Hepatic microRNA expression is associated with the response to interferon treatment of chronic hepatitis C View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-12

AUTHORS

Yoshiki Murakami, Masami Tanaka, Hidenori Toyoda, Katsuyuki Hayashi, Masahiko Kuroda, Atsushi Tajima, Kunitada Shimotohno

ABSTRACT

BACKGROUND: HCV infection frequently induces chronic liver diseases. The current standard treatment for chronic hepatitis (CH) C combines pegylated interferon (IFN) and ribavirin, and is less than ideal due to undesirable effects. MicroRNAs (miRNAs) are endogenous small non-coding RNAs that control gene expression by degrading or suppressing the translation of target mRNAs. In this study we administered the standard combination treatment to CHC patients. We then examined their miRNA expression profiles in order to identify the miRNAs that were associated with each patient's drug response. METHODS: 99 CHC patients with no anti-viral therapy history were enrolled. The expression level of 470 mature miRNAs found their biopsy specimen, obtained prior to the combination therapy, were quantified using microarray analysis. The miRNA expression pattern was classified based on the final virological response to the combination therapy. Monte Carlo Cross Validation (MCCV) was used to validate the outcome of the prediction based on the miRNA expression profile. RESULTS: We found that the expression level of 9 miRNAs were significantly different in the sustained virological response (SVR) and non-responder (NR) groups. MCCV revealed an accuracy, sensitivity, and specificity of 70.5%, 76.5% and 63.3% in SVR and non-SVR and 70.0%, 67.5%, and 73.7% in relapse (R) and NR, respectively. CONCLUSIONS: The hepatic miRNA expression pattern that exists in CHC patients before combination therapy is associated with their therapeutic outcome. This information can be utilized as a novel biomarker to predict drug response and can also be applied to developing novel anti-viral therapy for CHC patients. More... »

