Clinical and multiple gene expression variables in survival analysis of breast cancer: Analysis with the hypertabastic survival model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12-14

AUTHORS

Mohammad A Tabatabai, Wayne M Eby, Nadim Nimeh, Hong Li, Karan P Singh

ABSTRACT

BACKGROUND: We explore the benefits of applying a new proportional hazard model to analyze survival of breast cancer patients. As a parametric model, the hypertabastic survival model offers a closer fit to experimental data than Cox regression, and furthermore provides explicit survival and hazard functions which can be used as additional tools in the survival analysis. In addition, one of our main concerns is utilization of multiple gene expression variables. Our analysis treats the important issue of interaction of different gene signatures in the survival analysis. METHODS: The hypertabastic proportional hazards model was applied in survival analysis of breast cancer patients. This model was compared, using statistical measures of goodness of fit, with models based on the semi-parametric Cox proportional hazards model and the parametric log-logistic and Weibull models. The explicit functions for hazard and survival were then used to analyze the dynamic behavior of hazard and survival functions. RESULTS: The hypertabastic model provided the best fit among all the models considered. Use of multiple gene expression variables also provided a considerable improvement in the goodness of fit of the model, as compared to use of only one. By utilizing the explicit survival and hazard functions provided by the model, we were able to determine the magnitude of the maximum rate of increase in hazard, and the maximum rate of decrease in survival, as well as the times when these occurred. We explore the influence of each gene expression variable on these extrema. Furthermore, in the cases of continuous gene expression variables, represented by a measure of correlation, we were able to investigate the dynamics with respect to changes in gene expression. CONCLUSIONS: We observed that use of three different gene signatures in the model provided a greater combined effect and allowed us to assess the relative importance of each in determination of outcome in this data set. These results point to the potential to combine gene signatures to a greater effect in cases where each gene signature represents some distinct aspect of the cancer biology. Furthermore we conclude that the hypertabastic survival models can be an effective survival analysis tool for breast cancer patients. More... »

