On the identification of potential regulatory variants within genome wide association candidate SNP sets View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Chih-yu Chen, I-Shou Chang, Chao A Hsiung, Wyeth W Wasserman

ABSTRACT

BACKGROUND: Genome wide association studies (GWAS) are a population-scale approach to the identification of segments of the genome in which genetic variations may contribute to disease risk. Current methods focus on the discovery of single nucleotide polymorphisms (SNPs) associated with disease traits. As there are many SNPs within identified risk loci, and the majority of these are situated within non-coding regions, a key challenge is to identify and prioritize variants affecting regulatory sequences that are likely to contribute to the phenotype assessed. METHODS: We focused investigation on SNPs within lung and breast cancer GWAS loci that reached genome-wide significance for potential roles in gene regulation with a specific focus on SNPs likely to disrupt transcription factor binding sites. Within risk loci, the regulatory potential of sub-regions was classified using relevant open chromatin and epigenetic high throughput sequencing data sets from the ENCODE project in available cancer and normal cell lines. Furthermore, transcription factor affinity altering variants were predicted by comparison of position weight matrix scores between disease and reference alleles. Lastly, ChIP-seq data of transcription associated factors and topological domains were included as binding evidence and potential gene target inference. RESULTS: The sets of SNPs, including both the disease-associated markers and those in high linkage disequilibrium with them, were significantly over-represented in regulatory sequences of cancer and/or normal cells; however, over-representation was generally not restricted to disease-relevant tissue specific regions. The calculated regulatory potential, allelic binding affinity scores and ChIP-seq binding evidence were the three criteria used to prioritize candidates. Fitting all three criteria, we highlighted breast cancer susceptibility SNPs and a borderline lung cancer relevant SNP located in cancer-specific enhancers overlapping multiple distinct transcription associated factor ChIP-seq binding sites. CONCLUSION: Incorporating high throughput sequencing epigenetic and transcription factor data sets from both cancer and normal cells into cancer genetic studies reveals potential functional SNPs and informs subsequent characterization efforts. More... »

PAGES

34

References to SciGraph publications

  • 2012-03. ChromHMM: automating chromatin-state discovery and characterization in NATURE METHODS
  • 2012-09. Analysis of variation at transcription factor binding sites in Drosophila and humans in GENOME BIOLOGY
  • 1999-05. MYC oncogenes and human neoplastic disease in ONCOGENE
  • 2012-04-11. Topological domains in mammalian genomes identified by analysis of chromatin interactions in NATURE
  • 2011-10. Identification of cis-regulatory sequence variations in individual genome sequences in GENOME MEDICINE
  • 2012-12. Enhancer identification in mouse embryonic stem cells using integrative modeling of chromatin and genomic features in BMC GENOMICS
  • 2013-04. Large-scale genotyping identifies 41 new loci associated with breast cancer risk in NATURE GENETICS
  • 2009-02. ChIP-seq accurately predicts tissue-specific activity of enhancers in NATURE
  • 2007-03. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome in NATURE GENETICS
  • 2009-05. Histone modifications at human enhancers reflect global cell-type-specific gene expression in NATURE
  • 2012-03. Genome-wide association analysis identifies three new breast cancer susceptibility loci in NATURE GENETICS
  • 2004-09. Bioconductor: open software development for computational biology and bioinformatics in GENOME BIOLOGY
  • 2004-04. Applied bioinformatics for the identification of regulatory elements in NATURE REVIEWS GENETICS
  • 2012-09. Architecture of the human regulatory network derived from ENCODE data in NATURE
  • 2012-12. An in silicoanalysis of dynamic changes in microRNA expression profiles in stepwise development of nasopharyngeal carcinoma in BMC MEDICAL GENOMICS
  • 2014-03. An atlas of active enhancers across human cell types and tissues in NATURE
  • 2012-05. Unsupervised pattern discovery in human chromatin structure through genomic segmentation in NATURE METHODS
  • 2012-04-11. Spatial partitioning of the regulatory landscape of the X-inactivation centre in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1755-8794-7-34

