Identification of SERPINA1 as single marker for papillary thyroid carcinoma through microarray meta analysis and quantification of its discriminatory power ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-04-06

AUTHORS

Klemens Vierlinger, Markus H Mansfeld, Oskar Koperek, Christa Nöhammer, Klaus Kaserer, Friedrich Leisch

ABSTRACT

BackgroundSeveral DNA microarray based expression signatures for the different clinically relevant thyroid tumor entities have been described over the past few years. However, reproducibility of these signatures is generally low, mainly due to study biases, small sample sizes and the highly multivariate nature of microarrays. While there are new technologies available for a more accurate high throughput expression analysis, we show that there is still a lot of information to be gained from data deposited in public microarray databases. In this study we were aiming (1) to identify potential markers for papillary thyroid carcinomas through meta analysis of public microarray data and (2) to confirm these markers in an independent dataset using an independent technology.MethodsWe adopted a meta analysis approach for four publicly available microarray datasets on papillary thyroid carcinoma (PTC) nodules versus nodular goitre (NG) from N2-frozen tissue. The methodology included merging of datasets, bias removal using distance weighted discrimination (DWD), feature selection/inference statistics, classification/crossvalidation and gene set enrichment analysis (GSEA). External Validation was performed on an independent dataset using an independent technology, quantitative RT-PCR (RT-qPCR) in our laboratory.ResultsFrom meta analysis we identified one gene (SERPINA1) which identifies papillary thyroid carcinoma against benign nodules with 99% accuracy (n = 99, sensitivity = 0.98, specificity = 1, PPV = 1, NPV = 0.98). In the independent validation data, which included not only PTC and NG, but all major histological thyroid entities plus a few variants, SERPINA1 was again markedly up regulated (36-fold, p = 1:3*10-10) in PTC and identification of papillary carcinoma was possible with 93% accuracy (n = 82, sensitivity = 1, specificity = 0.90, PPV = 0.76, NPV = 1). We also show that the extracellular matrix pathway is strongly activated in the meta analysis data, suggesting an important role of tumor-stroma interaction in the carcinogenesis of papillary thyroid carcinoma.ConclusionsWe show that valuable new information can be gained from meta analysis of existing microarray data deposited in public repositories. While single microarray studies rarely exhibit a sample number which allows robust feature selection, this can be achieved by combining published data using DWD. This approach is not only efficient, but also very cost-effective. Independent validation shows the validity of the results from this meta analysis and confirms SERPINA1 as a potent mRNA marker for PTC in a total (meta analysis plus validation) of 181 samples. More... »