PAGES

63-63

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1755-8794-5-63

DOI

http://dx.doi.org/10.1186/1755-8794-5-63

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053240097

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23241496


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Biochemistry and Metabolomics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Neoplastic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proportional Hazards Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptor, ErbB-2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Survival Analysis", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, Cameron University, Lawton, OK, 73505, USA", 
          "id": "http://www.grid.ac/institutes/grid.253592.a", 
          "name": [
            "Department of Mathematical Sciences, Cameron University, Lawton, OK, 73505, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tabatabai", 
        "givenName": "Mohammad A", 
        "id": "sg:person.01075770651.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075770651.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, Cameron University, Lawton, OK, 73505, USA", 
          "id": "http://www.grid.ac/institutes/grid.253592.a", 
          "name": [
            "Department of Mathematical Sciences, Cameron University, Lawton, OK, 73505, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eby", 
        "givenName": "Wayne M", 
        "id": "sg:person.01320311243.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320311243.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cancer Centers of Southwest Oklahoma, Lawton, OK, 73505, USA", 
          "id": "http://www.grid.ac/institutes/grid.489931.e", 
          "name": [
            "Cancer Centers of Southwest Oklahoma, Lawton, OK, 73505, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nimeh", 
        "givenName": "Nadim", 
        "id": "sg:person.01013672320.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013672320.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, Cameron University, Lawton, OK, 73505, USA", 
          "id": "http://www.grid.ac/institutes/grid.253592.a", 
          "name": [
            "Department of Mathematical Sciences, Cameron University, Lawton, OK, 73505, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Hong", 
        "id": "sg:person.01062005520.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062005520.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35295, USA", 
          "id": "http://www.grid.ac/institutes/grid.265892.2", 
          "name": [
            "Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35295, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "Karan P", 
        "id": "sg:person.0632077763.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632077763.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1755-8794-4-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013453261", 
          "https://doi.org/10.1186/1755-8794-4-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044768577", 
          "https://doi.org/10.1186/bcr410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-9-394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004752348", 
          "https://doi.org/10.1186/1471-2164-9-394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc2173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034411467", 
          "https://doi.org/10.1038/nrc2173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415530a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043001094", 
          "https://doi.org/10.1038/415530a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043749704", 
          "https://doi.org/10.1186/bcr433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm1764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015531700", 
          "https://doi.org/10.1038/nm1764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1755-8794-4-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015451497", 
          "https://doi.org/10.1186/1755-8794-4-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1742-4682-4-40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012311963", 
          "https://doi.org/10.1186/1742-4682-4-40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2007-8-8-r157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052735338", 
          "https://doi.org/10.1186/gb-2007-8-8-r157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2010-11-2-r18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045500131", 
          "https://doi.org/10.1186/gb-2010-11-2-r18"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-12-14", 
    "datePublishedReg": "2012-12-14", 
    "description": "BACKGROUND: We explore the benefits of applying a new proportional hazard model to analyze survival of breast cancer patients. As a parametric model, the hypertabastic survival model offers a closer fit to experimental data than Cox regression, and furthermore provides explicit survival and hazard functions which can be used as additional tools in the survival analysis. In addition, one of our main concerns is utilization of multiple gene expression variables. Our analysis treats the important issue of interaction of different gene signatures in the survival analysis.\nMETHODS: The hypertabastic proportional hazards model was applied in survival analysis of breast cancer patients. This model was compared, using statistical measures of goodness of fit, with models based on the semi-parametric Cox proportional hazards model and the parametric log-logistic and Weibull models. The explicit functions for hazard and survival were then used to analyze the dynamic behavior of hazard and survival functions.\nRESULTS: The hypertabastic model provided the best fit among all the models considered. Use of multiple gene expression variables also provided a considerable improvement in the goodness of fit of the model, as compared to use of only one. By utilizing the explicit survival and hazard functions provided by the model, we were able to determine the magnitude of the maximum rate of increase in hazard, and the maximum rate of decrease in survival, as well as the times when these occurred. We explore the influence of each gene expression variable on these extrema. Furthermore, in the cases of continuous gene expression variables, represented by a measure of correlation, we were able to investigate the dynamics with respect to changes in gene expression.\nCONCLUSIONS: We observed that use of three different gene signatures in the model provided a greater combined effect and allowed us to assess the relative importance of each in determination of outcome in this data set. These results point to the potential to combine gene signatures to a greater effect in cases where each gene signature represents some distinct aspect of the cancer biology. Furthermore we conclude that the hypertabastic survival models can be an effective survival analysis tool for breast cancer patients.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1755-8794-5-63", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2438799", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1039191", 
        "issn": [
          "1755-8794"
        ], 
        "name": "BMC Medical Genomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "hazard function", 
      "gene expression variables", 
      "explicit function", 
      "goodness of fit", 
      "survival analysis tool", 
      "parametric model", 
      "statistical measures", 
      "measure of correlation", 
      "new proportional hazard model", 
      "survival models", 
      "expression variables", 
      "Weibull model", 
      "dynamic behavior", 
      "experimental data", 
      "survival function", 
      "goodness", 
      "data sets", 
      "analysis tools", 
      "semi-parametric Cox proportional hazards model", 
      "model", 
      "extrema", 
      "variables", 
      "fit", 
      "function", 
      "considerable improvement", 
      "dynamics", 
      "important issue", 
      "set", 
      "signatures", 
      "main concern", 
      "tool", 
      "cases", 
      "analysis", 
      "relative importance", 
      "respect", 
      "magnitude", 
      "different gene signatures", 
      "behavior", 
      "regression", 
      "results", 
      "additional tool", 
      "measures", 
      "use", 
      "survival analysis", 
      "time", 
      "data", 
      "interaction", 
      "effect", 
      "determination", 
      "hazards model", 
      "correlation", 
      "aspects", 
      "greater effect", 
      "potential", 
      "maximum rate", 
      "influence", 
      "distinct aspects", 
      "issues", 
      "proportional hazards model", 
      "improvement", 
      "importance", 
      "rate", 
      "biology", 
      "addition", 
      "expression", 
      "utilization", 
      "hazards", 
      "determination of outcome", 
      "increase", 
      "benefits", 
      "changes", 
      "decrease", 
      "Cox proportional hazards model", 
      "concern", 
      "Cox regression", 
      "outcomes", 
      "gene signature", 
      "cancer biology", 
      "gene expression", 
      "breast cancer patients", 
      "survival", 
      "breast cancer", 
      "cancer patients", 
      "cancer", 
      "patients", 
      "hypertabastic survival model", 
      "explicit survival", 
      "multiple gene expression variables", 
      "hypertabastic proportional hazards model", 
      "hypertabastic model", 
      "continuous gene expression variables", 
      "effective survival analysis tool"
    ], 
    "name": "Clinical and multiple gene expression variables in survival analysis of breast cancer: Analysis with the hypertabastic survival model", 
    "pagination": "63-63", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053240097"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1755-8794-5-63"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23241496"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1755-8794-5-63", 
      "https://app.dimensions.ai/details/publication/pub.1053240097"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_577.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1755-8794-5-63"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-5-63'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-5-63'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-5-63'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-5-63'


 

This table displays all metadata directly associated to this object as RDF triples.

