Identification of SERPINA1 as single marker for papillary thyroid carcinoma through microarray meta analysis and quantification of its discriminatory power ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-04-06

AUTHORS

Klemens Vierlinger, Markus H Mansfeld, Oskar Koperek, Christa Nöhammer, Klaus Kaserer, Friedrich Leisch

ABSTRACT

BackgroundSeveral DNA microarray based expression signatures for the different clinically relevant thyroid tumor entities have been described over the past few years. However, reproducibility of these signatures is generally low, mainly due to study biases, small sample sizes and the highly multivariate nature of microarrays. While there are new technologies available for a more accurate high throughput expression analysis, we show that there is still a lot of information to be gained from data deposited in public microarray databases. In this study we were aiming (1) to identify potential markers for papillary thyroid carcinomas through meta analysis of public microarray data and (2) to confirm these markers in an independent dataset using an independent technology.MethodsWe adopted a meta analysis approach for four publicly available microarray datasets on papillary thyroid carcinoma (PTC) nodules versus nodular goitre (NG) from N2-frozen tissue. The methodology included merging of datasets, bias removal using distance weighted discrimination (DWD), feature selection/inference statistics, classification/crossvalidation and gene set enrichment analysis (GSEA). External Validation was performed on an independent dataset using an independent technology, quantitative RT-PCR (RT-qPCR) in our laboratory.ResultsFrom meta analysis we identified one gene (SERPINA1) which identifies papillary thyroid carcinoma against benign nodules with 99% accuracy (n = 99, sensitivity = 0.98, specificity = 1, PPV = 1, NPV = 0.98). In the independent validation data, which included not only PTC and NG, but all major histological thyroid entities plus a few variants, SERPINA1 was again markedly up regulated (36-fold, p = 1:3*10-10) in PTC and identification of papillary carcinoma was possible with 93% accuracy (n = 82, sensitivity = 1, specificity = 0.90, PPV = 0.76, NPV = 1). We also show that the extracellular matrix pathway is strongly activated in the meta analysis data, suggesting an important role of tumor-stroma interaction in the carcinogenesis of papillary thyroid carcinoma.ConclusionsWe show that valuable new information can be gained from meta analysis of existing microarray data deposited in public repositories. While single microarray studies rarely exhibit a sample number which allows robust feature selection, this can be achieved by combining published data using DWD. This approach is not only efficient, but also very cost-effective. Independent validation shows the validity of the results from this meta analysis and confirms SERPINA1 as a potent mRNA marker for PTC in a total (meta analysis plus validation) of 181 samples. More... »