    DOI

    http://dx.doi.org/10.1186/1755-8794-7-34

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1035899473

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/24920305


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Alleles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Line, Tumor", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromatin", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromatin Immunoprecipitation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Intergenic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Enhancer Elements, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Predisposition to Disease", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Human", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome-Wide Association Study", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "High-Throughput Nucleotide Sequencing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Sequence Annotation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Polymorphism, Single Nucleotide", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Position-Specific Scoring Matrices", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Binding", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Regulatory Sequences, Nucleic Acid", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcription Factors", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of British Columbia", 
              "id": "https://www.grid.ac/institutes/grid.17091.3e", 
              "name": [
                "Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada", 
                "Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Chih-yu", 
            "id": "sg:person.013307242554.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013307242554.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Health Research Institutes", 
              "id": "https://www.grid.ac/institutes/grid.59784.37", 
              "name": [
                "National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chang", 
            "givenName": "I-Shou", 
            "id": "sg:person.01131717340.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131717340.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Health Research Institutes", 
              "id": "https://www.grid.ac/institutes/grid.59784.37", 
              "name": [
                "Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hsiung", 
            "givenName": "Chao A", 
            "id": "sg:person.01150301254.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150301254.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of British Columbia", 
              "id": "https://www.grid.ac/institutes/grid.17091.3e", 
              "name": [
                "Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada", 
                "Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wasserman", 
            "givenName": "Wyeth W", 
            "id": "sg:person.01164162122.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164162122.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1371/journal.pone.0063925", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000112171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1217277", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001335291"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.1049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001402794", 
              "https://doi.org/10.1038/ng.1049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2563", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001447315", 
              "https://doi.org/10.1038/ng.2563"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gad928101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002330480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1906", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003714959", 
              "https://doi.org/10.1038/nmeth.1906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aanat.2010.07.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003871127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0031127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004018559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004787340", 
              "https://doi.org/10.1038/nature11049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkj144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005091941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2012-13-9-r49", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005632195", 
              "https://doi.org/10.1186/gb-2012-13-9-r49"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.136127.111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007044518"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkr1012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008353709"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1966", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010017851", 
              "https://doi.org/10.1038/ng1966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bts521", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014777139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2004-5-10-r80", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018457673", 
              "https://doi.org/10.1186/gb-2004-5-10-r80"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2009.09.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019097678"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkr476", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019511895"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1755-8794-5-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020487384", 
              "https://doi.org/10.1186/1755-8794-5-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1755-8794-5-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020487384", 
              "https://doi.org/10.1186/1755-8794-5-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07730", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021031479", 
              "https://doi.org/10.1038/nature07730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12787", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022158752", 
              "https://doi.org/10.1038/nature12787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/emmm.201100187", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022881432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07829", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023938796", 
              "https://doi.org/10.1038/nature07829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07829", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023938796", 
              "https://doi.org/10.1038/nature07829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2013.10.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024647736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gad.1890410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024970193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1004018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025537100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btn564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026900777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-13-152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027633460", 
              "https://doi.org/10.1186/1471-2164-13-152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028790868", 