281 TRIPLES      22 PREDICATES      141 URIs      119 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1755-8794-5-63 schema:about N2d80a8173c124ccd93e3e78ca2c49ec3
2 N5724652efd7a428da029b089d880ea1c
3 N7a0312370bfc4b178e86d0b6a790197e
4 N9df24a12a8304f6f99db06be6eb5388f
5 Na225a3d3004a45cba69e776c1734374e
6 Na5cf525d28fe4a6283d09977036bfb8c
7 Nabc87b088a72408eae4db48a6e0bb1bd
8 Ncf66746c61cf42ee9b77dce6096e6a62
9 Nda55dc4750884316a0b59d6456fd0e79
10 anzsrc-for:06
11 anzsrc-for:0604
12 anzsrc-for:11
13 anzsrc-for:1101
14 anzsrc-for:1112
15 schema:author N0a9fe561ea26489ab1f5c9f454888edc
16 schema:citation sg:pub.10.1038/415530a
17 sg:pub.10.1038/nm1764
18 sg:pub.10.1038/nrc2173
19 sg:pub.10.1186/1471-2164-9-394
20 sg:pub.10.1186/1742-4682-4-40
21 sg:pub.10.1186/1755-8794-4-1
22 sg:pub.10.1186/1755-8794-4-3
23 sg:pub.10.1186/bcr410
24 sg:pub.10.1186/bcr433
25 sg:pub.10.1186/gb-2007-8-8-r157
26 sg:pub.10.1186/gb-2010-11-2-r18
27 schema:datePublished 2012-12-14
28 schema:datePublishedReg 2012-12-14
29 schema:description BACKGROUND: We explore the benefits of applying a new proportional hazard model to analyze survival of breast cancer patients. As a parametric model, the hypertabastic survival model offers a closer fit to experimental data than Cox regression, and furthermore provides explicit survival and hazard functions which can be used as additional tools in the survival analysis. In addition, one of our main concerns is utilization of multiple gene expression variables. Our analysis treats the important issue of interaction of different gene signatures in the survival analysis. METHODS: The hypertabastic proportional hazards model was applied in survival analysis of breast cancer patients. This model was compared, using statistical measures of goodness of fit, with models based on the semi-parametric Cox proportional hazards model and the parametric log-logistic and Weibull models. The explicit functions for hazard and survival were then used to analyze the dynamic behavior of hazard and survival functions. RESULTS: The hypertabastic model provided the best fit among all the models considered. Use of multiple gene expression variables also provided a considerable improvement in the goodness of fit of the model, as compared to use of only one. By utilizing the explicit survival and hazard functions provided by the model, we were able to determine the magnitude of the maximum rate of increase in hazard, and the maximum rate of decrease in survival, as well as the times when these occurred. We explore the influence of each gene expression variable on these extrema. Furthermore, in the cases of continuous gene expression variables, represented by a measure of correlation, we were able to investigate the dynamics with respect to changes in gene expression. CONCLUSIONS: We observed that use of three different gene signatures in the model provided a greater combined effect and allowed us to assess the relative importance of each in determination of outcome in this data set. These results point to the potential to combine gene signatures to a greater effect in cases where each gene signature represents some distinct aspect of the cancer biology. Furthermore we conclude that the hypertabastic survival models can be an effective survival analysis tool for breast cancer patients.
30 schema:genre article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N5019c0ed953a46358027a396e6a11635
34 Nbca637f0d72941de9b2e0b795612e292
35 sg:journal.1039191
36 schema:keywords Cox proportional hazards model
37 Cox regression
38 Weibull model
39 addition
40 additional tool
41 analysis
42 analysis tools
43 aspects
44 behavior
45 benefits
46 biology
47 breast cancer
48 breast cancer patients
49 cancer
50 cancer biology
51 cancer patients
52 cases
53 changes
54 concern
55 considerable improvement
56 continuous gene expression variables
57 correlation
58 data
59 data sets
60 decrease
61 determination
62 determination of outcome
63 different gene signatures
64 distinct aspects
65 dynamic behavior
66 dynamics
67 effect
68 effective survival analysis tool
69 experimental data
70 explicit function
71 explicit survival
72 expression
73 expression variables
74 extrema
75 fit
76 function
77 gene expression
78 gene expression variables
79 gene signature
80 goodness
81 goodness of fit
82 greater effect
83 hazard function