PAGES

30

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1755-8794-4-30

DOI

http://dx.doi.org/10.1186/1755-8794-4-30

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020810816

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21470421


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Papillary", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thyroid Cancer, Papillary", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thyroid Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "alpha 1-Antitrypsin", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Molecular Medicine, AIT - Austrian Institute of Technology, A-1190, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.4332.6", 
          "name": [
            "Molecular Medicine, AIT - Austrian Institute of Technology, A-1190, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vierlinger", 
        "givenName": "Klemens", 
        "id": "sg:person.0604701673.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604701673.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Molecular Medicine, AIT - Austrian Institute of Technology, A-1190, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.4332.6", 
          "name": [
            "Molecular Medicine, AIT - Austrian Institute of Technology, A-1190, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mansfeld", 
        "givenName": "Markus H", 
        "id": "sg:person.0636615506.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636615506.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Clinical Pathology, University of Vienna Medical School, A-1090, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.22937.3d", 
          "name": [
            "Department of Clinical Pathology, University of Vienna Medical School, A-1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koperek", 
        "givenName": "Oskar", 
        "id": "sg:person.0637444237.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637444237.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Molecular Medicine, AIT - Austrian Institute of Technology, A-1190, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.4332.6", 
          "name": [
            "Molecular Medicine, AIT - Austrian Institute of Technology, A-1190, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "N\u00f6hammer", 
        "givenName": "Christa", 
        "id": "sg:person.01303267405.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303267405.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Clinical Pathology, University of Vienna Medical School, A-1090, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.22937.3d", 
          "name": [
            "Department of Clinical Pathology, University of Vienna Medical School, A-1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaserer", 
        "givenName": "Klaus", 
        "id": "sg:person.01046040764.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046040764.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Applied Statistics and Computing, University of Natural Ressources and Life Sciences, 1190, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Applied Statistics and Computing, University of Natural Ressources and Life Sciences, 1190, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leisch", 
        "givenName": "Friedrich", 
        "id": "sg:person.01303645353.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303645353.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/gb-2008-9-5-r83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044588961", 
          "https://doi.org/10.1186/gb-2008-9-5-r83"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2002-3-7-research0034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039751959", 
          "https://doi.org/10.1186/gb-2002-3-7-research0034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2004-5-10-r80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018457673", 
          "https://doi.org/10.1186/gb-2004-5-10-r80"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1097/01.lab.0000043121.48152.79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041478880", 
          "https://doi.org/10.1097/01.lab.0000043121.48152.79"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415530a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043001094", 
          "https://doi.org/10.1038/415530a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10585-008-9209-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013603609", 
          "https://doi.org/10.1007/s10585-008-9209-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-04-06", 
    "datePublishedReg": "2011-04-06", 
    "description": "BackgroundSeveral DNA microarray based expression signatures for the different clinically relevant thyroid tumor entities have been described over the past few years. However, reproducibility of these signatures is generally low, mainly due to study biases, small sample sizes and the highly multivariate nature of microarrays. While there are new technologies available for a more accurate high throughput expression analysis, we show that there is still a lot of information to be gained from data deposited in public microarray databases. In this study we were aiming (1) to identify potential markers for papillary thyroid carcinomas through meta analysis of public microarray data and (2) to confirm these markers in an independent dataset using an independent technology.MethodsWe adopted a meta analysis approach for four publicly available microarray datasets on papillary thyroid carcinoma (PTC) nodules