Ontology type: schema:ScholarlyArticle Open Access: True
2011-04-06
AUTHORSKlemens Vierlinger, Markus H Mansfeld, Oskar Koperek, Christa Nöhammer, Klaus Kaserer, Friedrich Leisch
ABSTRACTBackgroundSeveral DNA microarray based expression signatures for the different clinically relevant thyroid tumor entities have been described over the past few years. However, reproducibility of these signatures is generally low, mainly due to study biases, small sample sizes and the highly multivariate nature of microarrays. While there are new technologies available for a more accurate high throughput expression analysis, we show that there is still a lot of information to be gained from data deposited in public microarray databases. In this study we were aiming (1) to identify potential markers for papillary thyroid carcinomas through meta analysis of public microarray data and (2) to confirm these markers in an independent dataset using an independent technology.MethodsWe adopted a meta analysis approach for four publicly available microarray datasets on papillary thyroid carcinoma (PTC) nodules versus nodular goitre (NG) from N2-frozen tissue. The methodology included merging of datasets, bias removal using distance weighted discrimination (DWD), feature selection/inference statistics, classification/crossvalidation and gene set enrichment analysis (GSEA). External Validation was performed on an independent dataset using an independent technology, quantitative RT-PCR (RT-qPCR) in our laboratory.ResultsFrom meta analysis we identified one gene (SERPINA1) which identifies papillary thyroid carcinoma against benign nodules with 99% accuracy (n = 99, sensitivity = 0.98, specificity = 1, PPV = 1, NPV = 0.98). In the independent validation data, which included not only PTC and NG, but all major histological thyroid entities plus a few variants, SERPINA1 was again markedly up regulated (36-fold, p = 1:3*10-10) in PTC and identification of papillary carcinoma was possible with 93% accuracy (n = 82, sensitivity = 1, specificity = 0.90, PPV = 0.76, NPV = 1). We also show that the extracellular matrix pathway is strongly activated in the meta analysis data, suggesting an important role of tumor-stroma interaction in the carcinogenesis of papillary thyroid carcinoma.ConclusionsWe show that valuable new information can be gained from meta analysis of existing microarray data deposited in public repositories. While single microarray studies rarely exhibit a sample number which allows robust feature selection, this can be achieved by combining published data using DWD. This approach is not only efficient, but also very cost-effective. Independent validation shows the validity of the results from this meta analysis and confirms SERPINA1 as a potent mRNA marker for PTC in a total (meta analysis plus validation) of 181 samples. More... »
PAGES30
http://scigraph.springernature.com/pub.10.1186/1755-8794-4-30
DOIhttp://dx.doi.org/10.1186/1755-8794-4-30
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1020810816
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/21470421
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Genetics",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Biomarkers, Tumor",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Carcinoma",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Carcinoma, Papillary",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Gene Expression Profiling",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Oligonucleotide Array Sequence Analysis",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Sensitivity and Specificity",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Thyroid Cancer, Papillary",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Thyroid Neoplasms",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "alpha 1-Antitrypsin",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Molecular Medicine, AIT - Austrian Institute of Technology, A-1190, Vienna, Austria",
"id": "http://www.grid.ac/institutes/grid.4332.6",
"name": [
"Molecular Medicine, AIT - Austrian Institute of Technology, A-1190, Vienna, Austria"
],
"type": "Organization"
},
"familyName": "Vierlinger",
"givenName": "Klemens",