84 hazards
85 hazards model
86 hypertabastic model
87 hypertabastic proportional hazards model
88 hypertabastic survival model
89 importance
90 important issue
91 improvement
92 increase
93 influence
94 interaction
95 issues
96 magnitude
97 main concern
98 maximum rate
99 measure of correlation
100 measures
101 model
102 multiple gene expression variables
103 new proportional hazard model
104 outcomes
105 parametric model
106 patients
107 potential
108 proportional hazards model
109 rate
110 regression
111 relative importance
112 respect
113 results
114 semi-parametric Cox proportional hazards model
115 set
116 signatures
117 statistical measures
118 survival
119 survival analysis
120 survival analysis tool
121 survival function
122 survival models
123 time
124 tool
125 use
126 utilization
127 variables
128 schema:name Clinical and multiple gene expression variables in survival analysis of breast cancer: Analysis with the hypertabastic survival model
129 schema:pagination 63-63
130 schema:productId N106545438bd54189917765f62d8068b0
131 N4ac7306ff2ec43409e962318d36f18f1
132 Nad716be3066d46318a4b467cca5811c3
133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053240097
134 https://doi.org/10.1186/1755-8794-5-63
135 schema:sdDatePublished 2022-01-01T18:27
136 schema:sdLicense https://scigraph.springernature.com/explorer/license/
137 schema:sdPublisher N4ee49e47a71749419875a890a203a068
138 schema:url https://doi.org/10.1186/1755-8794-5-63
139 sgo:license sg:explorer/license/
140 sgo:sdDataset articles
141 rdf:type schema:ScholarlyArticle
142 N0a9fe561ea26489ab1f5c9f454888edc rdf:first sg:person.01075770651.15
143 rdf:rest N8f11a81f9bc44e03a0139254c2b2714a
144 N106545438bd54189917765f62d8068b0 schema:name doi
145 schema:value 10.1186/1755-8794-5-63
146 rdf:type schema:PropertyValue
147 N2d80a8173c124ccd93e3e78ca2c49ec3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Female
149 rdf:type schema:DefinedTerm
150 N4ac7306ff2ec43409e962318d36f18f1 schema:name dimensions_id
151 schema:value pub.1053240097
152 rdf:type schema:PropertyValue
153 N4ee49e47a71749419875a890a203a068 schema:name Springer Nature - SN SciGraph project
154 rdf:type schema:Organization
155 N5019c0ed953a46358027a396e6a11635 schema:issueNumber 1
156 rdf:type schema:PublicationIssue
157 N5724652efd7a428da029b089d880ea1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Models, Statistical
159 rdf:type schema:DefinedTerm
160 N7a0312370bfc4b178e86d0b6a790197e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Humans
162 rdf:type schema:DefinedTerm
163 N8d14435940224f7ca4368f7babfb248f rdf:first sg:person.01013672320.80
164 rdf:rest Ndda49495943c49c887ca591b62b4e0c1
165 N8f11a81f9bc44e03a0139254c2b2714a rdf:first sg:person.01320311243.12
166 rdf:rest N8d14435940224f7ca4368f7babfb248f
167 N9df24a12a8304f6f99db06be6eb5388f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Prognosis
169 rdf:type schema:DefinedTerm
170 Na225a3d3004a45cba69e776c1734374e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Proportional Hazards Models
172 rdf:type schema:DefinedTerm
173 Na5cf525d28fe4a6283d09977036bfb8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Receptor, ErbB-2
175 rdf:type schema:DefinedTerm
176 Nabc87b088a72408eae4db48a6e0bb1bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Gene Expression Regulation, Neoplastic
178 rdf:type schema:DefinedTerm
179 Nad716be3066d46318a4b467cca5811c3 schema:name pubmed_id
180 schema:value 23241496
181 rdf:type schema:PropertyValue
182 Nbca637f0d72941de9b2e0b795612e292 schema:volumeNumber 5
183 rdf:type schema:PublicationVolume
184 Ncf66746c61cf42ee9b77dce6096e6a62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Survival Analysis
186 rdf:type schema:DefinedTerm
187 Nda55dc4750884316a0b59d6456fd0e79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Breast Neoplasms
189 rdf:type schema:DefinedTerm
190 Ndda49495943c49c887ca591b62b4e0c1 rdf:first sg:person.01062005520.88
191 rdf:rest Ndfc0fd1d0b504140bc42548e45646e13
192 Ndfc0fd1d0b504140bc42548e45646e13 rdf:first sg:person.0632077763.63
193 rdf:rest rdf:nil
194 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
195 schema:name Biological Sciences
196 rdf:type schema:DefinedTerm
197 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
198 schema:name Genetics
199 rdf:type schema:DefinedTerm
200 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