versus nodular goitre (NG) from N2-frozen tissue. The methodology included merging of datasets, bias removal using distance weighted discrimination (DWD), feature selection/inference statistics, classification/crossvalidation and gene set enrichment analysis (GSEA). External Validation was performed on an independent dataset using an independent technology, quantitative RT-PCR (RT-qPCR) in our laboratory.ResultsFrom meta analysis we identified one gene (SERPINA1) which identifies papillary thyroid carcinoma against benign nodules with 99% accuracy (n = 99, sensitivity = 0.98, specificity = 1, PPV = 1, NPV = 0.98). In the independent validation data, which included not only PTC and NG, but all major histological thyroid entities plus a few variants, SERPINA1 was again markedly up regulated (36-fold, p = 1:3*10-10) in PTC and identification of papillary carcinoma was possible with 93% accuracy (n = 82, sensitivity = 1, specificity = 0.90, PPV = 0.76, NPV = 1). We also show that the extracellular matrix pathway is strongly activated in the meta analysis data, suggesting an important role of tumor-stroma interaction in the carcinogenesis of papillary thyroid carcinoma.ConclusionsWe show that valuable new information can be gained from meta analysis of existing microarray data deposited in public repositories. While single microarray studies rarely exhibit a sample number which allows robust feature selection, this can be achieved by combining published data using DWD. This approach is not only efficient, but also very cost-effective. Independent validation shows the validity of the results from this meta analysis and confirms SERPINA1 as a potent mRNA marker for PTC in a total (meta analysis plus validation) of 181 samples.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1755-8794-4-30", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1039191", 
        "issn": [
          "1755-8794"
        ], 
        "name": "BMC Medical Genomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "keywords": [
      "high-throughput expression analysis", 
      "microarray data", 
      "Microarray Meta-Analysis", 
      "extracellular matrix pathways", 
      "public microarray data", 
      "available microarray datasets", 
      "public microarray databases", 
      "DNA microarrays", 
      "expression analysis", 
      "enrichment analysis", 
      "matrix pathways", 
      "quantitative RT-PCR", 
      "tumor-stroma interactions", 
      "microarray studies", 
      "independent datasets", 
      "microarray datasets", 
      "expression signatures", 
      "microarray database", 
      "valuable new information", 
      "merging of datasets", 
      "genes", 
      "meta-analysis approach", 
      "public repositories", 
      "microarray", 
      "SERPINA1", 
      "RT-PCR", 
      "papillary thyroid carcinoma", 
      "meta-analysis data", 
      "markers", 
      "important role", 
      "independent validation", 
      "single marker", 
      "identification", 
      "new information", 
      "potential marker", 
      "pathway", 
      "mRNA markers", 
      "independent technologies", 
      "multivariate nature", 
      "thyroid carcinoma", 
      "PTC", 
      "signatures", 
      "independent validation data", 
      "discriminatory power", 
      "variants", 
      "carcinogenesis", 
      "tumor entities", 
      "tissue", 
      "analysis", 
      "role", 
      "selection", 
      "sample number", 
      "nodules", 
      "interaction", 
      "robust feature selection", 
      "dataset", 
      "feature selection", 
      "data", 
      "study", 
      "carcinoma", 
      "analysis data", 
      "DWD", 
      "quantification", 
      "information", 
      "papillary thyroid carcinoma nodules", 
      "number", 
      "small sample size", 
      "size", 
      "validation", 
      "laboratory", 
      "new technologies", 
      "technology", 
      "sample size", 
      "database", 
      "approach", 
      "removal", 
      "repository", 
      "distance", 
      "validation data", 
      "analysis approach", 
      "bias removal", 
      "discrimination", 
      "accuracy", 
      "nature", 
      "ConclusionsWe", 
      "results", 
      "entities", 
      "biases", 
      "samples", 
      "inference statistics", 
      "statistics", 
      "merging", 
      "crossvalidation", 
      "years", 
      "papillary carcinoma", 
      "MethodsWe", 
      "methodology", 
      "carcinoma nodules", 
      "reproducibility", 
      "external validation", 
      "validity", 
      "N2", 
      "nodular goiter", 
      "power", 
      "Meta-Analysis", 
      "goiter", 
      "benign nodules"
    ], 
    "name": "Identification of SERPINA1 as single marker for papillary thyroid carcinoma through microarray meta analysis and quantification of its discriminatory power in independent validation", 
    "pagination": "30", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020810816"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1755-8794-4-30"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21470421"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1755-8794-4-30", 
      "https://app.dimensions.ai/details/publication/pub.1020810816"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_553.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1755-8794-4-30"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-4-30'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-4-30'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-4-30'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-4-30'