"id": "sg:person.0604701673.10",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604701673.10"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Molecular Medicine, AIT - Austrian Institute of Technology, A-1190, Vienna, Austria",
"id": "http://www.grid.ac/institutes/grid.4332.6",
"name": [
"Molecular Medicine, AIT - Austrian Institute of Technology, A-1190, Vienna, Austria"
],
"type": "Organization"
},
"familyName": "Mansfeld",
"givenName": "Markus H",
"id": "sg:person.0636615506.67",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636615506.67"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Clinical Pathology, University of Vienna Medical School, A-1090, Vienna, Austria",
"id": "http://www.grid.ac/institutes/grid.22937.3d",
"name": [
"Department of Clinical Pathology, University of Vienna Medical School, A-1090, Vienna, Austria"
],
"type": "Organization"
},
"familyName": "Koperek",
"givenName": "Oskar",
"id": "sg:person.0637444237.30",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637444237.30"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Molecular Medicine, AIT - Austrian Institute of Technology, A-1190, Vienna, Austria",
"id": "http://www.grid.ac/institutes/grid.4332.6",
"name": [
"Molecular Medicine, AIT - Austrian Institute of Technology, A-1190, Vienna, Austria"
],
"type": "Organization"
},
"familyName": "N\u00f6hammer",
"givenName": "Christa",
"id": "sg:person.01303267405.37",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303267405.37"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Clinical Pathology, University of Vienna Medical School, A-1090, Vienna, Austria",
"id": "http://www.grid.ac/institutes/grid.22937.3d",
"name": [
"Department of Clinical Pathology, University of Vienna Medical School, A-1090, Vienna, Austria"
],
"type": "Organization"
},
"familyName": "Kaserer",
"givenName": "Klaus",
"id": "sg:person.01046040764.07",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046040764.07"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Applied Statistics and Computing, University of Natural Ressources and Life Sciences, 1190, Vienna, Austria",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Institute of Applied Statistics and Computing, University of Natural Ressources and Life Sciences, 1190, Vienna, Austria"
],
"type": "Organization"
},
"familyName": "Leisch",
"givenName": "Friedrich",
"id": "sg:person.01303645353.40",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303645353.40"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1186/gb-2008-9-5-r83",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044588961",
"https://doi.org/10.1186/gb-2008-9-5-r83"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/gb-2002-3-7-research0034",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039751959",
"https://doi.org/10.1186/gb-2002-3-7-research0034"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/gb-2004-5-10-r80",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018457673",
"https://doi.org/10.1186/gb-2004-5-10-r80"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1097/01.lab.0000043121.48152.79",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041478880",
"https://doi.org/10.1097/01.lab.0000043121.48152.79"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/415530a",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043001094",
"https://doi.org/10.1038/415530a"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10585-008-9209-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013603609",
"https://doi.org/10.1007/s10585-008-9209-8"
],
"type": "CreativeWork"
}
],
"datePublished": "2011-04-06",
"datePublishedReg": "2011-04-06",
