Clinical and multiple gene expression variables in survival analysis of breast cancer: Analysis with the hypertabastic survival model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12-14

AUTHORS

Mohammad A Tabatabai, Wayne M Eby, Nadim Nimeh, Hong Li, Karan P Singh

ABSTRACT

BackgroundWe explore the benefits of applying a new proportional hazard model to analyze survival of breast cancer patients. As a parametric model, the hypertabastic survival model offers a closer fit to experimental data than Cox regression, and furthermore provides explicit survival and hazard functions which can be used as additional tools in the survival analysis. In addition, one of our main concerns is utilization of multiple gene expression variables. Our analysis treats the important issue of interaction of different gene signatures in the survival analysis.MethodsThe hypertabastic proportional hazards model was applied in survival analysis of breast cancer patients. This model was compared, using statistical measures of goodness of fit, with models based on the semi-parametric Cox proportional hazards model and the parametric log-logistic and Weibull models. The explicit functions for hazard and survival were then used to analyze the dynamic behavior of hazard and survival functions.ResultsThe hypertabastic model provided the best fit among all the models considered. Use of multiple gene expression variables also provided a considerable improvement in the goodness of fit of the model, as compared to use of only one. By utilizing the explicit survival and hazard functions provided by the model, we were able to determine the magnitude of the maximum rate of increase in hazard, and the maximum rate of decrease in survival, as well as the times when these occurred. We explore the influence of each gene expression variable on these extrema. Furthermore, in the cases of continuous gene expression variables, represented by a measure of correlation, we were able to investigate the dynamics with respect to changes in gene expression.ConclusionsWe observed that use of three different gene signatures in the model provided a greater combined effect and allowed us to assess the relative importance of each in determination of outcome in this data set. These results point to the potential to combine gene signatures to a greater effect in cases where each gene signature represents some distinct aspect of the cancer biology. Furthermore we conclude that the hypertabastic survival models can be an effective survival analysis tool for breast cancer patients. More... »