PAGES

30

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1755-8794-4-30

DOI

http://dx.doi.org/10.1186/1755-8794-4-30

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020810816

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21470421


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Papillary", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thyroid Cancer, Papillary", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thyroid Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "alpha 1-Antitrypsin", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Molecular Medicine, AIT - Austrian Institute of Technology, A-1190, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.4332.6", 
          "name": [
            "Molecular Medicine, AIT - Austrian Institute of Technology, A-1190, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vierlinger", 
        "givenName": "Klemens", 
        "id": "sg:person.0604701673.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604701673.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Molecular Medicine, AIT - Austrian Institute of Technology, A-1190, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.4332.6", 
          "name": [
            "Molecular Medicine, AIT - Austrian Institute of Technology, A-1190, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mansfeld", 
        "givenName": "Markus H", 
        "id": "sg:person.0636615506.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636615506.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Clinical Pathology, University of Vienna Medical School, A-1090, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.22937.3d", 
          "name": [
            "Department of Clinical Pathology, University of Vienna Medical School, A-1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koperek", 
        "givenName": "Oskar", 
        "id": "sg:person.0637444237.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637444237.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Molecular Medicine, AIT - Austrian Institute of Technology, A-1190, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.4332.6", 
          "name": [
            "Molecular Medicine, AIT - Austrian Institute of Technology, A-1190, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "N\u00f6hammer", 
        "givenName": "Christa", 
        "id": "sg:person.01303267405.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303267405.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Clinical Pathology, University of Vienna Medical School, A-1090, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.22937.3d", 
          "name": [
            "Department of Clinical Pathology, University of Vienna Medical School, A-1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaserer", 
        "givenName": "Klaus", 
        "id": "sg:person.01046040764.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046040764.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Applied Statistics and Computing, University of Natural Ressources and Life Sciences, 1190, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Applied Statistics and Computing, University of Natural Ressources and Life Sciences, 1190, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leisch", 
        "givenName": "Friedrich", 
        "id": "sg:person.01303645353.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303645353.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/gb-2002-3-7-research0034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039751959", 
          "https://doi.org/10.1186/gb-2002-3-7-research0034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10585-008-9209-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013603609", 
          "https://doi.org/10.1007/s10585-008-9209-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415530a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043001094", 
          "https://doi.org/10.1038/415530a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1097/01.lab.0000043121.48152.79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041478880", 
          "https://doi.org/10.1097/01.lab.0000043121.48152.79"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2004-5-10-r80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018457673", 
          "https://doi.org/10.1186/gb-2004-5-10-r80"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2008-9-5-r83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044588961", 
          "https://doi.org/10.1186/gb-2008-9-5-r83"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-04-06", 
    "datePublishedReg": "2011-04-06", 
    "description": "BackgroundSeveral DNA microarray based expression signatures for the different clinically relevant thyroid tumor entities have been described over the past few years. However, reproducibility of these signatures is generally low, mainly due to study biases, small sample sizes and the highly multivariate nature of microarrays. While there are new technologies available for a more accurate high throughput expression analysis, we show that there is still a lot of information to be gained from data deposited in public microarray databases. In this study we were aiming (1) to identify potential markers for papillary thyroid carcinomas through meta analysis of public microarray data and (2) to confirm these markers in an independent dataset using an independent technology.MethodsWe adopted a meta analysis approach for four publicly available microarray datasets on papillary thyroid carcinoma (PTC) nodules