"description": "BackgroundSeveral DNA microarray based expression signatures for the different clinically relevant thyroid tumor entities have been described over the past few years. However, reproducibility of these signatures is generally low, mainly due to study biases, small sample sizes and the highly multivariate nature of microarrays. While there are new technologies available for a more accurate high throughput expression analysis, we show that there is still a lot of information to be gained from data deposited in public microarray databases. In this study we were aiming (1) to identify potential markers for papillary thyroid carcinomas through meta analysis of public microarray data and (2) to confirm these markers in an independent dataset using an independent technology.MethodsWe adopted a meta analysis approach for four publicly available microarray datasets on papillary thyroid carcinoma (PTC) nodules versus nodular goitre (NG) from N2-frozen tissue. The methodology included merging of datasets, bias removal using distance weighted discrimination (DWD), feature selection/inference statistics, classification/crossvalidation and gene set enrichment analysis (GSEA). External Validation was performed on an independent dataset using an independent technology, quantitative RT-PCR (RT-qPCR) in our laboratory.ResultsFrom meta analysis we identified one gene (SERPINA1) which identifies papillary thyroid carcinoma against benign nodules with 99% accuracy (n = 99, sensitivity = 0.98, specificity = 1, PPV = 1, NPV = 0.98). In the independent validation data, which included not only PTC and NG, but all major histological thyroid entities plus a few variants, SERPINA1 was again markedly up regulated (36-fold, p = 1:3*10-10) in PTC and identification of papillary carcinoma was possible with 93% accuracy (n = 82, sensitivity = 1, specificity = 0.90, PPV = 0.76, NPV = 1). We also show that the extracellular matrix pathway is strongly activated in the meta analysis data, suggesting an important role of tumor-stroma interaction in the carcinogenesis of papillary thyroid carcinoma.ConclusionsWe show that valuable new information can be gained from meta analysis of existing microarray data deposited in public repositories. While single microarray studies rarely exhibit a sample number which allows robust feature selection, this can be achieved by combining published data using DWD. This approach is not only efficient, but also very cost-effective. Independent validation shows the validity of the results from this meta analysis and confirms SERPINA1 as a potent mRNA marker for PTC in a total (meta analysis plus validation) of 181 samples.",
"genre": "article",
"id": "sg:pub.10.1186/1755-8794-4-30",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1039191",
"issn": [
"1755-8794"
],
"name": "BMC Medical Genomics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "4"
}
],
"keywords": [
"high-throughput expression analysis",
"microarray data",
"Microarray Meta-Analysis",
"extracellular matrix pathways",
"public microarray data",
"available microarray datasets",
"public microarray databases",
"DNA microarrays",
"expression analysis",
"enrichment analysis",
"matrix pathways",
"quantitative RT-PCR",
"tumor-stroma interactions",
"microarray studies",
"independent datasets",
"microarray datasets",
"expression signatures",
"microarray database",
"valuable new information",
"merging of datasets",
"genes",
"meta-analysis approach",
"public repositories",
"microarray",
"SERPINA1",
"RT-PCR",
"papillary thyroid carcinoma",
"meta-analysis data",
"markers",
"important role",
"independent validation",
"single marker",
"identification",
"new information",
"potential marker",
"pathway",
"mRNA markers",
"independent technologies",
"multivariate nature",
"thyroid carcinoma",
"PTC",
"signatures",
"independent validation data",
"discriminatory power",
"variants",
"carcinogenesis",
"tumor entities",
"tissue",
"analysis",
"role",
"selection",
"sample number",
"nodules",
"interaction",
"robust feature selection",
"dataset",
"feature selection",
"data",
"study",
"carcinoma",
"analysis data",
"DWD",
"quantification",
"information",
"papillary thyroid carcinoma nodules",
"number",
"small sample size",
"size",
"validation",
"laboratory",
"new technologies",
"technology",
"sample size",
"database",
"approach",
"removal",
"repository",
"distance",
"validation data",
"analysis approach",
"bias removal",
"discrimination",
"accuracy",
"nature",
"ConclusionsWe",
"results",
"entities",
"biases",
"samples",
"inference statistics",
"statistics",
"merging",
"crossvalidation",
"years",
"papillary carcinoma",
"MethodsWe",
"methodology",
"carcinoma nodules",
"reproducibility",
"external validation",
"validity",
"N2",
"nodular goiter",
"power",
"Meta-Analysis",
"goiter",
"benign nodules"
],