              "https://doi.org/10.1038/nature11245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029123553", 
              "https://doi.org/10.1038/nrg1315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029123553", 
              "https://doi.org/10.1038/nrg1315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1937", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029971202", 
              "https://doi.org/10.1038/nmeth.1937"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0054359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030618476"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.155127.113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032517307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gm281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032852217", 
              "https://doi.org/10.1186/gm281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btt356", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033504535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.137323.112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034124863"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt997", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036657357"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkp950", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037453195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.0040005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039254257"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gks1089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039358249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040271530", 
              "https://doi.org/10.1038/nature11082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gks542", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041478010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkr1182", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042462658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1530509100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044620917"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/18.8.1135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046379219"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.leukres.2011.04.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046735598"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1016071107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047051560"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bone.2011.10.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048475026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkf578", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049849470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1202746", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050186337", 
              "https://doi.org/10.1038/sj.onc.1202746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1202746", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050186337", 
              "https://doi.org/10.1038/sj.onc.1202746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.135665.111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050340897"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.105361.110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051822451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkr917", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052960118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2174/1871520611313020013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069218716"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-12", 
        "datePublishedReg": "2014-12-01", 
        "description": "BACKGROUND: Genome wide association studies (GWAS) are a population-scale approach to the identification of segments of the genome in which genetic variations may contribute to disease risk. Current methods focus on the discovery of single nucleotide polymorphisms (SNPs) associated with disease traits. As there are many SNPs within identified risk loci, and the majority of these are situated within non-coding regions, a key challenge is to identify and prioritize variants affecting regulatory sequences that are likely to contribute to the phenotype assessed.\nMETHODS: We focused investigation on SNPs within lung and breast cancer GWAS loci that reached genome-wide significance for potential roles in gene regulation with a specific focus on SNPs likely to disrupt transcription factor binding sites. Within risk loci, the regulatory potential of sub-regions was classified using relevant open chromatin and epigenetic high throughput sequencing data sets from the ENCODE project in available cancer and normal cell lines. Furthermore, transcription factor affinity altering variants were predicted by comparison of position weight matrix scores between disease and reference alleles. Lastly, ChIP-seq data of transcription associated factors and topological domains were included as binding evidence and potential gene target inference.\nRESULTS: The sets of SNPs, including both the disease-associated markers and those in high linkage disequilibrium with them, were significantly over-represented in regulatory sequences of cancer and/or normal cells; however, over-representation was generally not restricted to disease-relevant tissue specific regions. The calculated regulatory potential, allelic binding affinity scores and ChIP-seq binding evidence were the three criteria used to prioritize candidates. Fitting all three criteria, we highlighted breast cancer susceptibility SNPs and a borderline lung cancer relevant SNP located in cancer-specific enhancers overlapping multiple distinct transcription associated factor ChIP-seq binding sites.\nCONCLUSION: Incorporating high throughput sequencing epigenetic and transcription factor data sets from both cancer and normal cells into cancer genetic studies reveals potential functional SNPs and informs subsequent characterization efforts.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/1755-8794-7-34", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2520061", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1039191", 
            "issn": [
              "1755-8794"
            ], 
            "name": "BMC Medical Genomics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "name": "On the identification of potential regulatory variants within genome wide association candidate SNP sets", 
        "pagination": "34", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ab037f9cb69d5a7ccb5c574a51a09fad5df09bcce8eacc2038e96bf7e082b4fb"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "24920305"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101319628"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1755-8794-7-34"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1035899473"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1755-8794-7-34", 
          "https://app.dimensions.ai/details/publication/pub.1035899473"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T23:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000514.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2F1755-8794-7-34"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-7-34'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-7-34'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-7-34'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-7-34'