PAGES

63

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1755-8794-5-63

DOI

http://dx.doi.org/10.1186/1755-8794-5-63

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053240097

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23241496


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Biochemistry and Metabolomics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Breast Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Neoplastic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proportional Hazards Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptor, ErbB-2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Survival Analysis", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, Cameron University, 73505, Lawton, OK, USA", 
          "id": "http://www.grid.ac/institutes/grid.253592.a", 
          "name": [
            "Department of Mathematical Sciences, Cameron University, 73505, Lawton, OK, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tabatabai", 
        "givenName": "Mohammad A", 
        "id": "sg:person.01075770651.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075770651.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, Cameron University, 73505, Lawton, OK, USA", 
          "id": "http://www.grid.ac/institutes/grid.253592.a", 
          "name": [
            "Department of Mathematical Sciences, Cameron University, 73505, Lawton, OK, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eby", 
        "givenName": "Wayne M", 
        "id": "sg:person.01320311243.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320311243.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cancer Centers of Southwest Oklahoma, 73505, Lawton, OK, USA", 
          "id": "http://www.grid.ac/institutes/grid.489931.e", 
          "name": [
            "Cancer Centers of Southwest Oklahoma, 73505, Lawton, OK, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nimeh", 
        "givenName": "Nadim", 
        "id": "sg:person.01013672320.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013672320.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, Cameron University, 73505, Lawton, OK, USA", 
          "id": "http://www.grid.ac/institutes/grid.253592.a", 
          "name": [
            "Department of Mathematical Sciences, Cameron University, 73505, Lawton, OK, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Hong", 
        "id": "sg:person.01062005520.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062005520.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medicine, University of Alabama at Birmingham, 35295, Birmingham, AL, USA", 
          "id": "http://www.grid.ac/institutes/grid.265892.2", 
          "name": [
            "Department of Medicine, University of Alabama at Birmingham, 35295, Birmingham, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "Karan P", 
        "id": "sg:person.0632077763.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632077763.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2164-9-394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004752348", 
          "https://doi.org/10.1186/1471-2164-9-394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1755-8794-4-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015451497", 
          "https://doi.org/10.1186/1755-8794-4-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2007-8-8-r157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052735338", 
          "https://doi.org/10.1186/gb-2007-8-8-r157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043749704", 
          "https://doi.org/10.1186/bcr433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm1764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015531700", 
          "https://doi.org/10.1038/nm1764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1755-8794-4-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013453261", 
          "https://doi.org/10.1186/1755-8794-4-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc2173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034411467", 
          "https://doi.org/10.1038/nrc2173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/bcr410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044768577", 
          "https://doi.org/10.1186/bcr410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1742-4682-4-40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012311963", 
          "https://doi.org/10.1186/1742-4682-4-40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2010-11-2-r18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045500131", 
          "https://doi.org/10.1186/gb-2010-11-2-r18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415530a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043001094", 
          "https://doi.org/10.1038/415530a"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-12-14", 
    "datePublishedReg": "2012-12-14", 
    "description": "BackgroundWe explore the benefits of applying a new proportional hazard model to analyze survival of breast cancer patients. As a parametric model, the hypertabastic survival model offers a closer fit to experimental data than Cox regression, and furthermore provides explicit survival and hazard functions which can be used as additional tools in the survival analysis. In addition, one of our main concerns is utilization of multiple gene expression variables. Our analysis treats the important issue of interaction of different gene signatures in the survival analysis.MethodsThe hypertabastic proportional hazards model was applied in survival analysis of breast cancer patients. This model was compared, using statistical measures of goodness of fit, with models based on the semi-parametric Cox proportional hazards model and the parametric log-logistic and Weibull models. The explicit functions for hazard and survival were then used to analyze the dynamic behavior of hazard and survival functions.ResultsThe hypertabastic model provided the best fit among all the models considered. Use of multiple gene expression variables also provided a considerable improvement in the goodness of fit of the model, as compared to use of only one. By utilizing the explicit survival and hazard functions provided by the model, we were able to determine the magnitude of the maximum rate of increase in hazard, and the maximum rate of decrease in survival, as well as the times when these occurred. We explore the influence of each gene expression variable on these extrema. Furthermore, in the cases of continuous gene expression variables, represented by a measure of correlation, we were able to investigate the dynamics with respect to changes in gene expression.ConclusionsWe observed that use of three different gene signatures in the model provided a greater combined effect and allowed us to assess the relative importance of each in determination of outcome in this data set. These results point to the potential to combine gene signatures to a greater effect in cases where each gene signature represents some distinct aspect of the cancer biology. Furthermore we conclude that the hypertabastic survival models can be an effective survival analysis tool for breast cancer patients.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1755-8794-5-63", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2438799", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1039191", 
        "issn": [
          "1755-8794"
        ], 
        "name": "BMC Medical Genomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "gene expression variables", 
      "hazard function", 
      "explicit function", 
      "goodness of fit", 
      "parametric model", 
      "statistical measures", 
      "measure of correlation", 
      "survival analysis tool", 
      "new proportional hazard model", 
      "expression variables", 
      "survival models", 
      "Weibull model", 
      "experimental data", 
      "dynamic behavior", 
      "survival function", 
      "goodness", 
      "data sets", 
      "analysis tools", 
      "model", 
      "extrema", 
      "variables", 
      "fit", 
      "semi-parametric Cox proportional hazards model", 
      "function", 
      "considerable improvement", 
      "dynamics", 
      "important issue", 
      "set", 
      "signatures", 
      "main concern", 
      "tool", 
      "cases", 
      "analysis", 
      "relative importance", 
      "respect", 
      "magnitude", 
      "behavior", 
      "additional tool", 
      "regression", 
      "results", 
      "measures", 
      "use", 
      "interaction", 
      "different gene signatures", 
      "time", 
      "effect", 
      "data", 
      "survival analysis", 
      "determination", 
      "correlation", 
      "greater effect", 
      "hazards model", 
      "aspects", 
      "maximum rate", 
      "potential", 
      "influence", 
      "distinct aspects", 
      "issues", 
      "improvement", 
      "proportional hazards model", 
      "rate", 
      "importance", 
      "addition", 
      "biology", 
      "expression", 
      "utilization", 
      "hazards", 
      "determination of outcome", 
      "increase", 
      "changes", 
      "benefits", 
      "decrease", 
      "Cox proportional hazards model", 
      "concern", 
      "Cox regression", 
      "ConclusionsWe", 
      "outcomes", 
      "breast cancer patients", 
      "gene signature", 
      "cancer biology", 
      "cancer patients", 
      "breast cancer", 
      "patients", 
      "survival", 
      "gene expression", 
      "BackgroundWe", 
      "cancer"
    ], 
    "name": "Clinical and multiple gene expression variables in survival analysis of breast cancer: Analysis with the hypertabastic survival model", 
    "pagination": "63", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053240097"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1755-8794-5-63"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23241496"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1755-8794-5-63", 
      "https://app.dimensions.ai/details/publication/pub.1053240097"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_559.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1755-8794-5-63"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-5-63'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-5-63'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-5-63'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-5-63'


 

This table displays all metadata directly associated to this object as RDF triples.