"name": "Identification of SERPINA1 as single marker for papillary thyroid carcinoma through microarray meta analysis and quantification of its discriminatory power in independent validation",
"pagination": "30",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1020810816"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1186/1755-8794-4-30"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"21470421"
]
}
],
"sameAs": [
"https://doi.org/10.1186/1755-8794-4-30",
"https://app.dimensions.ai/details/publication/pub.1020810816"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:09",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_553.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1186/1755-8794-4-30"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-4-30'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-4-30'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-4-30'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-4-30'
This table displays all metadata directly associated to this object as RDF triples.
273 TRIPLES
22 PREDICATES
149 URIs
135 LITERALS
17 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1186/1755-8794-4-30 | schema:about | N112746ba37e34e998d9551f264dbed73 |
2 | ″ | ″ | N3625367b72934b919a99b6056ae6a5de |
3 | ″ | ″ | N3ae53be3653a4bec96d68bdd0836939a |
4 | ″ | ″ | N48d777032ef249028ac33977de7eed93 |
5 | ″ | ″ | N619d6b3654e24174b582126f234770df |
6 | ″ | ″ | N688cd4c9893147fda320e0cc6a75a9aa |
7 | ″ | ″ | N8b7e2abbde534eb9aff370bb1969cc3b |
8 | ″ | ″ | Nc51ba621d8fd4177b90c3388aba7be29 |
9 | ″ | ″ | Nd23b63ca5df74137ac785ddbbee9885d |
10 | ″ | ″ | Nf517e7d9c7e143a6b72da641a0cd2abd |
11 | ″ | ″ | anzsrc-for:06 |
12 | ″ | ″ | anzsrc-for:0604 |
13 | ″ | schema:author | N123894ae03454c288db926ad6f008fb6 |
14 | ″ | schema:citation | sg:pub.10.1007/s10585-008-9209-8 |
15 | ″ | ″ | sg:pub.10.1038/415530a |
16 | ″ | ″ | sg:pub.10.1097/01.lab.0000043121.48152.79 |
17 | ″ | ″ | sg:pub.10.1186/gb-2002-3-7-research0034 |
18 | ″ | ″ | sg:pub.10.1186/gb-2004-5-10-r80 |
19 | ″ | ″ | sg:pub.10.1186/gb-2008-9-5-r83 |
20 | ″ | schema:datePublished | 2011-04-06 |
21 | ″ | schema:datePublishedReg | 2011-04-06 |
22 | ″ | schema:description | BackgroundSeveral DNA microarray based expression signatures for the different clinically relevant thyroid tumor entities have been described over the past few years. However, reproducibility of these signatures is generally low, mainly due to study biases, small sample sizes and the highly multivariate nature of microarrays. While there are new technologies available for a more accurate high throughput expression analysis, we show that there is still a lot of information to be gained from data deposited in public microarray databases. In this study we were aiming (1) to identify potential markers for papillary thyroid carcinomas through meta analysis of public microarray data and (2) to confirm these markers in an independent dataset using an independent technology.MethodsWe adopted a meta analysis approach for four publicly available microarray datasets on papillary thyroid carcinoma (PTC) nodules versus nodular goitre (NG) from N2-frozen tissue. The methodology included merging of datasets, bias removal using distance weighted discrimination (DWD), feature selection/inference statistics, classification/crossvalidation and gene set enrichment analysis (GSEA). External Validation was performed on an independent dataset using an independent technology, quantitative RT-PCR (RT-qPCR) in our laboratory.ResultsFrom meta analysis we identified one gene (SERPINA1) which identifies papillary thyroid carcinoma against benign nodules with 99% accuracy (n = 99, sensitivity = 0.98, specificity = 1, PPV = 1, NPV = 0.98). In the independent validation data, which included not only PTC and NG, but all major histological thyroid entities plus a few variants, SERPINA1 was again markedly up regulated (36-fold, p = 1:3*10-10) in PTC and identification of papillary carcinoma was possible with 93% accuracy (n = 82, sensitivity = 1, specificity = 0.90, PPV = 0.76, NPV = 1). We also show that the extracellular matrix pathway is strongly activated in the meta analysis data, suggesting an important role of tumor-stroma interaction in the carcinogenesis of papillary thyroid carcinoma.ConclusionsWe show that valuable new information can be gained from meta analysis of existing microarray data deposited in public repositories. While single microarray studies rarely exhibit a sample number which allows robust feature selection, this can be achieved by combining published data using DWD. This approach is not only efficient, but also very cost-effective. Independent validation shows the validity of the results from this meta analysis and confirms SERPINA1 as a potent mRNA marker for PTC in a total (meta analysis plus validation) of 181 samples. |
