.1371/journal.pcbi.0040005
71 https://doi.org/10.1371/journal.pgen.1004018
72 https://doi.org/10.1371/journal.pone.0031127
73 https://doi.org/10.1371/journal.pone.0054359
74 https://doi.org/10.1371/journal.pone.0063925
75 https://doi.org/10.2174/1871520611313020013
76 schema:datePublished 2014-12
77 schema:datePublishedReg 2014-12-01
78 schema:description BACKGROUND: Genome wide association studies (GWAS) are a population-scale approach to the identification of segments of the genome in which genetic variations may contribute to disease risk. Current methods focus on the discovery of single nucleotide polymorphisms (SNPs) associated with disease traits. As there are many SNPs within identified risk loci, and the majority of these are situated within non-coding regions, a key challenge is to identify and prioritize variants affecting regulatory sequences that are likely to contribute to the phenotype assessed. METHODS: We focused investigation on SNPs within lung and breast cancer GWAS loci that reached genome-wide significance for potential roles in gene regulation with a specific focus on SNPs likely to disrupt transcription factor binding sites. Within risk loci, the regulatory potential of sub-regions was classified using relevant open chromatin and epigenetic high throughput sequencing data sets from the ENCODE project in available cancer and normal cell lines. Furthermore, transcription factor affinity altering variants were predicted by comparison of position weight matrix scores between disease and reference alleles. Lastly, ChIP-seq data of transcription associated factors and topological domains were included as binding evidence and potential gene target inference. RESULTS: The sets of SNPs, including both the disease-associated markers and those in high linkage disequilibrium with them, were significantly over-represented in regulatory sequences of cancer and/or normal cells; however, over-representation was generally not restricted to disease-relevant tissue specific regions. The calculated regulatory potential, allelic binding affinity scores and ChIP-seq binding evidence were the three criteria used to prioritize candidates. Fitting all three criteria, we highlighted breast cancer susceptibility SNPs and a borderline lung cancer relevant SNP located in cancer-specific enhancers overlapping multiple distinct transcription associated factor ChIP-seq binding sites. CONCLUSION: Incorporating high throughput sequencing epigenetic and transcription factor data sets from both cancer and normal cells into cancer genetic studies reveals potential functional SNPs and informs subsequent characterization efforts.
79 schema:genre research_article
80 schema:inLanguage en
81 schema:isAccessibleForFree true
82 schema:isPartOf Nf1d8daa041a74f75b010fa06cee9ee82
83 Nf89391be07c04f14b4a0b528fe3b3803
84 sg:journal.1039191
85 schema:name On the identification of potential regulatory variants within genome wide association candidate SNP sets
86 schema:pagination 34
87 schema:productId N41c597eaa6a8496aa676efa8e2673fe6
88 N4478b3d3a02445b4afbb2448514917ae
89 N50d7a7fa1385464ea2c3e27e3b93214d
90 N6acda8de8f134e468b26d9193ab50eab
91 Ndfc52cbeba0a4065add5138571a51f8d
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035899473
93 https://doi.org/10.1186/1755-8794-7-34
94 schema:sdDatePublished 2019-04-10T23:25
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher N35466a58ce454da4b77022bc424efc05
97 schema:url http://link.springer.com/10.1186%2F1755-8794-7-34
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N036fed3d95d743b584df94f02e0d9e9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Humans
103 rdf:type schema:DefinedTerm
104 N103de650c2df4200a9e6f802856c1485 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Genome-Wide Association Study
106 rdf:type schema:DefinedTerm
107 N25936eb14bac4aa2976d7170c2cbcf5d rdf:first sg:person.01131717340.11
108 rdf:rest Nd292ac42c89a4b1c8dd47bfe221bc241
109 N30bee6f0fee341b8b7e524a7737716a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Alleles
111 rdf:type schema:DefinedTerm
112 N33e6edffe280487fa3c2c2b5fa09db37 rdf:first sg:person.013307242554.22
113 rdf:rest N25936eb14bac4aa2976d7170c2cbcf5d
114 N35466a58ce454da4b77022bc424efc05 schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 N37b0924f1574404f827d7cbe3f5564f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Genetic Predisposition to Disease
118 rdf:type schema:DefinedTerm
119 N3da534ab350044989af4df6e9340f413 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Chromatin Immunoprecipitation
121 rdf:type schema:DefinedTerm
122 N41c597eaa6a8496aa676efa8e2673fe6 schema:name dimensions_id
123 schema:value pub.1035899473
124 rdf:type schema:PropertyValue
125 N4478b3d3a02445b4afbb2448514917ae schema:name nlm_unique_id
126 schema:value 101319628
127 rdf:type schema:PropertyValue
128 N50d7a7fa1385464ea2c3e27e3b93214d schema:name pubmed_id
129 schema:value 24920305
130 rdf:type schema:PropertyValue
131 N521dfdb5909c445a82eecd0cadea37ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Genome, Human
133 rdf:type schema:DefinedTerm
134 N6acda8de8f134e468b26d9193ab50eab schema:name doi
135 schema:value 10.1186/1755-8794-7-34
136 rdf:type schema:PropertyValue
137 N6af13a49ecc1424fa07f121537167e30 rdf:first sg:person.01164162122.26
138 rdf:rest rdf:nil
139 N885848f54cf04788a99663ecbf8e9871 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Protein Binding
141 rdf:type schema:DefinedTerm
142 N8e562c912fd141208ef7e944d8d5e7f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Cell Line, Tumor
144 rdf:type schema:DefinedTerm
145 N907524e05cb041dbbf5e8148103789c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Regulatory Sequences, Nucleic Acid
147 rdf:type schema:DefinedTerm
148 N9d304c4e26ed4eedbd5287063097d13d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Neoplasms