276 TRIPLES      22 PREDICATES      136 URIs      114 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1755-8794-5-63 schema:about N0a9ae439f8af46029879347398cc718d
2 N3b4a744ffbc0402b80d1c550410048bb
3 N5553564387c44195b2fdeafb35b5608a
4 N75e9c36aefd94499acdea0db44c5ae9f
5 N7c757c8f9bbf4069b57a0fdeba7701f6
6 N830f48a0c7f44e42a96137ee9482ea03
7 Ne5bbad68076a405fae630490e17ae9c0
8 Neee2861fa2ca48c78eb6ae6bdf6c33bb
9 Nf656627114414fb381cf9a2a2e0adb4b
10 anzsrc-for:06
11 anzsrc-for:0604
12 anzsrc-for:11
13 anzsrc-for:1101
14 anzsrc-for:1112
15 schema:author Na1aa3648331241aca36bc32e9444919e
16 schema:citation sg:pub.10.1038/415530a
17 sg:pub.10.1038/nm1764
18 sg:pub.10.1038/nrc2173
19 sg:pub.10.1186/1471-2164-9-394
20 sg:pub.10.1186/1742-4682-4-40
21 sg:pub.10.1186/1755-8794-4-1
22 sg:pub.10.1186/1755-8794-4-3
23 sg:pub.10.1186/bcr410
24 sg:pub.10.1186/bcr433
25 sg:pub.10.1186/gb-2007-8-8-r157
26 sg:pub.10.1186/gb-2010-11-2-r18
27 schema:datePublished 2012-12-14
28 schema:datePublishedReg 2012-12-14
29 schema:description BackgroundWe explore the benefits of applying a new proportional hazard model to analyze survival of breast cancer patients. As a parametric model, the hypertabastic survival model offers a closer fit to experimental data than Cox regression, and furthermore provides explicit survival and hazard functions which can be used as additional tools in the survival analysis. In addition, one of our main concerns is utilization of multiple gene expression variables. Our analysis treats the important issue of interaction of different gene signatures in the survival analysis.MethodsThe hypertabastic proportional hazards model was applied in survival analysis of breast cancer patients. This model was compared, using statistical measures of goodness of fit, with models based on the semi-parametric Cox proportional hazards model and the parametric log-logistic and Weibull models. The explicit functions for hazard and survival were then used to analyze the dynamic behavior of hazard and survival functions.ResultsThe hypertabastic model provided the best fit among all the models considered. Use of multiple gene expression variables also provided a considerable improvement in the goodness of fit of the model, as compared to use of only one. By utilizing the explicit survival and hazard functions provided by the model, we were able to determine the magnitude of the maximum rate of increase in hazard, and the maximum rate of decrease in survival, as well as the times when these occurred. We explore the influence of each gene expression variable on these extrema. Furthermore, in the cases of continuous gene expression variables, represented by a measure of correlation, we were able to investigate the dynamics with respect to changes in gene expression.ConclusionsWe observed that use of three different gene signatures in the model provided a greater combined effect and allowed us to assess the relative importance of each in determination of outcome in this data set. These results point to the potential to combine gene signatures to a greater effect in cases where each gene signature represents some distinct aspect of the cancer biology. Furthermore we conclude that the hypertabastic survival models can be an effective survival analysis tool for breast cancer patients.
30 schema:genre article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N2a8556eb15d541a28334a4662accd243
34 Nd88a87ea45ed4579bb888097b2da8aa9
35 sg:journal.1039191
36 schema:keywords BackgroundWe
37 ConclusionsWe
38 Cox proportional hazards model
39 Cox regression
40 Weibull model
41 addition
42 additional tool
43 analysis
44 analysis tools
45 aspects
46 behavior
47 benefits
48 biology
49 breast cancer
50 breast cancer patients
51 cancer
52 cancer biology
53 cancer patients
54 cases
55 changes
56 concern
57 considerable improvement
58 correlation
59 data
60 data sets
61 decrease
62 determination
63 determination of outcome
64 different gene signatures
65 distinct aspects
66 dynamic behavior
67 dynamics
68 effect
69 experimental data
70 explicit function
71 expression
72 expression variables
73 extrema
74 fit
75 function
76 gene expression
77 gene expression variables
78 gene signature
79 goodness
80 goodness of fit
81 greater effect
82 hazard function
83 hazards