     

    This table displays all metadata directly associated to this object as RDF triples.

    349 TRIPLES      21 PREDICATES      101 URIs      39 LITERALS      27 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1755-8794-7-34 schema:about N03608174495d4050893773a3cfc7f1ab
    2 N0e9e0c7706554d04932df33b2ca16171
    3 N1ee0ae3bc306465284902f24075137d0
    4 N22c15750d88e4bd6ae9d869bca39b43c
    5 N2b3e6d2256e149a4a54476ec300c15f8
    6 N2b5973e4010040768ae789b38da692bb
    7 N2f29dc8d4110449f90d4224fbaabcbe1
    8 N47cca1ea25fb432c9885fbad469553ab
    9 N59abe80f6fd042baa8630204201c4c40
    10 N7b8e2edff3e64a7ebd43294415de3e4b
    11 N81b27f193c964caa9581ab544ae15880
    12 N81e70186a6914950848bdba7d5d12f4a
    13 N8727bd740b424128b5fb1e8e1f8d3593
    14 N9186f6dc76ef425a9d2def1af930638e
    15 N920c8b538a914cdabec6732b37ef4eeb
    16 Na6bae763760647ba8f9d990f0dd5b7bb
    17 Ncc3d4c0c0909401c98890881dbb0a305
    18 Ne69088cccdd04dc8b249542d0e8a4034
    19 anzsrc-for:06
    20 anzsrc-for:0604
    21 schema:author N1a7ff3fa337c433687db3a0fafdd2399
    22 schema:citation sg:pub.10.1038/nature07730
    23 sg:pub.10.1038/nature07829
    24 sg:pub.10.1038/nature11049
    25 sg:pub.10.1038/nature11082
    26 sg:pub.10.1038/nature11245
    27 sg:pub.10.1038/nature12787
    28 sg:pub.10.1038/ng.1049
    29 sg:pub.10.1038/ng.2563
    30 sg:pub.10.1038/ng1966
    31 sg:pub.10.1038/nmeth.1906
    32 sg:pub.10.1038/nmeth.1937
    33 sg:pub.10.1038/nrg1315
    34 sg:pub.10.1038/sj.onc.1202746
    35 sg:pub.10.1186/1471-2164-13-152
    36 sg:pub.10.1186/1755-8794-5-3
    37 sg:pub.10.1186/gb-2004-5-10-r80
    38 sg:pub.10.1186/gb-2012-13-9-r49
    39 sg:pub.10.1186/gm281
    40 https://doi.org/10.1002/emmm.201100187
    41 https://doi.org/10.1016/j.aanat.2010.07.010
    42 https://doi.org/10.1016/j.ajhg.2009.09.012
    43 https://doi.org/10.1016/j.ajhg.2013.10.012
    44 https://doi.org/10.1016/j.bone.2011.10.012
    45 https://doi.org/10.1016/j.leukres.2011.04.006
    46 https://doi.org/10.1073/pnas.1016071107
    47 https://doi.org/10.1073/pnas.1530509100
    48 https://doi.org/10.1093/bioinformatics/18.8.1135
    49 https://doi.org/10.1093/bioinformatics/btn564
    50 https://doi.org/10.1093/bioinformatics/bts521
    51 https://doi.org/10.1093/bioinformatics/btt356
    52 https://doi.org/10.1093/nar/gkf578
    53 https://doi.org/10.1093/nar/gkj144
    54 https://doi.org/10.1093/nar/gkp950
    55 https://doi.org/10.1093/nar/gkr1012
    56 https://doi.org/10.1093/nar/gkr1182
    57 https://doi.org/10.1093/nar/gkr476
    58 https://doi.org/10.1093/nar/gkr917
    59 https://doi.org/10.1093/nar/gks1089
    60 https://doi.org/10.1093/nar/gks542
    61 https://doi.org/10.1093/nar/gkt997
    62 https://doi.org/10.1101/gad.1890410
    63 https://doi.org/10.1101/gad928101
    64 https://doi.org/10.1101/gr.105361.110
    65 https://doi.org/10.1101/gr.135665.111
    66 https://doi.org/10.1101/gr.136127.111
    67 https://doi.org/10.1101/gr.137323.112
    68 https://doi.org/10.1101/gr.155127.113
    69 https://doi.org/10.1126/science.1217277
    70 https://doi.org/10.1371/journal.pcbi.0040005
    71 https://doi.org/10.1371/journal.pgen.1004018
    72 https://doi.org/10.1371/journal.pone.0031127
    73 https://doi.org/10.1371/journal.pone.0054359
    74 https://doi.org/10.1371/journal.pone.0063925
    75 https://doi.org/10.2174/1871520611313020013
    76 schema:datePublished 2014-12
    77 schema:datePublishedReg 2014-12-01
    78 schema:description BACKGROUND: Genome wide association studies (GWAS) are a population-scale approach to the identification of segments of the genome in which genetic variations may contribute to disease risk. Current methods focus on the discovery of single nucleotide polymorphisms (SNPs) associated with disease traits. As there are many SNPs within identified risk loci, and the majority of these are situated within non-coding regions, a key challenge is to identify and prioritize variants affecting regulatory sequences that are likely to contribute to the phenotype assessed. METHODS: We focused investigation on SNPs within lung and breast cancer GWAS loci that reached genome-wide significance for potential roles in gene regulation with a specific focus on SNPs likely to disrupt transcription factor binding sites. Within risk loci, the regulatory potential of sub-regions was classified using relevant open chromatin and epigenetic high throughput sequencing data sets from the ENCODE project in available cancer and normal cell lines. Furthermore, transcription factor affinity altering variants were predicted by comparison of position weight matrix scores between disease and reference alleles. Lastly, ChIP-seq data of transcription associated factors and topological domains were included as binding evidence and potential gene target inference. RESULTS: The sets of SNPs, including both the disease-associated markers and those in high linkage disequilibrium with them, were significantly over-represented in regulatory sequences of cancer and/or normal cells; however, over-representation was generally not restricted to disease-relevant tissue specific regions. The calculated regulatory potential, allelic binding affinity scores and ChIP-seq binding evidence were the three criteria used to prioritize candidates. Fitting all three criteria, we highlighted breast cancer susceptibility SNPs and a borderline lung cancer relevant SNP located in cancer-specific enhancers overlapping multiple distinct transcription associated factor ChIP-seq binding sites. CONCLUSION: Incorporating high throughput sequencing epigenetic and transcription factor data sets from both cancer and normal cells into cancer genetic studies reveals potential functional SNPs and informs subsequent characterization efforts.