150 rdf:type schema:DefinedTerm
151 N9d63ffc8e33a4dafa79c8834fb04021c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name DNA, Intergenic
153 rdf:type schema:DefinedTerm
154 N9e22ce27ea8e43f8b785c24ac45bf23e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Chromatin
156 rdf:type schema:DefinedTerm
157 Nb38f8d35a68e4df5a2ab301892149e57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name High-Throughput Nucleotide Sequencing
159 rdf:type schema:DefinedTerm
160 Nb58b5c6e77bf4245b928035b7eba4cf6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Molecular Sequence Annotation
162 rdf:type schema:DefinedTerm
163 Nb5b951d2a5434e5cb110348d203de6b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Enhancer Elements, Genetic
165 rdf:type schema:DefinedTerm
166 Nd292ac42c89a4b1c8dd47bfe221bc241 rdf:first sg:person.01150301254.84
167 rdf:rest N6af13a49ecc1424fa07f121537167e30
168 Ndfc52cbeba0a4065add5138571a51f8d schema:name readcube_id
169 schema:value ab037f9cb69d5a7ccb5c574a51a09fad5df09bcce8eacc2038e96bf7e082b4fb
170 rdf:type schema:PropertyValue
171 Ne558ca0caf6d48bcb67f10bf825249c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Polymorphism, Single Nucleotide
173 rdf:type schema:DefinedTerm
174 Ne722dc5769034e73ad9a19d19da1deef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Transcription Factors
176 rdf:type schema:DefinedTerm
177 Nf1d8daa041a74f75b010fa06cee9ee82 schema:volumeNumber 7
178 rdf:type schema:PublicationVolume
179 Nf89391be07c04f14b4a0b528fe3b3803 schema:issueNumber 1
180 rdf:type schema:PublicationIssue
181 Nfd6bfdde9e9241a886f19b5a788e8c8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Position-Specific Scoring Matrices
183 rdf:type schema:DefinedTerm
184 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
185 schema:name Biological Sciences
186 rdf:type schema:DefinedTerm
187 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
188 schema:name Genetics
189 rdf:type schema:DefinedTerm
190 sg:grant.2520061 http://pending.schema.org/fundedItem sg:pub.10.1186/1755-8794-7-34
191 rdf:type schema:MonetaryGrant
192 sg:journal.1039191 schema:issn 1755-8794
193 schema:name BMC Medical Genomics
194 rdf:type schema:Periodical
195 sg:person.01131717340.11 schema:affiliation https://www.grid.ac/institutes/grid.59784.37
196 schema:familyName Chang
197 schema:givenName I-Shou
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131717340.11
199 rdf:type schema:Person
200 sg:person.01150301254.84 schema:affiliation https://www.grid.ac/institutes/grid.59784.37
201 schema:familyName Hsiung
202 schema:givenName Chao A
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150301254.84
204 rdf:type schema:Person
205 sg:person.01164162122.26 schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
206 schema:familyName Wasserman
207 schema:givenName Wyeth W
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164162122.26
209 rdf:type schema:Person
210 sg:person.013307242554.22 schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
211 schema:familyName Chen
212 schema:givenName Chih-yu
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013307242554.22
214 rdf:type schema:Person
215 sg:pub.10.1038/nature07730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021031479
216 https://doi.org/10.1038/nature07730
217 rdf:type schema:CreativeWork
218 sg:pub.10.1038/nature07829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023938796
219 https://doi.org/10.1038/nature07829
220 rdf:type schema:CreativeWork
221 sg:pub.10.1038/nature11049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004787340
222 https://doi.org/10.1038/nature11049
223 rdf:type schema:CreativeWork
224 sg:pub.10.1038/nature11082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040271530
225 https://doi.org/10.1038/nature11082
226 rdf:type schema:CreativeWork
227 sg:pub.10.1038/nature11245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028790868
228 https://doi.org/10.1038/nature11245
229 rdf:type schema:CreativeWork
230 sg:pub.10.1038/nature12787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022158752
231 https://doi.org/10.1038/nature12787
232 rdf:type schema:CreativeWork
233 sg:pub.10.1038/ng.1049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001402794
234 https://doi.org/10.1038/ng.1049
235 rdf:type schema:CreativeWork
236 sg:pub.10.1038/ng.2563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001447315
237 https://doi.org/10.1038/ng.2563
238 rdf:type schema:CreativeWork
239 sg:pub.10.1038/ng1966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010017851
240 https://doi.org/10.1038/ng1966
241 rdf:type schema:CreativeWork
242 sg:pub.10.1038/nmeth.1906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003714959
243 https://doi.org/10.1038/nmeth.1906
244 rdf:type schema:CreativeWork
245 sg:pub.10.1038/nmeth.1937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029971202
246 https://doi.org/10.1038/nmeth.1937
247 rdf:type schema:CreativeWork
248 sg:pub.10.1038/nrg1315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029123553
249 https://doi.org/10.1038/nrg1315
250 rdf:type schema:CreativeWork
251 sg:pub.10.1038/sj.onc.1202746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050186337
252 https://doi.org/10.1038/sj.onc.1202746
253 rdf:type schema:CreativeWork
254 sg:pub.10.1186/1471-2164-13-152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027633460
255 https://doi.org/10.1186/1471-2164-13-152
256 rdf:type schema:CreativeWork
257 sg:pub.10.1186/1755-8794-5-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020487384
258 https://doi.org/10.1186/1755-8794-5-3
259 rdf:type schema:CreativeWork
260 sg:pub.10.1186/gb-2004-5-10-r80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018457673
261 https://doi.org/10.1186/gb-2004-5-10-r80
262 rdf:type schema:CreativeWork