84 hazards model
85 importance
86 important issue
87 improvement
88 increase
89 influence
90 interaction
91 issues
92 magnitude
93 main concern
94 maximum rate
95 measure of correlation
96 measures
97 model
98 new proportional hazard model
99 outcomes
100 parametric model
101 patients
102 potential
103 proportional hazards model
104 rate
105 regression
106 relative importance
107 respect
108 results
109 semi-parametric Cox proportional hazards model
110 set
111 signatures
112 statistical measures
113 survival
114 survival analysis
115 survival analysis tool
116 survival function
117 survival models
118 time
119 tool
120 use
121 utilization
122 variables
123 schema:name Clinical and multiple gene expression variables in survival analysis of breast cancer: Analysis with the hypertabastic survival model
124 schema:pagination 63
125 schema:productId N78a13bf1be894d6996d89f79a23e08bb
126 N816b65d7133b4670ac38f3dd1af25ae5
127 Nf6c58eef3e764534819daf268b862617
128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053240097
129 https://doi.org/10.1186/1755-8794-5-63
130 schema:sdDatePublished 2022-05-20T07:27
131 schema:sdLicense https://scigraph.springernature.com/explorer/license/
132 schema:sdPublisher Ne8cd4fc239444ed793f9414e4fa62cd7
133 schema:url https://doi.org/10.1186/1755-8794-5-63
134 sgo:license sg:explorer/license/
135 sgo:sdDataset articles
136 rdf:type schema:ScholarlyArticle
137 N0571dfe467c044c3b5f6b1cbb3f49fe1 rdf:first sg:person.0632077763.63
138 rdf:rest rdf:nil
139 N0a9ae439f8af46029879347398cc718d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Proportional Hazards Models
141 rdf:type schema:DefinedTerm
142 N2a8556eb15d541a28334a4662accd243 schema:issueNumber 1
143 rdf:type schema:PublicationIssue
144 N3b4a744ffbc0402b80d1c550410048bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Female
146 rdf:type schema:DefinedTerm
147 N520df55ff1524f85a5f0f20bf67b7443 rdf:first sg:person.01013672320.80
148 rdf:rest N70b6c13c021b44c8aa42302c590d6e16
149 N5553564387c44195b2fdeafb35b5608a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Receptor, ErbB-2
151 rdf:type schema:DefinedTerm
152 N70b6c13c021b44c8aa42302c590d6e16 rdf:first sg:person.01062005520.88
153 rdf:rest N0571dfe467c044c3b5f6b1cbb3f49fe1
154 N75e9c36aefd94499acdea0db44c5ae9f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Survival Analysis
156 rdf:type schema:DefinedTerm
157 N78a13bf1be894d6996d89f79a23e08bb schema:name dimensions_id
158 schema:value pub.1053240097
159 rdf:type schema:PropertyValue
160 N7c757c8f9bbf4069b57a0fdeba7701f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Breast Neoplasms
162 rdf:type schema:DefinedTerm
163 N816b65d7133b4670ac38f3dd1af25ae5 schema:name pubmed_id
164 schema:value 23241496
165 rdf:type schema:PropertyValue
166 N830f48a0c7f44e42a96137ee9482ea03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Prognosis
168 rdf:type schema:DefinedTerm
169 Na1aa3648331241aca36bc32e9444919e rdf:first sg:person.01075770651.15
170 rdf:rest Ne6c6ad1e692a4c16ba195f71cafb8dee
171 Nd88a87ea45ed4579bb888097b2da8aa9 schema:volumeNumber 5
172 rdf:type schema:PublicationVolume
173 Ne5bbad68076a405fae630490e17ae9c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Humans
175 rdf:type schema:DefinedTerm
176 Ne6c6ad1e692a4c16ba195f71cafb8dee rdf:first sg:person.01320311243.12
177 rdf:rest N520df55ff1524f85a5f0f20bf67b7443
178 Ne8cd4fc239444ed793f9414e4fa62cd7 schema:name Springer Nature - SN SciGraph project
179 rdf:type schema:Organization
180 Neee2861fa2ca48c78eb6ae6bdf6c33bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Models, Statistical
182 rdf:type schema:DefinedTerm
183 Nf656627114414fb381cf9a2a2e0adb4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Gene Expression Regulation, Neoplastic
185 rdf:type schema:DefinedTerm
186 Nf6c58eef3e764534819daf268b862617 schema:name doi
187 schema:value 10.1186/1755-8794-5-63
188 rdf:type schema:PropertyValue
189 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
190 schema:name Biological Sciences
191 rdf:type schema:DefinedTerm
192 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
193 schema:name Genetics
194 rdf:type schema:DefinedTerm
195 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
196 schema:name Medical and Health Sciences
197 rdf:type schema:DefinedTerm