PAGES

48

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1755-8794-3-48

DOI

http://dx.doi.org/10.1186/1755-8794-3-48

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043084961

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20969775


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Combinations", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "HEK293 Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hepatitis C, Chronic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Interferons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "MicroRNAs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monte Carlo Method", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymerase Chain Reaction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Treatment Outcome", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Center for Genomic Medicine, Kyoto University Graduate School of Medicine, 53 Shogoinkawahara-cho, 606-8507, Sakyo-ku, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murakami", 
        "givenName": "Yoshiki", 
        "id": "sg:person.01276043772.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276043772.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410793.8", 
          "name": [
            "Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, 160-8402, Shinjuku-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanaka", 
        "givenName": "Masami", 
        "id": "sg:person.01165134300.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165134300.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ogaki Municipal Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416762.0", 
          "name": [
            "Department of Gastroenterology, Ogaki Municipal Hospital, 86-4 Minaminokawa-cho, 503-8502, Ogaki, Gifu, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toyoda", 
        "givenName": "Hidenori", 
        "id": "sg:person.01212503247.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212503247.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DNA Chip Research (Japan)", 
          "id": "https://www.grid.ac/institutes/grid.452377.0", 
          "name": [
            "DNA Chip Research Inc., 43-1-1 Suehiro-cho, Tsurumi-ku, 230-0045, Yokohama, Kanagawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hayashi", 
        "givenName": "Katsuyuki", 
        "id": "sg:person.01202102313.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202102313.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410793.8", 
          "name": [
            "Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, 160-8402, Shinjuku-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuroda", 
        "givenName": "Masahiko", 
        "id": "sg:person.0676125037.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676125037.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokai University", 
          "id": "https://www.grid.ac/institutes/grid.265061.6", 
          "name": [
            "Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, 259-1193, Isehara, Kanagawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tajima", 
        "givenName": "Atsushi", 
        "id": "sg:person.01133422317.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133422317.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chiba Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.254124.4", 
          "name": [
            "Research Institute, Chiba Institute for Technology, 2-17-1 Tsudanuma, 275-0016, Narashino, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shimotohno", 
        "givenName": "Kunitada", 
        "id": "sg:person.01341611063.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341611063.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.it.2008.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002240644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa0901282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002363689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl1009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003871191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.20306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005879423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.21853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006798627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/jhep.2002.37117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011123729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhep.2005.04.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011341578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.22729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011745403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-9822(02)00809-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012534253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa020047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013273688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1261/rna.2248605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022080737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1113329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023422868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.gastro.2005.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026123114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/gut.2007.128611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027524672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.immuni.2009.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028178626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-10-373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031176215", 
          "https://doi.org/10.1186/1471-2164-10-373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.semcancer.2008.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031390804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.1840360703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031621232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm.1902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034206811", 
          "https://doi.org/10.1038/nm.1902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000107707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034730616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199601113340203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035215882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2007.02.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036520519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.pathol.1.110304.100230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036837172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.gastro.2005.01.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039075330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhep.2008.06.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039899892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040772321", 
          "https://doi.org/10.1038/nature06205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2002-3-7-research0036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041996792", 
          "https://doi.org/10.1186/gb-2002-3-7-research0036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042512104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043341870", 
          "https://doi.org/10.1038/nature02871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043341870", 
          "https://doi.org/10.1038/nature02871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.1310605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043912275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049900143", 
          "https://doi.org/10.1038/ng.449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049900143", 
          "https://doi.org/10.1038/ng.449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coi.2007.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049969213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1111444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062452139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4049/jimmunol.182.3.1325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077836912"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12", 
    "datePublishedReg": "2010-12-01", 
    "description": "BACKGROUND: HCV infection frequently induces chronic liver diseases. The current standard treatment for chronic hepatitis (CH) C combines pegylated interferon (IFN) and ribavirin, and is less than ideal due to undesirable effects. MicroRNAs (miRNAs) are endogenous small non-coding RNAs that control gene expression by degrading or suppressing the translation of target mRNAs. In this study we administered the standard combination treatment to CHC patients. We then examined their miRNA expression profiles in order to identify the miRNAs that were associated with each patient's drug response.\nMETHODS: 99 CHC patients with no anti-viral therapy history were enrolled. The expression level of 470 mature miRNAs found their biopsy specimen, obtained prior to the combination therapy, were quantified using microarray analysis. The miRNA expression pattern was classified based on the final virological response to the combination therapy. Monte Carlo Cross Validation (MCCV) was used to validate the outcome of the prediction based on the miRNA expression profile.\nRESULTS: We found that the expression level of 9 miRNAs were significantly different in the sustained virological response (SVR) and non-responder (NR) groups. MCCV revealed an accuracy, sensitivity, and specificity of 70.5%, 76.5% and 63.3% in SVR and non-SVR and 70.0%, 67.5%, and 73.7% in relapse (R) and NR, respectively.\nCONCLUSIONS: The hepatic miRNA expression pattern that exists in CHC patients before combination therapy is associated with their therapeutic outcome. This information can be utilized as a novel biomarker to predict drug response and can also be applied to developing novel anti-viral therapy for CHC patients.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1755-8794-3-48", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1039191", 
        "issn": [
          "1755-8794"
        ], 
        "name": "BMC Medical Genomics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Hepatic microRNA expression is associated with the response to interferon treatment of chronic hepatitis C", 
    "pagination": "48", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cd3aad7f31b347a3f05a3c5883487c72479cb3ab4a33a5b863dec389b1c1de3f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20969775"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101319628"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1755-8794-3-48"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043084961"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1755-8794-3-48", 
      "https://app.dimensions.ai/details/publication/pub.1043084961"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1755-8794-3-48"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-3-48'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-3-48'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-3-48'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-3-48'


 

This table displays all metadata directly associated to this object as RDF triples.