versus nodular goitre (NG) from N2-frozen tissue. The methodology included merging of datasets, bias removal using distance weighted discrimination (DWD), feature selection/inference statistics, classification/crossvalidation and gene set enrichment analysis (GSEA). External Validation was performed on an independent dataset using an independent technology, quantitative RT-PCR (RT-qPCR) in our laboratory.ResultsFrom meta analysis we identified one gene (SERPINA1) which identifies papillary thyroid carcinoma against benign nodules with 99% accuracy (n = 99, sensitivity = 0.98, specificity = 1, PPV = 1, NPV = 0.98). In the independent validation data, which included not only PTC and NG, but all major histological thyroid entities plus a few variants, SERPINA1 was again markedly up regulated (36-fold, p = 1:3*10-10) in PTC and identification of papillary carcinoma was possible with 93% accuracy (n = 82, sensitivity = 1, specificity = 0.90, PPV = 0.76, NPV = 1). We also show that the extracellular matrix pathway is strongly activated in the meta analysis data, suggesting an important role of tumor-stroma interaction in the carcinogenesis of papillary thyroid carcinoma.ConclusionsWe show that valuable new information can be gained from meta analysis of existing microarray data deposited in public repositories. While single microarray studies rarely exhibit a sample number which allows robust feature selection, this can be achieved by combining published data using DWD. This approach is not only efficient, but also very cost-effective. Independent validation shows the validity of the results from this meta analysis and confirms SERPINA1 as a potent mRNA marker for PTC in a total (meta analysis plus validation) of 181 samples.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1755-8794-4-30", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1039191", 
        "issn": [
          "1755-8794"
        ], 
        "name": "BMC Medical Genomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "keywords": [
      "high-throughput expression analysis", 
      "microarray data", 
      "Microarray Meta-Analysis", 
      "extracellular matrix pathways", 
      "public microarray data", 
      "available microarray datasets", 
      "public microarray databases", 
      "DNA microarrays", 
      "expression analysis", 
      "enrichment analysis", 
      "matrix pathways", 
      "quantitative RT-PCR", 
      "tumor-stroma interactions", 
      "microarray studies", 
      "independent datasets", 
      "microarray datasets", 
      "expression signatures", 
      "microarray database", 
      "valuable new information", 
      "merging of datasets", 
      "genes", 
      "meta-analysis approach", 
      "public repositories", 
      "microarray", 
      "SERPINA1", 
      "RT-PCR", 
      "papillary thyroid carcinoma", 
      "meta-analysis data", 
      "markers", 
      "important role", 
      "independent validation", 
      "single marker", 
      "identification", 
      "new information", 
      "potential marker", 
      "pathway", 
      "mRNA markers", 
      "independent technologies", 
      "multivariate nature", 
      "thyroid carcinoma", 
      "PTC", 
      "signatures", 
      "independent validation data", 
      "discriminatory power", 
      "variants", 
      "carcinogenesis", 
      "tumor entities", 
      "tissue", 
      "analysis", 
      "role", 
      "selection", 
      "sample number", 
      "nodules", 
      "interaction", 
      "robust feature selection", 
      "dataset", 
      "feature selection", 
      "data", 
      "study", 
      "carcinoma", 
      "analysis data", 
      "DWD", 
      "quantification", 
      "information", 
      "papillary thyroid carcinoma nodules", 
      "number", 
      "small sample size", 
      "size", 
      "validation", 
      "laboratory", 
      "new technologies", 
      "technology", 
      "sample size", 
      "database", 
      "approach", 
      "removal", 
      "repository", 
      "distance", 
      "validation data", 
      "analysis approach", 
      "bias removal", 
      "discrimination", 
      "accuracy", 
      "nature", 
      "ConclusionsWe", 
      "results", 
      "entities", 
      "biases", 
      "samples", 
      "inference statistics", 
      "statistics", 
      "merging", 
      "crossvalidation", 
      "years", 
      "papillary carcinoma", 
      "MethodsWe", 
      "methodology", 
      "carcinoma nodules", 
      "reproducibility", 
      "external validation", 
      "validity", 
      "N2", 
      "nodular goiter", 
      "power", 
      "Meta-Analysis", 
      "goiter", 
      "benign nodules"
    ], 
    "name": "Identification of SERPINA1 as single marker for papillary thyroid carcinoma through microarray meta analysis and quantification of its discriminatory power in independent validation", 
    "pagination": "30", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020810816"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1755-8794-4-30"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21470421"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1755-8794-4-30", 
      "https://app.dimensions.ai/details/publication/pub.1020810816"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_535.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1755-8794-4-30"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-4-30'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-4-30'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-4-30'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-4-30'