 

This table displays all metadata directly associated to this object as RDF triples.

273 TRIPLES      22 PREDICATES      149 URIs      135 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1755-8794-4-30 schema:about N112746ba37e34e998d9551f264dbed73
2 N3625367b72934b919a99b6056ae6a5de
3 N3ae53be3653a4bec96d68bdd0836939a
4 N48d777032ef249028ac33977de7eed93
5 N619d6b3654e24174b582126f234770df
6 N688cd4c9893147fda320e0cc6a75a9aa
7 N8b7e2abbde534eb9aff370bb1969cc3b
8 Nc51ba621d8fd4177b90c3388aba7be29
9 Nd23b63ca5df74137ac785ddbbee9885d
10 Nf517e7d9c7e143a6b72da641a0cd2abd
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author N123894ae03454c288db926ad6f008fb6
14 schema:citation sg:pub.10.1007/s10585-008-9209-8
15 sg:pub.10.1038/415530a
16 sg:pub.10.1097/01.lab.0000043121.48152.79
17 sg:pub.10.1186/gb-2002-3-7-research0034
18 sg:pub.10.1186/gb-2004-5-10-r80
19 sg:pub.10.1186/gb-2008-9-5-r83
20 schema:datePublished 2011-04-06
21 schema:datePublishedReg 2011-04-06
22 schema:description BackgroundSeveral DNA microarray based expression signatures for the different clinically relevant thyroid tumor entities have been described over the past few years. However, reproducibility of these signatures is generally low, mainly due to study biases, small sample sizes and the highly multivariate nature of microarrays. While there are new technologies available for a more accurate high throughput expression analysis, we show that there is still a lot of information to be gained from data deposited in public microarray databases. In this study we were aiming (1) to identify potential markers for papillary thyroid carcinomas through meta analysis of public microarray data and (2) to confirm these markers in an independent dataset using an independent technology.MethodsWe adopted a meta analysis approach for four publicly available microarray datasets on papillary thyroid carcinoma (PTC) nodules versus nodular goitre (NG) from N2-frozen tissue. The methodology included merging of datasets, bias removal using distance weighted discrimination (DWD), feature selection/inference statistics, classification/crossvalidation and gene set enrichment analysis (GSEA). External Validation was performed on an independent dataset using an independent technology, quantitative RT-PCR (RT-qPCR) in our laboratory.ResultsFrom meta analysis we identified one gene (SERPINA1) which identifies papillary thyroid carcinoma against benign nodules with 99% accuracy (n = 99, sensitivity = 0.98, specificity = 1, PPV = 1, NPV = 0.98). In the independent validation data, which included not only PTC and NG, but all major histological thyroid entities plus a few variants, SERPINA1 was again markedly up regulated (36-fold, p = 1:3*10-10) in PTC and identification of papillary carcinoma was possible with 93% accuracy (n = 82, sensitivity = 1, specificity = 0.90, PPV = 0.76, NPV = 1). We also show that the extracellular matrix pathway is strongly activated in the meta analysis data, suggesting an important role of tumor-stroma interaction in the carcinogenesis of papillary thyroid carcinoma.ConclusionsWe show that valuable new information can be gained from meta analysis of existing microarray data deposited in public repositories. While single microarray studies rarely exhibit a sample number which allows robust feature selection, this can be achieved by combining published data using DWD. This approach is not only efficient, but also very cost-effective. Independent validation shows the validity of the results from this meta analysis and confirms SERPINA1 as a potent mRNA marker for PTC in a total (meta analysis plus validation) of 181 samples.
23 schema:genre article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf Nab3a692bce244626ab6dd7273304804f
27 Nc87e93124f504a23932324c75392f6e1
28 sg:journal.1039191
29 schema:keywords ConclusionsWe
30 DNA microarrays
31 DWD
32 Meta-Analysis
33 MethodsWe
34 Microarray Meta-Analysis
35 N2
36 PTC
37 RT-PCR
38 SERPINA1
39 accuracy
40 analysis
41 analysis approach
42 analysis data
43 approach
44 available microarray datasets
45 benign nodules
46 bias removal
47 biases
48 carcinogenesis
49 carcinoma
50 carcinoma nodules
51 crossvalidation
52 data
53 database
54 dataset
55 discrimination
56 discriminatory power
57 distance
58 enrichment analysis
59 entities
60 expression analysis
61 expression signatures
62 external validation