23 | ″ | schema:genre | article |
24 | ″ | schema:inLanguage | en |
25 | ″ | schema:isAccessibleForFree | true |
26 | ″ | schema:isPartOf | Nab3a692bce244626ab6dd7273304804f |
27 | ″ | ″ | Nc87e93124f504a23932324c75392f6e1 |
28 | ″ | ″ | sg:journal.1039191 |
29 | ″ | schema:keywords | ConclusionsWe |
30 | ″ | ″ | DNA microarrays |
31 | ″ | ″ | DWD |
32 | ″ | ″ | Meta-Analysis |
33 | ″ | ″ | MethodsWe |
34 | ″ | ″ | Microarray Meta-Analysis |
35 | ″ | ″ | N2 |
36 | ″ | ″ | PTC |
37 | ″ | ″ | RT-PCR |
38 | ″ | ″ | SERPINA1 |
39 | ″ | ″ | accuracy |
40 | ″ | ″ | analysis |
41 | ″ | ″ | analysis approach |
42 | ″ | ″ | analysis data |
43 | ″ | ″ | approach |
44 | ″ | ″ | available microarray datasets |
45 | ″ | ″ | benign nodules |
46 | ″ | ″ | bias removal |
47 | ″ | ″ | biases |
48 | ″ | ″ | carcinogenesis |
49 | ″ | ″ | carcinoma |
50 | ″ | ″ | carcinoma nodules |
51 | ″ | ″ | crossvalidation |
52 | ″ | ″ | data |
53 | ″ | ″ | database |
54 | ″ | ″ | dataset |
55 | ″ | ″ | discrimination |
56 | ″ | ″ | discriminatory power |
57 | ″ | ″ | distance |
58 | ″ | ″ | enrichment analysis |
59 | ″ | ″ | entities |
60 | ″ | ″ | expression analysis |
61 | ″ | ″ | expression signatures |
62 | ″ | ″ | external validation |
63 | ″ | ″ | extracellular matrix pathways |
64 | ″ | ″ | feature selection |
65 | ″ | ″ | genes |
66 | ″ | ″ | goiter |
67 | ″ | ″ | high-throughput expression analysis |
68 | ″ | ″ | identification |
69 | ″ | ″ | important role |
70 | ″ | ″ | independent datasets |
71 | ″ | ″ | independent technologies |
72 | ″ | ″ | independent validation |
73 | ″ | ″ | independent validation data |
74 | ″ | ″ | inference statistics |
75 | ″ | ″ | information |
76 | ″ | ″ | interaction |
77 | ″ | ″ | laboratory |
78 | ″ | ″ | mRNA markers |
79 | ″ | ″ | markers |
80 | ″ | ″ | matrix pathways |
81 | ″ | ″ | merging |
82 | ″ | ″ | merging of datasets |
83 | ″ | ″ | meta-analysis approach |
84 | ″ | ″ | meta-analysis data |
85 | ″ | ″ | methodology |
86 | ″ | ″ | microarray |
87 | ″ | ″ | microarray data |
88 | ″ | ″ | microarray database |
89 | ″ | ″ | microarray datasets |
90 | ″ | ″ | microarray studies |
91 | ″ | ″ | multivariate nature |
92 | ″ | ″ | nature |
93 | ″ | ″ | new information |
94 | ″ | ″ | new technologies |
95 | ″ | ″ | nodular goiter |
96 | ″ | ″ | nodules |
97 | ″ | ″ | number |
98 | ″ | ″ | papillary carcinoma |
99 | ″ | ″ | papillary thyroid carcinoma |
100 | ″ | ″ | papillary thyroid carcinoma nodules |
101 | ″ | ″ | pathway |
102 | ″ | ″ | potential marker |
103 | ″ | ″ | power |
104 | ″ | ″ | public microarray data |
105 | ″ | ″ | public microarray databases |
106 | ″ | ″ | public repositories |
107 | ″ | ″ | quantification |
108 | ″ | ″ | quantitative RT-PCR |
109 | ″ | ″ | removal |
110 | ″ | ″ | repository |
111 | ″ | ″ | reproducibility |
112 | ″ | ″ | results |
113 | ″ | ″ | robust feature selection |
114 | ″ | ″ | role |
115 | ″ | ″ | sample number |
116 | ″ | ″ | sample size |
117 | ″ | ″ | samples |
118 | ″ | ″ | selection |
119 | ″ | ″ | signatures |
120 | ″ | ″ | single marker |
121 | ″ | ″ | size |
122 | ″ | ″ | small sample size |
123 | ″ | ″ | statistics |
124 | ″ | ″ | study |
125 | ″ | ″ | technology |
126 | ″ | ″ | thyroid carcinoma |
127 | ″ | ″ | tissue |
128 | ″ | ″ | tumor entities |
129 | ″ | ″ | tumor-stroma interactions |
130 | ″ | ″ | validation |
131 | ″ | ″ | validation data |
132 | ″ | ″ | validity |
133 | ″ | ″ | valuable new information |
134 | ″ | ″ | variants |
135 | ″ | ″ | years |
136 | ″ | schema:name | Identification of SERPINA1 as single marker for papillary thyroid carcinoma through microarray meta analysis and quantification of its discriminatory power in independent validation |