 

This table displays all metadata directly associated to this object as RDF triples.

273 TRIPLES      22 PREDICATES      149 URIs      135 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1755-8794-4-30 schema:about N1b2a7e089a6f4d81bf07ac783563fa53
2 N4af184b2950748ebb6122027922e6ee3
3 N5fe59bb6255547b8bb061f2625abbc47
4 N6b556bdabd91422d8e74848a6da7b831
5 N79d814a7766b4751845cd2702afaf666
6 N9b7c499dae1f4a2c9b6f82eba3e300ab
7 Nb1a575da8f9f4fba98e7d445adb84c8c
8 Nbc6d38e2d2bb4f60a605ba44e3087b75
9 Nbfb4fd13bff14240a332b94f5927bbdb
10 Ne308eb4c5d14445d9ff857c08ccabc3b
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author Naec7ab36a4914046b0b5b9d1c11ace41
14 schema:citation sg:pub.10.1007/s10585-008-9209-8
15 sg:pub.10.1038/415530a
16 sg:pub.10.1097/01.lab.0000043121.48152.79
17 sg:pub.10.1186/gb-2002-3-7-research0034
18 sg:pub.10.1186/gb-2004-5-10-r80
19 sg:pub.10.1186/gb-2008-9-5-r83
20 schema:datePublished 2011-04-06
21 schema:datePublishedReg 2011-04-06
22 schema:description BackgroundSeveral DNA microarray based expression signatures for the different clinically relevant thyroid tumor entities have been described over the past few years. However, reproducibility of these signatures is generally low, mainly due to study biases, small sample sizes and the highly multivariate nature of microarrays. While there are new technologies available for a more accurate high throughput expression analysis, we show that there is still a lot of information to be gained from data deposited in public microarray databases. In this study we were aiming (1) to identify potential markers for papillary thyroid carcinomas through meta analysis of public microarray data and (2) to confirm these markers in an independent dataset using an independent technology.MethodsWe adopted a meta analysis approach for four publicly available microarray datasets on papillary thyroid carcinoma (PTC) nodules versus nodular goitre (NG) from N2-frozen tissue. The methodology included merging of datasets, bias removal using distance weighted discrimination (DWD), feature selection/inference statistics, classification/crossvalidation and gene set enrichment analysis (GSEA). External Validation was performed on an independent dataset using an independent technology, quantitative RT-PCR (RT-qPCR) in our laboratory.ResultsFrom meta analysis we identified one gene (SERPINA1) which identifies papillary thyroid carcinoma against benign nodules with 99% accuracy (n = 99, sensitivity = 0.98, specificity = 1, PPV = 1, NPV = 0.98). In the independent validation data, which included not only PTC and NG, but all major histological thyroid entities plus a few variants, SERPINA1 was again markedly up regulated (36-fold, p = 1:3*10-10) in PTC and identification of papillary carcinoma was possible with 93% accuracy (n = 82, sensitivity = 1, specificity = 0.90, PPV = 0.76, NPV = 1). We also show that the extracellular matrix pathway is strongly activated in the meta analysis data, suggesting an important role of tumor-stroma interaction in the carcinogenesis of papillary thyroid carcinoma.ConclusionsWe show that valuable new information can be gained from meta analysis of existing microarray data deposited in public repositories. While single microarray studies rarely exhibit a sample number which allows robust feature selection, this can be achieved by combining published data using DWD. This approach is not only efficient, but also very cost-effective. Independent validation shows the validity of the results from this meta analysis and confirms SERPINA1 as a potent mRNA marker for PTC in a total (meta analysis plus validation) of 181 samples.
23 schema:genre article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N9443467887d140fdb5e2088348ea261d
27 Na647bbefb10940f5a1192505eb5a911d
28 sg:journal.1039191
29 schema:keywords ConclusionsWe
30 DNA microarrays
31 DWD
32 Meta-Analysis
33 MethodsWe
34 Microarray Meta-Analysis
35 N2
36 PTC
37 RT-PCR
38 SERPINA1
39 accuracy
40 analysis
41 analysis approach
42 analysis data
43 approach
44 available microarray datasets
45 benign nodules
46 bias removal
47 biases
48 carcinogenesis
49 carcinoma
50 carcinoma nodules
51 crossvalidation
52 data
53 database
54 dataset
55 discrimination
56 discriminatory power
57 distance
58 enrichment analysis
59 entities
60 expression analysis
61 expression signatures
62 external validation