301 TRIPLES      21 PREDICATES      80 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1755-8794-3-48 schema:about N189a9a2b52b94ff69aaf7864b7411767
2 N2a8a6aec4a084aaaa6ee5c83fd0ea4a7
3 N31297d63db9e43ef9d667e9e461ca92a
4 N3916d7ed72924c93b9ecd475ad8ba119
5 N489a7219f87d4d0493562757e6d0b46b
6 N5a71e5dd017142709cfe93700e429d40
7 N674dc169005948cb9f4756d332166d74
8 N69770acff44147009df2b611a349b029
9 N74a56b333b024320889d658355196fcb
10 N933355a9312d4a98b4b348573b3e918b
11 Nac07f51da35e488b8b493cb9dc70e76b
12 Naca104fc03194d179b04a558abed6ecc
13 Nb5813a0ac51a4625bf227a892ee3770a
14 Nb962ce4689974de2be6b4779cf8b837a
15 Nb9936716b6244b268d4c8b2b21676fbd
16 Nc8d4e7ee46c34c08a8e399c1bfd68bf6
17 Ncff4128278c9405b87b3b348ce3424b4
18 anzsrc-for:06
19 anzsrc-for:0604
20 schema:author N8a6f307526c84293b5b3e7fd994005d0
21 schema:citation sg:pub.10.1038/nature02871
22 sg:pub.10.1038/nature06205
23 sg:pub.10.1038/ng.449
24 sg:pub.10.1038/nm.1902
25 sg:pub.10.1186/1471-2164-10-373
26 sg:pub.10.1186/gb-2002-3-7-research0036
27 https://doi.org/10.1002/hep.1840360703
28 https://doi.org/10.1002/hep.20306
29 https://doi.org/10.1002/hep.21853
30 https://doi.org/10.1002/hep.22729
31 https://doi.org/10.1016/j.coi.2007.10.009
32 https://doi.org/10.1016/j.immuni.2009.07.002
33 https://doi.org/10.1016/j.it.2008.04.004
34 https://doi.org/10.1016/j.jhep.2005.04.009
35 https://doi.org/10.1016/j.jhep.2008.06.010
36 https://doi.org/10.1016/j.semcancer.2008.01.005
37 https://doi.org/10.1016/j.tig.2007.02.011
38 https://doi.org/10.1016/s0960-9822(02)00809-6
39 https://doi.org/10.1053/j.gastro.2005.01.059
40 https://doi.org/10.1053/j.gastro.2005.11.010
41 https://doi.org/10.1053/jhep.2002.37117
42 https://doi.org/10.1056/nejm199601113340203
43 https://doi.org/10.1056/nejmoa020047
44 https://doi.org/10.1056/nejmoa0901282
45 https://doi.org/10.1093/bioinformatics/btg038
46 https://doi.org/10.1093/nar/gkl1009
47 https://doi.org/10.1101/gad.1310605
48 https://doi.org/10.1126/science.1111444
49 https://doi.org/10.1126/science.1113329
50 https://doi.org/10.1136/gut.2007.128611
51 https://doi.org/10.1146/annurev.pathol.1.110304.100230
52 https://doi.org/10.1159/000107707
53 https://doi.org/10.1261/rna.2248605
54 https://doi.org/10.4049/jimmunol.182.3.1325
55 schema:datePublished 2010-12
56 schema:datePublishedReg 2010-12-01
57 schema:description BACKGROUND: HCV infection frequently induces chronic liver diseases. The current standard treatment for chronic hepatitis (CH) C combines pegylated interferon (IFN) and ribavirin, and is less than ideal due to undesirable effects. MicroRNAs (miRNAs) are endogenous small non-coding RNAs that control gene expression by degrading or suppressing the translation of target mRNAs. In this study we administered the standard combination treatment to CHC patients. We then examined their miRNA expression profiles in order to identify the miRNAs that were associated with each patient's drug response. METHODS: 99 CHC patients with no anti-viral therapy history were enrolled. The expression level of 470 mature miRNAs found their biopsy specimen, obtained prior to the combination therapy, were quantified using microarray analysis. The miRNA expression pattern was classified based on the final virological response to the combination therapy. Monte Carlo Cross Validation (MCCV) was used to validate the outcome of the prediction based on the miRNA expression profile. RESULTS: We found that the expression level of 9 miRNAs were significantly different in the sustained virological response (SVR) and non-responder (NR) groups. MCCV revealed an accuracy, sensitivity, and specificity of 70.5%, 76.5% and 63.3% in SVR and non-SVR and 70.0%, 67.5%, and 73.7% in relapse (R) and NR, respectively. CONCLUSIONS: The hepatic miRNA expression pattern that exists in CHC patients before combination therapy is associated with their therapeutic outcome. This information can be utilized as a novel biomarker to predict drug response and can also be applied to developing novel anti-viral therapy for CHC patients.
58 schema:genre research_article
59 schema:inLanguage en
60 schema:isAccessibleForFree true
61 schema:isPartOf N9c9e4f0ed72f4b5085ce569e7b5d192e
62 Nfc46c72fc2144a3e9d53304a4080a033
63 sg:journal.1039191
64 schema:name Hepatic microRNA expression is associated with the response to interferon treatment of chronic hepatitis C