198 anzsrc-for:1101 schema:inDefinedTermSet anzsrc-for:
199 schema:name Medical Biochemistry and Metabolomics
200 rdf:type schema:DefinedTerm
201 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
202 schema:name Oncology and Carcinogenesis
203 rdf:type schema:DefinedTerm
204 sg:grant.2438799 http://pending.schema.org/fundedItem sg:pub.10.1186/1755-8794-5-63
205 rdf:type schema:MonetaryGrant
206 sg:journal.1039191 schema:issn 1755-8794
207 schema:name BMC Medical Genomics
208 schema:publisher Springer Nature
209 rdf:type schema:Periodical
210 sg:person.01013672320.80 schema:affiliation grid-institutes:grid.489931.e
211 schema:familyName Nimeh
212 schema:givenName Nadim
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013672320.80
214 rdf:type schema:Person
215 sg:person.01062005520.88 schema:affiliation grid-institutes:grid.253592.a
216 schema:familyName Li
217 schema:givenName Hong
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062005520.88
219 rdf:type schema:Person
220 sg:person.01075770651.15 schema:affiliation grid-institutes:grid.253592.a
221 schema:familyName Tabatabai
222 schema:givenName Mohammad A
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075770651.15
224 rdf:type schema:Person
225 sg:person.01320311243.12 schema:affiliation grid-institutes:grid.253592.a
226 schema:familyName Eby
227 schema:givenName Wayne M
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320311243.12
229 rdf:type schema:Person
230 sg:person.0632077763.63 schema:affiliation grid-institutes:grid.265892.2
231 schema:familyName Singh
232 schema:givenName Karan P
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632077763.63
234 rdf:type schema:Person
235 sg:pub.10.1038/415530a schema:sameAs https://app.dimensions.ai/details/publication/pub.1043001094
236 https://doi.org/10.1038/415530a
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/nm1764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015531700
239 https://doi.org/10.1038/nm1764
240 rdf:type schema:CreativeWork
241 sg:pub.10.1038/nrc2173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034411467
242 https://doi.org/10.1038/nrc2173
243 rdf:type schema:CreativeWork
244 sg:pub.10.1186/1471-2164-9-394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004752348
245 https://doi.org/10.1186/1471-2164-9-394
246 rdf:type schema:CreativeWork
247 sg:pub.10.1186/1742-4682-4-40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012311963
248 https://doi.org/10.1186/1742-4682-4-40
249 rdf:type schema:CreativeWork
250 sg:pub.10.1186/1755-8794-4-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015451497
251 https://doi.org/10.1186/1755-8794-4-1
252 rdf:type schema:CreativeWork
253 sg:pub.10.1186/1755-8794-4-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013453261
254 https://doi.org/10.1186/1755-8794-4-3
255 rdf:type schema:CreativeWork
256 sg:pub.10.1186/bcr410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044768577
257 https://doi.org/10.1186/bcr410
258 rdf:type schema:CreativeWork
259 sg:pub.10.1186/bcr433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043749704
260 https://doi.org/10.1186/bcr433
261 rdf:type schema:CreativeWork
262 sg:pub.10.1186/gb-2007-8-8-r157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052735338
263 https://doi.org/10.1186/gb-2007-8-8-r157
264 rdf:type schema:CreativeWork
265 sg:pub.10.1186/gb-2010-11-2-r18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045500131
266 https://doi.org/10.1186/gb-2010-11-2-r18
267 rdf:type schema:CreativeWork
268 grid-institutes:grid.253592.a schema:alternateName Department of Mathematical Sciences, Cameron University, 73505, Lawton, OK, USA
269 schema:name Department of Mathematical Sciences, Cameron University, 73505, Lawton, OK, USA
270 rdf:type schema:Organization
271 grid-institutes:grid.265892.2 schema:alternateName Department of Medicine, University of Alabama at Birmingham, 35295, Birmingham, AL, USA
272 schema:name Department of Medicine, University of Alabama at Birmingham, 35295, Birmingham, AL, USA
273 rdf:type schema:Organization
274 grid-institutes:grid.489931.e schema:alternateName Cancer Centers of Southwest Oklahoma, 73505, Lawton, OK, USA
275 schema:name Cancer Centers of Southwest Oklahoma, 73505, Lawton, OK, USA
276 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...