    79 schema:genre research_article
    80 schema:inLanguage en
    81 schema:isAccessibleForFree true
    82 schema:isPartOf N1bc7f8db39d646b2b1d2ee556cc3c30a
    83 Na89bbd7b46264919a68db3b34138c713
    84 sg:journal.1039191
    85 schema:name On the identification of potential regulatory variants within genome wide association candidate SNP sets
    86 schema:pagination 34
    87 schema:productId N08e1a7008be54b8dbdada5ff120c2d1f
    88 N1babeb89c6f94c5395a1e6619d2b33a6
    89 N52e5e47389bf496a91f1ec62daca8d5c
    90 N969d06121a2e4969a8a8889a7a5aabda
    91 Nac5c2b19c0374cb39536d00286a7cb92
    92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035899473
    93 https://doi.org/10.1186/1755-8794-7-34
    94 schema:sdDatePublished 2019-04-10T23:25
    95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    96 schema:sdPublisher Nc9e8071f999c4c36a66505d738094001
    97 schema:url http://link.springer.com/10.1186%2F1755-8794-7-34
    98 sgo:license sg:explorer/license/
    99 sgo:sdDataset articles
    100 rdf:type schema:ScholarlyArticle
    101 N0028fece405b4aceaf955620dd15d2d9 rdf:first sg:person.01131717340.11
    102 rdf:rest Nb16794363c1e44c6b317c9e681891185
    103 N03608174495d4050893773a3cfc7f1ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Position-Specific Scoring Matrices
    105 rdf:type schema:DefinedTerm
    106 N08e1a7008be54b8dbdada5ff120c2d1f schema:name readcube_id
    107 schema:value ab037f9cb69d5a7ccb5c574a51a09fad5df09bcce8eacc2038e96bf7e082b4fb
    108 rdf:type schema:PropertyValue
    109 N0e9e0c7706554d04932df33b2ca16171 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Neoplasms
    111 rdf:type schema:DefinedTerm
    112 N1a7ff3fa337c433687db3a0fafdd2399 rdf:first sg:person.013307242554.22
    113 rdf:rest N0028fece405b4aceaf955620dd15d2d9
    114 N1babeb89c6f94c5395a1e6619d2b33a6 schema:name doi
    115 schema:value 10.1186/1755-8794-7-34
    116 rdf:type schema:PropertyValue
    117 N1bc7f8db39d646b2b1d2ee556cc3c30a schema:volumeNumber 7
    118 rdf:type schema:PublicationVolume
    119 N1ee0ae3bc306465284902f24075137d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Chromatin Immunoprecipitation
    121 rdf:type schema:DefinedTerm
    122 N22c15750d88e4bd6ae9d869bca39b43c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name DNA, Intergenic
    124 rdf:type schema:DefinedTerm
    125 N2b3e6d2256e149a4a54476ec300c15f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Chromatin
    127 rdf:type schema:DefinedTerm
    128 N2b5973e4010040768ae789b38da692bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Protein Binding
    130 rdf:type schema:DefinedTerm
    131 N2f29dc8d4110449f90d4224fbaabcbe1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Enhancer Elements, Genetic
    133 rdf:type schema:DefinedTerm
    134 N47cca1ea25fb432c9885fbad469553ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Genome, Human
    136 rdf:type schema:DefinedTerm
    137 N52e5e47389bf496a91f1ec62daca8d5c schema:name nlm_unique_id
    138 schema:value 101319628
    139 rdf:type schema:PropertyValue
    140 N53590d76d63e4f90af18391346198f11 rdf:first sg:person.01164162122.26
    141 rdf:rest rdf:nil
    142 N59abe80f6fd042baa8630204201c4c40 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Molecular Sequence Annotation
    144 rdf:type schema:DefinedTerm
    145 N7b8e2edff3e64a7ebd43294415de3e4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Cell Line, Tumor
    147 rdf:type schema:DefinedTerm
    148 N81b27f193c964caa9581ab544ae15880 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Polymorphism, Single Nucleotide
    150 rdf:type schema:DefinedTerm
    151 N81e70186a6914950848bdba7d5d12f4a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Humans
    153 rdf:type schema:DefinedTerm
    154 N8727bd740b424128b5fb1e8e1f8d3593 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Genetic Predisposition to Disease
    156 rdf:type schema:DefinedTerm
    157 N9186f6dc76ef425a9d2def1af930638e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name High-Throughput Nucleotide Sequencing
    159 rdf:type schema:DefinedTerm
    160 N920c8b538a914cdabec6732b37ef4eeb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Genome-Wide Association Study
    162 rdf:type schema:DefinedTerm
    163 N969d06121a2e4969a8a8889a7a5aabda schema:name pubmed_id
    164 schema:value 24920305
    165 rdf:type schema:PropertyValue
    166 Na6bae763760647ba8f9d990f0dd5b7bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Transcription Factors
    168 rdf:type schema:DefinedTerm
    169 Na89bbd7b46264919a68db3b34138c713 schema:issueNumber 1
    170 rdf:type schema:PublicationIssue
    171 Nac5c2b19c0374cb39536d00286a7cb92 schema:name dimensions_id
    172 schema:value pub.1035899473
    173 rdf:type schema:PropertyValue
    174 Nb16794363c1e44c6b317c9e681891185 rdf:first sg:person.01150301254.84
    175 rdf:rest N53590d76d63e4f90af18391346198f11