65 schema:pagination 48
66 schema:productId N07a6cb824b164a5fbf26fa56da6eebe6
67 N67bff6de4f014aa0b1a136d6d2e69810
68 N6d73208fd7eb4f1b90d5fa7f5c91a002
69 N7106dc273f6e470eb993a902d34f9e36
70 N99e394849fc146a1900ed671d6efd35c
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043084961
72 https://doi.org/10.1186/1755-8794-3-48
73 schema:sdDatePublished 2019-04-10T13:18
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher N5908208209524c48b3935beb745d7597
76 schema:url http://link.springer.com/10.1186%2F1755-8794-3-48
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N07a6cb824b164a5fbf26fa56da6eebe6 schema:name pubmed_id
81 schema:value 20969775
82 rdf:type schema:PropertyValue
83 N189a9a2b52b94ff69aaf7864b7411767 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Treatment Outcome
85 rdf:type schema:DefinedTerm
86 N2a8a6aec4a084aaaa6ee5c83fd0ea4a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Polymerase Chain Reaction
88 rdf:type schema:DefinedTerm
89 N30f641ca357b4e2e927df4e12de0eeef rdf:first sg:person.01202102313.09
90 rdf:rest Ndcf01c7a05a949308d3d55e1d03543f6
91 N31297d63db9e43ef9d667e9e461ca92a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Monte Carlo Method
93 rdf:type schema:DefinedTerm
94 N3414dd49f6cf45039076e05d6c2de277 rdf:first sg:person.01165134300.72
95 rdf:rest Ne6434b87d3854ece810eaf7b8c4ab61a
96 N3916d7ed72924c93b9ecd475ad8ba119 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Liver
98 rdf:type schema:DefinedTerm
99 N489a7219f87d4d0493562757e6d0b46b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Gene Expression Regulation
101 rdf:type schema:DefinedTerm
102 N5908208209524c48b3935beb745d7597 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N5a71e5dd017142709cfe93700e429d40 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Female
106 rdf:type schema:DefinedTerm
107 N674dc169005948cb9f4756d332166d74 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name MicroRNAs
109 rdf:type schema:DefinedTerm
110 N67bff6de4f014aa0b1a136d6d2e69810 schema:name dimensions_id
111 schema:value pub.1043084961
112 rdf:type schema:PropertyValue
113 N69770acff44147009df2b611a349b029 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Humans
115 rdf:type schema:DefinedTerm
116 N6d73208fd7eb4f1b90d5fa7f5c91a002 schema:name doi
117 schema:value 10.1186/1755-8794-3-48
118 rdf:type schema:PropertyValue
119 N7106dc273f6e470eb993a902d34f9e36 schema:name readcube_id
120 schema:value cd3aad7f31b347a3f05a3c5883487c72479cb3ab4a33a5b863dec389b1c1de3f
121 rdf:type schema:PropertyValue
122 N74a56b333b024320889d658355196fcb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Hepatitis C, Chronic
124 rdf:type schema:DefinedTerm
125 N8a6f307526c84293b5b3e7fd994005d0 rdf:first sg:person.01276043772.81
126 rdf:rest N3414dd49f6cf45039076e05d6c2de277
127 N933355a9312d4a98b4b348573b3e918b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Reproducibility of Results
129 rdf:type schema:DefinedTerm
130 N96cf8c96b248485bb0b414a366a22c3c rdf:first sg:person.01133422317.13
131 rdf:rest Ndc674bbacdb34101999e2e6abb52b4b5
132 N99e394849fc146a1900ed671d6efd35c schema:name nlm_unique_id
133 schema:value 101319628
134 rdf:type schema:PropertyValue
135 N9c9e4f0ed72f4b5085ce569e7b5d192e schema:volumeNumber 3
136 rdf:type schema:PublicationVolume
137 Nac07f51da35e488b8b493cb9dc70e76b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Time Factors
139 rdf:type schema:DefinedTerm
140 Naca104fc03194d179b04a558abed6ecc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Gene Expression Profiling
142 rdf:type schema:DefinedTerm
143 Nb5813a0ac51a4625bf227a892ee3770a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Drug Combinations
145 rdf:type schema:DefinedTerm
146 Nb962ce4689974de2be6b4779cf8b837a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Interferons
148 rdf:type schema:DefinedTerm
149 Nb9936716b6244b268d4c8b2b21676fbd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Middle Aged
151 rdf:type schema:DefinedTerm
152 Nc8d4e7ee46c34c08a8e399c1bfd68bf6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name HEK293 Cells
154 rdf:type schema:DefinedTerm
155 Ncff4128278c9405b87b3b348ce3424b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Male
157 rdf:type schema:DefinedTerm
158 Ndc674bbacdb34101999e2e6abb52b4b5 rdf:first sg:person.01341611063.92