63 extracellular matrix pathways
64 feature selection
65 genes
66 goiter
67 high-throughput expression analysis
68 identification
69 important role
70 independent datasets
71 independent technologies
72 independent validation
73 independent validation data
74 inference statistics
75 information
76 interaction
77 laboratory
78 mRNA markers
79 markers
80 matrix pathways
81 merging
82 merging of datasets
83 meta-analysis approach
84 meta-analysis data
85 methodology
86 microarray
87 microarray data
88 microarray database
89 microarray datasets
90 microarray studies
91 multivariate nature
92 nature
93 new information
94 new technologies
95 nodular goiter
96 nodules
97 number
98 papillary carcinoma
99 papillary thyroid carcinoma
100 papillary thyroid carcinoma nodules
101 pathway
102 potential marker
103 power
104 public microarray data
105 public microarray databases
106 public repositories
107 quantification
108 quantitative RT-PCR
109 removal
110 repository
111 reproducibility
112 results
113 robust feature selection
114 role
115 sample number
116 sample size
117 samples
118 selection
119 signatures
120 single marker
121 size
122 small sample size
123 statistics
124 study
125 technology
126 thyroid carcinoma
127 tissue
128 tumor entities
129 tumor-stroma interactions
130 validation
131 validation data
132 validity
133 valuable new information
134 variants
135 years
136 schema:name Identification of SERPINA1 as single marker for papillary thyroid carcinoma through microarray meta analysis and quantification of its discriminatory power in independent validation
137 schema:pagination 30
138 schema:productId N289c45ea87274f6a8fa1dc20f1833b5a
139 N9877369f21384664ad3230189ebd9ef5
140 Nff6eaf8f188e4385b9d594a6edbf1144
141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020810816
142 https://doi.org/10.1186/1755-8794-4-30
143 schema:sdDatePublished 2022-05-20T07:26
144 schema:sdLicense https://scigraph.springernature.com/explorer/license/
145 schema:sdPublisher N445bec99b2214a3b9d70fd811398b8e7
146 schema:url https://doi.org/10.1186/1755-8794-4-30
147 sgo:license sg:explorer/license/
148 sgo:sdDataset articles
149 rdf:type schema:ScholarlyArticle
150 N1b2a7e089a6f4d81bf07ac783563fa53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Gene Expression Profiling
152 rdf:type schema:DefinedTerm
153 N23d05edea698404682f2a41bf273e444 rdf:first sg:person.0636615506.67
154 rdf:rest Nb5d1813b010a4673a2280fb0f38fe671
155 N289c45ea87274f6a8fa1dc20f1833b5a schema:name pubmed_id
156 schema:value 21470421
157 rdf:type schema:PropertyValue
158 N445bec99b2214a3b9d70fd811398b8e7 schema:name Springer Nature - SN SciGraph project
159 rdf:type schema:Organization
160 N4af184b2950748ebb6122027922e6ee3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Humans
162 rdf:type schema:DefinedTerm
163 N5fe59bb6255547b8bb061f2625abbc47 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name alpha 1-Antitrypsin
165 rdf:type schema:DefinedTerm
166 N6b556bdabd91422d8e74848a6da7b831 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Carcinoma
168 rdf:type schema:DefinedTerm
169 N79d814a7766b4751845cd2702afaf666 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Thyroid Neoplasms
171 rdf:type schema:DefinedTerm
172 N7f33cb59a3814dffa9eff59f9925c6b7 rdf:first sg:person.01046040764.07
173 rdf:rest Na7dcad5f352e493581ca566af1f5b37a
174 N9443467887d140fdb5e2088348ea261d schema:volumeNumber 4
175 rdf:type schema:PublicationVolume
176 N9877369f21384664ad3230189ebd9ef5 schema:name dimensions_id
177 schema:value pub.1020810816
178 rdf:type schema:PropertyValue
179 N9b7c499dae1f4a2c9b6f82eba3e300ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Thyroid Cancer, Papillary
181 rdf:type schema:DefinedTerm
182 Na647bbefb10940f5a1192505eb5a911d schema:issueNumber 1
183 rdf:type schema:PublicationIssue
184 Na7dcad5f352e493581ca566af1f5b37a rdf:first sg:person.01303645353.40
185 rdf:rest rdf:nil
186 Naec7ab36a4914046b0b5b9d1c11ace41 rdf:first sg:person.0604701673.10
187 rdf:rest N23d05edea698404682f2a41bf273e444
188 Nb1a575da8f9f4fba98e7d445adb84c8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Oligonucleotide Array Sequence Analysis
190 rdf:type schema:DefinedTerm
191 Nb5d1813b010a4673a2280fb0f38fe671 rdf:first sg:person.0637444237.30
192 rdf:rest Nca7aba89c88f4d74afc89c59047ee28d
193 Nbc6d38e2d2bb4f60a605ba44e3087b75 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Sensitivity and Specificity