    176 Nc9e8071f999c4c36a66505d738094001 schema:name Springer Nature - SN SciGraph project
    177 rdf:type schema:Organization
    178 Ncc3d4c0c0909401c98890881dbb0a305 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Regulatory Sequences, Nucleic Acid
    180 rdf:type schema:DefinedTerm
    181 Ne69088cccdd04dc8b249542d0e8a4034 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Alleles
    183 rdf:type schema:DefinedTerm
    184 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    185 schema:name Biological Sciences
    186 rdf:type schema:DefinedTerm
    187 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    188 schema:name Genetics
    189 rdf:type schema:DefinedTerm
    190 sg:grant.2520061 http://pending.schema.org/fundedItem sg:pub.10.1186/1755-8794-7-34
    191 rdf:type schema:MonetaryGrant
    192 sg:journal.1039191 schema:issn 1755-8794
    193 schema:name BMC Medical Genomics
    194 rdf:type schema:Periodical
    195 sg:person.01131717340.11 schema:affiliation https://www.grid.ac/institutes/grid.59784.37
    196 schema:familyName Chang
    197 schema:givenName I-Shou
    198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131717340.11
    199 rdf:type schema:Person
    200 sg:person.01150301254.84 schema:affiliation https://www.grid.ac/institutes/grid.59784.37
    201 schema:familyName Hsiung
    202 schema:givenName Chao A
    203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150301254.84
    204 rdf:type schema:Person
    205 sg:person.01164162122.26 schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
    206 schema:familyName Wasserman
    207 schema:givenName Wyeth W
    208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164162122.26
    209 rdf:type schema:Person
    210 sg:person.013307242554.22 schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
    211 schema:familyName Chen
    212 schema:givenName Chih-yu
    213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013307242554.22
    214 rdf:type schema:Person
    215 sg:pub.10.1038/nature07730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021031479
    216 https://doi.org/10.1038/nature07730
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/nature07829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023938796
    219 https://doi.org/10.1038/nature07829
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/nature11049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004787340
    222 https://doi.org/10.1038/nature11049
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/nature11082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040271530
    225 https://doi.org/10.1038/nature11082
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/nature11245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028790868
    228 https://doi.org/10.1038/nature11245
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/nature12787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022158752
    231 https://doi.org/10.1038/nature12787
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/ng.1049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001402794
    234 https://doi.org/10.1038/ng.1049
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/ng.2563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001447315
    237 https://doi.org/10.1038/ng.2563
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/ng1966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010017851
    240 https://doi.org/10.1038/ng1966
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/nmeth.1906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003714959
    243 https://doi.org/10.1038/nmeth.1906
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/nmeth.1937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029971202
    246 https://doi.org/10.1038/nmeth.1937
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/nrg1315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029123553
    249 https://doi.org/10.1038/nrg1315
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/sj.onc.1202746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050186337
    252 https://doi.org/10.1038/sj.onc.1202746
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1186/1471-2164-13-152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027633460
    255 https://doi.org/10.1186/1471-2164-13-152
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1186/1755-8794-5-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020487384
    258 https://doi.org/10.1186/1755-8794-5-3
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1186/gb-2004-5-10-r80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018457673
    261 https://doi.org/10.1186/gb-2004-5-10-r80
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1186/gb-2012-13-9-r49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005632195
    264 https://doi.org/10.1186/gb-2012-13-9-r49
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1186/gm281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032852217
    267 https://doi.org/10.1186/gm281
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1002/emmm.201100187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022881432
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1016/j.aanat.2010.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003871127