159 rdf:rest rdf:nil
160 Ndcf01c7a05a949308d3d55e1d03543f6 rdf:first sg:person.0676125037.89
161 rdf:rest N96cf8c96b248485bb0b414a366a22c3c
162 Ne6434b87d3854ece810eaf7b8c4ab61a rdf:first sg:person.01212503247.23
163 rdf:rest N30f641ca357b4e2e927df4e12de0eeef
164 Nfc46c72fc2144a3e9d53304a4080a033 schema:issueNumber 1
165 rdf:type schema:PublicationIssue
166 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
167 schema:name Biological Sciences
168 rdf:type schema:DefinedTerm
169 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
170 schema:name Genetics
171 rdf:type schema:DefinedTerm
172 sg:journal.1039191 schema:issn 1755-8794
173 schema:name BMC Medical Genomics
174 rdf:type schema:Periodical
175 sg:person.01133422317.13 schema:affiliation https://www.grid.ac/institutes/grid.265061.6
176 schema:familyName Tajima
177 schema:givenName Atsushi
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133422317.13
179 rdf:type schema:Person
180 sg:person.01165134300.72 schema:affiliation https://www.grid.ac/institutes/grid.410793.8
181 schema:familyName Tanaka
182 schema:givenName Masami
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165134300.72
184 rdf:type schema:Person
185 sg:person.01202102313.09 schema:affiliation https://www.grid.ac/institutes/grid.452377.0
186 schema:familyName Hayashi
187 schema:givenName Katsuyuki
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202102313.09
189 rdf:type schema:Person
190 sg:person.01212503247.23 schema:affiliation https://www.grid.ac/institutes/grid.416762.0
191 schema:familyName Toyoda
192 schema:givenName Hidenori
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212503247.23
194 rdf:type schema:Person
195 sg:person.01276043772.81 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
196 schema:familyName Murakami
197 schema:givenName Yoshiki
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276043772.81
199 rdf:type schema:Person
200 sg:person.01341611063.92 schema:affiliation https://www.grid.ac/institutes/grid.254124.4
201 schema:familyName Shimotohno
202 schema:givenName Kunitada
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341611063.92
204 rdf:type schema:Person
205 sg:person.0676125037.89 schema:affiliation https://www.grid.ac/institutes/grid.410793.8
206 schema:familyName Kuroda
207 schema:givenName Masahiko
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676125037.89
209 rdf:type schema:Person
210 sg:pub.10.1038/nature02871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043341870
211 https://doi.org/10.1038/nature02871
212 rdf:type schema:CreativeWork
213 sg:pub.10.1038/nature06205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040772321
214 https://doi.org/10.1038/nature06205
215 rdf:type schema:CreativeWork
216 sg:pub.10.1038/ng.449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049900143
217 https://doi.org/10.1038/ng.449
218 rdf:type schema:CreativeWork
219 sg:pub.10.1038/nm.1902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034206811
220 https://doi.org/10.1038/nm.1902
221 rdf:type schema:CreativeWork
222 sg:pub.10.1186/1471-2164-10-373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031176215
223 https://doi.org/10.1186/1471-2164-10-373
224 rdf:type schema:CreativeWork
225 sg:pub.10.1186/gb-2002-3-7-research0036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041996792
226 https://doi.org/10.1186/gb-2002-3-7-research0036
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1002/hep.1840360703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031621232
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1002/hep.20306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005879423
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1002/hep.21853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006798627
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1002/hep.22729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011745403
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/j.coi.2007.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049969213
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/j.immuni.2009.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028178626
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/j.it.2008.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002240644