63 extracellular matrix pathways
64 feature selection
65 genes
66 goiter
67 high-throughput expression analysis
68 identification
69 important role
70 independent datasets
71 independent technologies
72 independent validation
73 independent validation data
74 inference statistics
75 information
76 interaction
77 laboratory
78 mRNA markers
79 markers
80 matrix pathways
81 merging
82 merging of datasets
83 meta-analysis approach
84 meta-analysis data
85 methodology
86 microarray
87 microarray data
88 microarray database
89 microarray datasets
90 microarray studies
91 multivariate nature
92 nature
93 new information
94 new technologies
95 nodular goiter
96 nodules
97 number
98 papillary carcinoma
99 papillary thyroid carcinoma
100 papillary thyroid carcinoma nodules
101 pathway
102 potential marker
103 power
104 public microarray data
105 public microarray databases
106 public repositories
107 quantification
108 quantitative RT-PCR
109 removal
110 repository
111 reproducibility
112 results
113 robust feature selection
114 role
115 sample number
116 sample size
117 samples
118 selection
119 signatures
120 single marker
121 size
122 small sample size
123 statistics
124 study
125 technology
126 thyroid carcinoma
127 tissue
128 tumor entities
129 tumor-stroma interactions
130 validation
131 validation data
132 validity
133 valuable new information
134 variants
135 years
136 schema:name Identification of SERPINA1 as single marker for papillary thyroid carcinoma through microarray meta analysis and quantification of its discriminatory power in independent validation
137 schema:pagination 30
138 schema:productId N02163010804f4d7ca686dbabcf57387a
139 N7c338917901d40479cf1e9ebc0b6b0e3
140 Nf4a5146c51b346c4a713c61cb2dc4e9f
141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020810816
142 https://doi.org/10.1186/1755-8794-4-30
143 schema:sdDatePublished 2022-06-01T22:09
144 schema:sdLicense https://scigraph.springernature.com/explorer/license/
145 schema:sdPublisher N1c0bc4248a634960b9b9e68747bceb78
146 schema:url https://doi.org/10.1186/1755-8794-4-30
147 sgo:license sg:explorer/license/
148 sgo:sdDataset articles
149 rdf:type schema:ScholarlyArticle
150 N02163010804f4d7ca686dbabcf57387a schema:name pubmed_id
151 schema:value 21470421
152 rdf:type schema:PropertyValue
153 N112746ba37e34e998d9551f264dbed73 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Humans
155 rdf:type schema:DefinedTerm
156 N123894ae03454c288db926ad6f008fb6 rdf:first sg:person.0604701673.10
157 rdf:rest N996d1c107b6447068140b4c90e0ff016
158 N1c0bc4248a634960b9b9e68747bceb78 schema:name Springer Nature - SN SciGraph project
159 rdf:type schema:Organization
160 N3625367b72934b919a99b6056ae6a5de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Carcinoma, Papillary
162 rdf:type schema:DefinedTerm
163 N3ae53be3653a4bec96d68bdd0836939a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Thyroid Neoplasms
165 rdf:type schema:DefinedTerm
166 N48d777032ef249028ac33977de7eed93 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Thyroid Cancer, Papillary
168 rdf:type schema:DefinedTerm
169 N619d6b3654e24174b582126f234770df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Oligonucleotide Array Sequence Analysis
171 rdf:type schema:DefinedTerm
172 N688cd4c9893147fda320e0cc6a75a9aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Biomarkers, Tumor
174 rdf:type schema:DefinedTerm
175 N747542630daf4528b1c81d3fcdfe83c0 rdf:first sg:person.0637444237.30
176 rdf:rest Nb5c5059be96145bb937ff8723b7da720
177 N7c338917901d40479cf1e9ebc0b6b0e3 schema:name doi
178 schema:value 10.1186/1755-8794-4-30
179 rdf:type schema:PropertyValue
180 N8b7e2abbde534eb9aff370bb1969cc3b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Gene Expression Profiling
182 rdf:type schema:DefinedTerm
183 N996d1c107b6447068140b4c90e0ff016 rdf:first sg:person.0636615506.67
184 rdf:rest N747542630daf4528b1c81d3fcdfe83c0
185 N9aa28f026210403999ab38b6db5ac4eb rdf:first sg:person.01046040764.07
186 rdf:rest Ncbe74d02d140411387b7e9f223ade2db
187 Nab3a692bce244626ab6dd7273304804f schema:issueNumber 1
188 rdf:type schema:PublicationIssue
189 Nb5c5059be96145bb937ff8723b7da720 rdf:first sg:person.01303267405.37
190 rdf:rest N9aa28f026210403999ab38b6db5ac4eb
191 Nc51ba621d8fd4177b90c3388aba7be29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name alpha 1-Antitrypsin
193 rdf:type schema:DefinedTerm