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1016/j.ajhg.2009.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019097678
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1016/j.ajhg.2013.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024647736
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1016/j.bone.2011.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048475026
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1016/j.leukres.2011.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046735598
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1073/pnas.1016071107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047051560
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1073/pnas.1530509100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044620917
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1093/bioinformatics/18.8.1135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046379219
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1093/bioinformatics/btn564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026900777
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1093/bioinformatics/bts521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014777139
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1093/bioinformatics/btt356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033504535
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1093/nar/gkf578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049849470
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1093/nar/gkj144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005091941
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1093/nar/gkp950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037453195
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1093/nar/gkr1012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008353709
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1093/nar/gkr1182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042462658
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1093/nar/gkr476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019511895
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1093/nar/gkr917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052960118
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1093/nar/gks1089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039358249
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.1093/nar/gks542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041478010
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.1093/nar/gkt997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036657357
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.1101/gad.1890410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024970193
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.1101/gad928101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002330480
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.1101/gr.105361.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051822451
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.1101/gr.135665.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050340897
    320 rdf:type schema:CreativeWork
    321 https://doi.org/10.1101/gr.136127.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007044518
    322 rdf:type schema:CreativeWork
    323 https://doi.org/10.1101/gr.137323.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034124863
    324 rdf:type schema:CreativeWork
    325 https://doi.org/10.1101/gr.155127.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032517307
    326 rdf:type schema:CreativeWork
    327 https://doi.org/10.1126/science.1217277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001335291
    328 rdf:type schema:CreativeWork
    329 https://doi.org/10.1371/journal.pcbi.0040005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039254257
    330 rdf:type schema:CreativeWork
    331 https://doi.org/10.1371/journal.pgen.1004018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025537100
    332 rdf:type schema:CreativeWork
    333 https://doi.org/10.1371/journal.pone.0031127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004018559
    334 rdf:type schema:CreativeWork
    335 https://doi.org/10.1371/journal.pone.0054359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030618476
    336 rdf:type schema:CreativeWork
    337 https://doi.org/10.1371/journal.pone.0063925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000112171
    338 rdf:type schema:CreativeWork
    339 https://doi.org/10.2174/1871520611313020013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069218716
    340 rdf:type schema:CreativeWork
    341 https://www.grid.ac/institutes/grid.17091.3e schema:alternateName University of British Columbia
    342 schema:name Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
    343 Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
    344 Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia, Canada
    345 rdf:type schema:Organization
    346 https://www.grid.ac/institutes/grid.59784.37 schema:alternateName National Health Research Institutes
    347 schema:name Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
    348 National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
    349 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...