263 sg:pub.10.1186/gb-2012-13-9-r49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005632195
264 https://doi.org/10.1186/gb-2012-13-9-r49
265 rdf:type schema:CreativeWork
266 sg:pub.10.1186/gm281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032852217
267 https://doi.org/10.1186/gm281
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1002/emmm.201100187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022881432
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1016/j.aanat.2010.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003871127
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1016/j.ajhg.2009.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019097678
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1016/j.ajhg.2013.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024647736
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1016/j.bone.2011.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048475026
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1016/j.leukres.2011.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046735598
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1073/pnas.1016071107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047051560
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1073/pnas.1530509100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044620917
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1093/bioinformatics/18.8.1135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046379219
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1093/bioinformatics/btn564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026900777
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1093/bioinformatics/bts521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014777139
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1093/bioinformatics/btt356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033504535
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1093/nar/gkf578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049849470
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1093/nar/gkj144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005091941
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1093/nar/gkp950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037453195
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1093/nar/gkr1012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008353709
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1093/nar/gkr1182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042462658
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1093/nar/gkr476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019511895
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1093/nar/gkr917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052960118
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1093/nar/gks1089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039358249
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1093/nar/gks542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041478010
310 rdf:type schema:CreativeWork
311 https://doi.org/10.1093/nar/gkt997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036657357
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1101/gad.1890410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024970193
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1101/gad928101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002330480
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1101/gr.105361.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051822451
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1101/gr.135665.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050340897
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1101/gr.136127.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007044518
322 rdf:type schema:CreativeWork
323 https://doi.org/10.1101/gr.137323.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034124863
324 rdf:type schema:CreativeWork
325 https://doi.org/10.1101/gr.155127.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032517307
326 rdf:type schema:CreativeWork
327 https://doi.org/10.1126/science.1217277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001335291
328 rdf:type schema:CreativeWork
329 https://doi.org/10.1371/journal.pcbi.0040005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039254257
330 rdf:type schema:CreativeWork
331 https://doi.org/10.1371/journal.pgen.1004018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025537100
332 rdf:type schema:CreativeWork
333 https://doi.org/10.1371/journal.pone.0031127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004018559
334 rdf:type schema:CreativeWork
335 https://doi.org/10.1371/journal.pone.0054359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030618476
336 rdf:type schema:CreativeWork
337 https://doi.org/10.1371/journal.pone.0063925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000112171
338 rdf:type schema:CreativeWork
339 https://doi.org/10.2174/1871520611313020013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069218716
340 rdf:type schema:CreativeWork
341 https://www.grid.ac/institutes/grid.17091.3e schema:alternateName University of British Columbia
342 schema:name Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
343 Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
344 Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia, Canada
345 rdf:type schema:Organization
346 https://www.grid.ac/institutes/grid.59784.37 schema:alternateName National Health Research Institutes
347 schema:name Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
348 National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
349 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...