201 schema:name Medical and Health Sciences
202 rdf:type schema:DefinedTerm
203 anzsrc-for:1101 schema:inDefinedTermSet anzsrc-for:
204 schema:name Medical Biochemistry and Metabolomics
205 rdf:type schema:DefinedTerm
206 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
207 schema:name Oncology and Carcinogenesis
208 rdf:type schema:DefinedTerm
209 sg:grant.2438799 http://pending.schema.org/fundedItem sg:pub.10.1186/1755-8794-5-63
210 rdf:type schema:MonetaryGrant
211 sg:journal.1039191 schema:issn 1755-8794
212 schema:name BMC Medical Genomics
213 schema:publisher Springer Nature
214 rdf:type schema:Periodical
215 sg:person.01013672320.80 schema:affiliation grid-institutes:grid.489931.e
216 schema:familyName Nimeh
217 schema:givenName Nadim
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013672320.80
219 rdf:type schema:Person
220 sg:person.01062005520.88 schema:affiliation grid-institutes:grid.253592.a
221 schema:familyName Li
222 schema:givenName Hong
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062005520.88
224 rdf:type schema:Person
225 sg:person.01075770651.15 schema:affiliation grid-institutes:grid.253592.a
226 schema:familyName Tabatabai
227 schema:givenName Mohammad A
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075770651.15
229 rdf:type schema:Person
230 sg:person.01320311243.12 schema:affiliation grid-institutes:grid.253592.a
231 schema:familyName Eby
232 schema:givenName Wayne M
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320311243.12
234 rdf:type schema:Person
235 sg:person.0632077763.63 schema:affiliation grid-institutes:grid.265892.2
236 schema:familyName Singh
237 schema:givenName Karan P
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632077763.63
239 rdf:type schema:Person
240 sg:pub.10.1038/415530a schema:sameAs https://app.dimensions.ai/details/publication/pub.1043001094
241 https://doi.org/10.1038/415530a
242 rdf:type schema:CreativeWork
243 sg:pub.10.1038/nm1764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015531700
244 https://doi.org/10.1038/nm1764
245 rdf:type schema:CreativeWork
246 sg:pub.10.1038/nrc2173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034411467
247 https://doi.org/10.1038/nrc2173
248 rdf:type schema:CreativeWork
249 sg:pub.10.1186/1471-2164-9-394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004752348
250 https://doi.org/10.1186/1471-2164-9-394
251 rdf:type schema:CreativeWork
252 sg:pub.10.1186/1742-4682-4-40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012311963
253 https://doi.org/10.1186/1742-4682-4-40
254 rdf:type schema:CreativeWork
255 sg:pub.10.1186/1755-8794-4-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015451497
256 https://doi.org/10.1186/1755-8794-4-1
257 rdf:type schema:CreativeWork
258 sg:pub.10.1186/1755-8794-4-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013453261
259 https://doi.org/10.1186/1755-8794-4-3
260 rdf:type schema:CreativeWork
261 sg:pub.10.1186/bcr410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044768577
262 https://doi.org/10.1186/bcr410
263 rdf:type schema:CreativeWork
264 sg:pub.10.1186/bcr433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043749704
265 https://doi.org/10.1186/bcr433
266 rdf:type schema:CreativeWork
267 sg:pub.10.1186/gb-2007-8-8-r157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052735338
268 https://doi.org/10.1186/gb-2007-8-8-r157
269 rdf:type schema:CreativeWork
270 sg:pub.10.1186/gb-2010-11-2-r18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045500131
271 https://doi.org/10.1186/gb-2010-11-2-r18
272 rdf:type schema:CreativeWork
273 grid-institutes:grid.253592.a schema:alternateName Department of Mathematical Sciences, Cameron University, Lawton, OK, 73505, USA
274 schema:name Department of Mathematical Sciences, Cameron University, Lawton, OK, 73505, USA
275 rdf:type schema:Organization
276 grid-institutes:grid.265892.2 schema:alternateName Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35295, USA
277 schema:name Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35295, USA
278 rdf:type schema:Organization
279 grid-institutes:grid.489931.e schema:alternateName Cancer Centers of Southwest Oklahoma, Lawton, OK, 73505, USA
280 schema:name Cancer Centers of Southwest Oklahoma, Lawton, OK, 73505, USA
281 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...