137 | ″ | schema:pagination | 30 |
138 | ″ | schema:productId | N02163010804f4d7ca686dbabcf57387a |
139 | ″ | ″ | N7c338917901d40479cf1e9ebc0b6b0e3 |
140 | ″ | ″ | Nf4a5146c51b346c4a713c61cb2dc4e9f |
141 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1020810816 |
142 | ″ | ″ | https://doi.org/10.1186/1755-8794-4-30 |
143 | ″ | schema:sdDatePublished | 2022-06-01T22:09 |
144 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
145 | ″ | schema:sdPublisher | N1c0bc4248a634960b9b9e68747bceb78 |
146 | ″ | schema:url | https://doi.org/10.1186/1755-8794-4-30 |
147 | ″ | sgo:license | sg:explorer/license/ |
148 | ″ | sgo:sdDataset | articles |
149 | ″ | rdf:type | schema:ScholarlyArticle |
150 | N02163010804f4d7ca686dbabcf57387a | schema:name | pubmed_id |
151 | ″ | schema:value | 21470421 |
152 | ″ | rdf:type | schema:PropertyValue |
153 | N112746ba37e34e998d9551f264dbed73 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
154 | ″ | schema:name | Humans |
155 | ″ | rdf:type | schema:DefinedTerm |
156 | N123894ae03454c288db926ad6f008fb6 | rdf:first | sg:person.0604701673.10 |
157 | ″ | rdf:rest | N996d1c107b6447068140b4c90e0ff016 |
158 | N1c0bc4248a634960b9b9e68747bceb78 | schema:name | Springer Nature - SN SciGraph project |
159 | ″ | rdf:type | schema:Organization |
160 | N3625367b72934b919a99b6056ae6a5de | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
161 | ″ | schema:name | Carcinoma, Papillary |
162 | ″ | rdf:type | schema:DefinedTerm |
163 | N3ae53be3653a4bec96d68bdd0836939a | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
164 | ″ | schema:name | Thyroid Neoplasms |
165 | ″ | rdf:type | schema:DefinedTerm |
166 | N48d777032ef249028ac33977de7eed93 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
167 | ″ | schema:name | Thyroid Cancer, Papillary |
168 | ″ | rdf:type | schema:DefinedTerm |
169 | N619d6b3654e24174b582126f234770df | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
170 | ″ | schema:name | Oligonucleotide Array Sequence Analysis |
171 | ″ | rdf:type | schema:DefinedTerm |
172 | N688cd4c9893147fda320e0cc6a75a9aa | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
173 | ″ | schema:name | Biomarkers, Tumor |
174 | ″ | rdf:type | schema:DefinedTerm |
175 | N747542630daf4528b1c81d3fcdfe83c0 | rdf:first | sg:person.0637444237.30 |
176 | ″ | rdf:rest | Nb5c5059be96145bb937ff8723b7da720 |
177 | N7c338917901d40479cf1e9ebc0b6b0e3 | schema:name | doi |
178 | ″ | schema:value | 10.1186/1755-8794-4-30 |
179 | ″ | rdf:type | schema:PropertyValue |
180 | N8b7e2abbde534eb9aff370bb1969cc3b | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
181 | ″ | schema:name | Gene Expression Profiling |
182 | ″ | rdf:type | schema:DefinedTerm |
183 | N996d1c107b6447068140b4c90e0ff016 | rdf:first | sg:person.0636615506.67 |
184 | ″ | rdf:rest | N747542630daf4528b1c81d3fcdfe83c0 |
185 | N9aa28f026210403999ab38b6db5ac4eb | rdf:first | sg:person.01046040764.07 |
186 | ″ | rdf:rest | Ncbe74d02d140411387b7e9f223ade2db |
187 | Nab3a692bce244626ab6dd7273304804f | schema:issueNumber | 1 |
188 | ″ | rdf:type | schema:PublicationIssue |
189 | Nb5c5059be96145bb937ff8723b7da720 | rdf:first | sg:person.01303267405.37 |
190 | ″ | rdf:rest | N9aa28f026210403999ab38b6db5ac4eb |
191 | Nc51ba621d8fd4177b90c3388aba7be29 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
192 | ″ | schema:name | alpha 1-Antitrypsin |
193 | ″ | rdf:type | schema:DefinedTerm |
194 | Nc87e93124f504a23932324c75392f6e1 | schema:volumeNumber | 4 |
195 | ″ | rdf:type | schema:PublicationVolume |
196 | Ncbe74d02d140411387b7e9f223ade2db | rdf:first | sg:person.01303645353.40 |
197 | ″ | rdf:rest | rdf:nil |
198 | Nd23b63ca5df74137ac785ddbbee9885d | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
199 | ″ | schema:name | Sensitivity and Specificity |
200 | ″ | rdf:type | schema:DefinedTerm |
201 | Nf4a5146c51b346c4a713c61cb2dc4e9f | schema:name | dimensions_id |
202 | ″ | schema:value | pub.1020810816 |
203 | ″ | rdf:type | schema:PropertyValue |
204 | Nf517e7d9c7e143a6b72da641a0cd2abd | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
205 | ″ | schema:name | Carcinoma |
206 | ″ | rdf:type | schema:DefinedTerm |
207 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