195 rdf:type schema:DefinedTerm
196 Nbfb4fd13bff14240a332b94f5927bbdb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Carcinoma, Papillary
198 rdf:type schema:DefinedTerm
199 Nca7aba89c88f4d74afc89c59047ee28d rdf:first sg:person.01303267405.37
200 rdf:rest N7f33cb59a3814dffa9eff59f9925c6b7
201 Ne308eb4c5d14445d9ff857c08ccabc3b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
202 schema:name Biomarkers, Tumor
203 rdf:type schema:DefinedTerm
204 Nff6eaf8f188e4385b9d594a6edbf1144 schema:name doi
205 schema:value 10.1186/1755-8794-4-30
206 rdf:type schema:PropertyValue
207 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
208 schema:name Biological Sciences
209 rdf:type schema:DefinedTerm
210 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
211 schema:name Genetics
212 rdf:type schema:DefinedTerm
213 sg:journal.1039191 schema:issn 1755-8794
214 schema:name BMC Medical Genomics
215 schema:publisher Springer Nature
216 rdf:type schema:Periodical
217 sg:person.01046040764.07 schema:affiliation grid-institutes:grid.22937.3d
218 schema:familyName Kaserer
219 schema:givenName Klaus
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046040764.07
221 rdf:type schema:Person
222 sg:person.01303267405.37 schema:affiliation grid-institutes:grid.4332.6
223 schema:familyName Nöhammer
224 schema:givenName Christa
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303267405.37
226 rdf:type schema:Person
227 sg:person.01303645353.40 schema:affiliation grid-institutes:None
228 schema:familyName Leisch
229 schema:givenName Friedrich
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303645353.40
231 rdf:type schema:Person
232 sg:person.0604701673.10 schema:affiliation grid-institutes:grid.4332.6
233 schema:familyName Vierlinger
234 schema:givenName Klemens
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604701673.10
236 rdf:type schema:Person
237 sg:person.0636615506.67 schema:affiliation grid-institutes:grid.4332.6
238 schema:familyName Mansfeld
239 schema:givenName Markus H
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636615506.67
241 rdf:type schema:Person
242 sg:person.0637444237.30 schema:affiliation grid-institutes:grid.22937.3d
243 schema:familyName Koperek
244 schema:givenName Oskar
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637444237.30
246 rdf:type schema:Person
247 sg:pub.10.1007/s10585-008-9209-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013603609
248 https://doi.org/10.1007/s10585-008-9209-8
249 rdf:type schema:CreativeWork
250 sg:pub.10.1038/415530a schema:sameAs https://app.dimensions.ai/details/publication/pub.1043001094
251 https://doi.org/10.1038/415530a
252 rdf:type schema:CreativeWork
253 sg:pub.10.1097/01.lab.0000043121.48152.79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041478880
254 https://doi.org/10.1097/01.lab.0000043121.48152.79
255 rdf:type schema:CreativeWork
256 sg:pub.10.1186/gb-2002-3-7-research0034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039751959
257 https://doi.org/10.1186/gb-2002-3-7-research0034
258 rdf:type schema:CreativeWork
259 sg:pub.10.1186/gb-2004-5-10-r80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018457673
260 https://doi.org/10.1186/gb-2004-5-10-r80
261 rdf:type schema:CreativeWork
262 sg:pub.10.1186/gb-2008-9-5-r83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044588961
263 https://doi.org/10.1186/gb-2008-9-5-r83
264 rdf:type schema:CreativeWork
265 grid-institutes:None schema:alternateName Institute of Applied Statistics and Computing, University of Natural Ressources and Life Sciences, 1190, Vienna, Austria
266 schema:name Institute of Applied Statistics and Computing, University of Natural Ressources and Life Sciences, 1190, Vienna, Austria
267 rdf:type schema:Organization
268 grid-institutes:grid.22937.3d schema:alternateName Department of Clinical Pathology, University of Vienna Medical School, A-1090, Vienna, Austria
269 schema:name Department of Clinical Pathology, University of Vienna Medical School, A-1090, Vienna, Austria
270 rdf:type schema:Organization
271 grid-institutes:grid.4332.6 schema:alternateName Molecular Medicine, AIT - Austrian Institute of Technology, A-1190, Vienna, Austria
272 schema:name Molecular Medicine, AIT - Austrian Institute of Technology, A-1190, Vienna, Austria
273 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...