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/j.jhep.2005.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011341578
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/j.jhep.2008.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039899892
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/j.semcancer.2008.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031390804
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/j.tig.2007.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036520519
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/s0960-9822(02)00809-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012534253
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1053/j.gastro.2005.01.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039075330
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1053/j.gastro.2005.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026123114
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1053/jhep.2002.37117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011123729
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1056/nejm199601113340203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035215882
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1056/nejmoa020047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013273688
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1056/nejmoa0901282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002363689
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1093/bioinformatics/btg038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042512104
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1093/nar/gkl1009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003871191
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1101/gad.1310605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043912275
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1126/science.1111444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062452139
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1126/science.1113329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023422868
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1136/gut.2007.128611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027524672
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1146/annurev.pathol.1.110304.100230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036837172
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1159/000107707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034730616
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1261/rna.2248605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022080737
281 rdf:type schema:CreativeWork
282 https://doi.org/10.4049/jimmunol.182.3.1325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077836912
283 rdf:type schema:CreativeWork
284 https://www.grid.ac/institutes/grid.254124.4 schema:alternateName Chiba Institute of Technology
285 schema:name Research Institute, Chiba Institute for Technology, 2-17-1 Tsudanuma, 275-0016, Narashino, Chiba, Japan
286 rdf:type schema:Organization
287 https://www.grid.ac/institutes/grid.258799.8 schema:alternateName Kyoto University
288 schema:name Center for Genomic Medicine, Kyoto University Graduate School of Medicine, 53 Shogoinkawahara-cho, 606-8507, Sakyo-ku, Kyoto, Japan
289 rdf:type schema:Organization
290 https://www.grid.ac/institutes/grid.265061.6 schema:alternateName Tokai University
291 schema:name Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, 259-1193, Isehara, Kanagawa, Japan
292 rdf:type schema:Organization
293 https://www.grid.ac/institutes/grid.410793.8 schema:alternateName Tokyo Medical University
294 schema:name Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, 160-8402, Shinjuku-ku, Tokyo, Japan
295 rdf:type schema:Organization
296 https://www.grid.ac/institutes/grid.416762.0 schema:alternateName Ogaki Municipal Hospital
297 schema:name Department of Gastroenterology, Ogaki Municipal Hospital, 86-4 Minaminokawa-cho, 503-8502, Ogaki, Gifu, Japan
298 rdf:type schema:Organization
299 https://www.grid.ac/institutes/grid.452377.0 schema:alternateName DNA Chip Research (Japan)
300 schema:name DNA Chip Research Inc., 43-1-1 Suehiro-cho, Tsurumi-ku, 230-0045, Yokohama, Kanagawa, Japan
301 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...