194 Nc87e93124f504a23932324c75392f6e1 schema:volumeNumber 4
195 rdf:type schema:PublicationVolume
196 Ncbe74d02d140411387b7e9f223ade2db rdf:first sg:person.01303645353.40
197 rdf:rest rdf:nil
198 Nd23b63ca5df74137ac785ddbbee9885d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
199 schema:name Sensitivity and Specificity
200 rdf:type schema:DefinedTerm
201 Nf4a5146c51b346c4a713c61cb2dc4e9f schema:name dimensions_id
202 schema:value pub.1020810816
203 rdf:type schema:PropertyValue
204 Nf517e7d9c7e143a6b72da641a0cd2abd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
205 schema:name Carcinoma
206 rdf:type schema:DefinedTerm
207 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
208 schema:name Biological Sciences
209 rdf:type schema:DefinedTerm
210 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
211 schema:name Genetics
212 rdf:type schema:DefinedTerm
213 sg:journal.1039191 schema:issn 1755-8794
214 schema:name BMC Medical Genomics
215 schema:publisher Springer Nature
216 rdf:type schema:Periodical
217 sg:person.01046040764.07 schema:affiliation grid-institutes:grid.22937.3d
218 schema:familyName Kaserer
219 schema:givenName Klaus
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046040764.07
221 rdf:type schema:Person
222 sg:person.01303267405.37 schema:affiliation grid-institutes:grid.4332.6
223 schema:familyName Nöhammer
224 schema:givenName Christa
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303267405.37
226 rdf:type schema:Person
227 sg:person.01303645353.40 schema:affiliation grid-institutes:None
228 schema:familyName Leisch
229 schema:givenName Friedrich
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303645353.40
231 rdf:type schema:Person
232 sg:person.0604701673.10 schema:affiliation grid-institutes:grid.4332.6
233 schema:familyName Vierlinger
234 schema:givenName Klemens
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604701673.10
236 rdf:type schema:Person
237 sg:person.0636615506.67 schema:affiliation grid-institutes:grid.4332.6
238 schema:familyName Mansfeld
239 schema:givenName Markus H
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636615506.67
241 rdf:type schema:Person
242 sg:person.0637444237.30 schema:affiliation grid-institutes:grid.22937.3d
243 schema:familyName Koperek
244 schema:givenName Oskar
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637444237.30
246 rdf:type schema:Person
247 sg:pub.10.1007/s10585-008-9209-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013603609
248 https://doi.org/10.1007/s10585-008-9209-8
249 rdf:type schema:CreativeWork
250 sg:pub.10.1038/415530a schema:sameAs https://app.dimensions.ai/details/publication/pub.1043001094
251 https://doi.org/10.1038/415530a
252 rdf:type schema:CreativeWork
253 sg:pub.10.1097/01.lab.0000043121.48152.79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041478880
254 https://doi.org/10.1097/01.lab.0000043121.48152.79
255 rdf:type schema:CreativeWork
256 sg:pub.10.1186/gb-2002-3-7-research0034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039751959
257 https://doi.org/10.1186/gb-2002-3-7-research0034
258 rdf:type schema:CreativeWork
259 sg:pub.10.1186/gb-2004-5-10-r80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018457673
260 https://doi.org/10.1186/gb-2004-5-10-r80
261 rdf:type schema:CreativeWork
262 sg:pub.10.1186/gb-2008-9-5-r83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044588961
263 https://doi.org/10.1186/gb-2008-9-5-r83
264 rdf:type schema:CreativeWork
265 grid-institutes:None schema:alternateName Institute of Applied Statistics and Computing, University of Natural Ressources and Life Sciences, 1190, Vienna, Austria
266 schema:name Institute of Applied Statistics and Computing, University of Natural Ressources and Life Sciences, 1190, Vienna, Austria
267 rdf:type schema:Organization
268 grid-institutes:grid.22937.3d schema:alternateName Department of Clinical Pathology, University of Vienna Medical School, A-1090, Vienna, Austria
269 schema:name Department of Clinical Pathology, University of Vienna Medical School, A-1090, Vienna, Austria
270 rdf:type schema:Organization
271 grid-institutes:grid.4332.6 schema:alternateName Molecular Medicine, AIT - Austrian Institute of Technology, A-1190, Vienna, Austria
272 schema:name Molecular Medicine, AIT - Austrian Institute of Technology, A-1190, Vienna, Austria
273 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...