208 | ″ | schema:name | Biological Sciences |
209 | ″ | rdf:type | schema:DefinedTerm |
210 | anzsrc-for:0604 | schema:inDefinedTermSet | anzsrc-for: |
211 | ″ | schema:name | Genetics |
212 | ″ | rdf:type | schema:DefinedTerm |
213 | sg:journal.1039191 | schema:issn | 1755-8794 |
214 | ″ | schema:name | BMC Medical Genomics |
215 | ″ | schema:publisher | Springer Nature |
216 | ″ | rdf:type | schema:Periodical |
217 | sg:person.01046040764.07 | schema:affiliation | grid-institutes:grid.22937.3d |
218 | ″ | schema:familyName | Kaserer |
219 | ″ | schema:givenName | Klaus |
220 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046040764.07 |
221 | ″ | rdf:type | schema:Person |
222 | sg:person.01303267405.37 | schema:affiliation | grid-institutes:grid.4332.6 |
223 | ″ | schema:familyName | Nöhammer |
224 | ″ | schema:givenName | Christa |
225 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303267405.37 |
226 | ″ | rdf:type | schema:Person |
227 | sg:person.01303645353.40 | schema:affiliation | grid-institutes:None |
228 | ″ | schema:familyName | Leisch |
229 | ″ | schema:givenName | Friedrich |
230 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303645353.40 |
231 | ″ | rdf:type | schema:Person |
232 | sg:person.0604701673.10 | schema:affiliation | grid-institutes:grid.4332.6 |
233 | ″ | schema:familyName | Vierlinger |
234 | ″ | schema:givenName | Klemens |
235 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604701673.10 |
236 | ″ | rdf:type | schema:Person |
237 | sg:person.0636615506.67 | schema:affiliation | grid-institutes:grid.4332.6 |
238 | ″ | schema:familyName | Mansfeld |
239 | ″ | schema:givenName | Markus H |
240 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636615506.67 |
241 | ″ | rdf:type | schema:Person |
242 | sg:person.0637444237.30 | schema:affiliation | grid-institutes:grid.22937.3d |
243 | ″ | schema:familyName | Koperek |
244 | ″ | schema:givenName | Oskar |
245 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637444237.30 |
246 | ″ | rdf:type | schema:Person |
247 | sg:pub.10.1007/s10585-008-9209-8 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1013603609 |
248 | ″ | ″ | https://doi.org/10.1007/s10585-008-9209-8 |
249 | ″ | rdf:type | schema:CreativeWork |
250 | sg:pub.10.1038/415530a | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1043001094 |
251 | ″ | ″ | https://doi.org/10.1038/415530a |
252 | ″ | rdf:type | schema:CreativeWork |
253 | sg:pub.10.1097/01.lab.0000043121.48152.79 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1041478880 |
254 | ″ | ″ | https://doi.org/10.1097/01.lab.0000043121.48152.79 |
255 | ″ | rdf:type | schema:CreativeWork |
256 | sg:pub.10.1186/gb-2002-3-7-research0034 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1039751959 |
257 | ″ | ″ | https://doi.org/10.1186/gb-2002-3-7-research0034 |
258 | ″ | rdf:type | schema:CreativeWork |
259 | sg:pub.10.1186/gb-2004-5-10-r80 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1018457673 |
260 | ″ | ″ | https://doi.org/10.1186/gb-2004-5-10-r80 |
261 | ″ | rdf:type | schema:CreativeWork |
262 | sg:pub.10.1186/gb-2008-9-5-r83 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1044588961 |
263 | ″ | ″ | https://doi.org/10.1186/gb-2008-9-5-r83 |
264 | ″ | rdf:type | schema:CreativeWork |
265 | grid-institutes:None | schema:alternateName | Institute of Applied Statistics and Computing, University of Natural Ressources and Life Sciences, 1190, Vienna, Austria |
266 | ″ | schema:name | Institute of Applied Statistics and Computing, University of Natural Ressources and Life Sciences, 1190, Vienna, Austria |
267 | ″ | rdf:type | schema:Organization |
268 | grid-institutes:grid.22937.3d | schema:alternateName | Department of Clinical Pathology, University of Vienna Medical School, A-1090, Vienna, Austria |
269 | ″ | schema:name | Department of Clinical Pathology, University of Vienna Medical School, A-1090, Vienna, Austria |
270 | ″ | rdf:type | schema:Organization |
271 | grid-institutes:grid.4332.6 | schema:alternateName | Molecular Medicine, AIT - Austrian Institute of Technology, A-1190, Vienna, Austria |
272 | ″ | schema:name | Molecular Medicine, AIT - Austrian Institute of Technology, A-1190, Vienna, Austria |
273 | ″ | rdf:type | schema:Organization |