Genome-wide methylation and expression profiling identifies promoter characteristics affecting demethylation-induced gene up-regulation in melanoma View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-02-09

AUTHORS

Jill C Rubinstein, Nam Tran, Shuangge Ma, Ruth Halaban, Michael Krauthammer

ABSTRACT

BackgroundAbberant DNA methylation at CpG dinucleotides represents a common mechanism of transcriptional silencing in cancer. Since CpG methylation is a reversible event, tumor supressor genes that have undergone silencing through this mechanism represent promising targets for epigenetically active anti-cancer therapy. The cytosine analog 5-aza-2'-deoxycytidine (decitabine) induces genomic hypomethylation by inhibiting DNA methyltransferase, and is an example of an epigenetic agent that is thought to act by up-regulating silenced genes.MethodsIt is unclear why decitabine causes some silenced loci to re-express, while others remain inactive. By applying data-mining techniques to large-scale datasets, we attempted to elucidate the qualities of promoter regions that define susceptibility to the drug's action. Our experimental data, derived from melanoma cell strains, consist of genome-wide gene expression data before and after treatment with decitabine, as well as genome-wide data on un-treated promoter methylation status, and validation of specific genes by bisulfite sequencing.ResultsWe show that the combination of promoter CpG content and methylation level informs the ability of decitabine treatment to up-regulate gene expression. Promoters with high methylation levels and intermediate CpG content appear most susceptible to up-regulation by decitabine, whereas few of those highly methylated promoters with high CpG content are up-regulated. For promoters with low methylation levels, those with high CpG content are more likely to be up-regulated, whereas those with low CpG content are underrepresented among up-regulated genes.ConclusionsClinically, elucidating the patterns of action of decitabine could aid in predicting the likelihood of up-regulating epigenetically silenced tumor suppressor genes and others from pathways involved with tumor biology. As a first step toward an eventual translational application, we build a classifier to predict gene up-regulation based on promoter methylation and CpG content, which achieves a performance of 0.77 AUC. More... »

PAGES

4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1755-8794-3-4

DOI

http://dx.doi.org/10.1186/1755-8794-3-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035717233

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20144234


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antimetabolites, Antineoplastic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Azacitidine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "CpG Islands", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Methylation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Modification Methylases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Decitabine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Enzyme Inhibitors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Epigenesis, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Human", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Melanoma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Promoter Regions, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tumor Suppressor Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Up-Regulation", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, 06520, New Haven, CT, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rubinstein", 
        "givenName": "Jill C", 
        "id": "sg:person.01142200502.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142200502.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pathology, Yale University, 06520, New Haven, CT, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Pathology, Yale University, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tran", 
        "givenName": "Nam", 
        "id": "sg:person.01004621262.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004621262.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Public Health, Yale University, 06520, New Haven, CT, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "School of Public Health, Yale University, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Shuangge", 
        "id": "sg:person.01274336166.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274336166.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Dermatology, Yale University, 06520, New Haven, CT, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Dermatology, Yale University, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Halaban", 
        "givenName": "Ruth", 
        "id": "sg:person.053601122.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.053601122.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pathology, Yale University, 06520, New Haven, CT, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, 06520, New Haven, CT, USA", 
            "Department of Pathology, Yale University, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krauthammer", 
        "givenName": "Michael", 
        "id": "sg:person.01336516000.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336516000.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2164-10-223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021763896", 
          "https://doi.org/10.1186/1471-2164-10-223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/onc.2009.122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003877309", 
          "https://doi.org/10.1038/onc.2009.122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004657867", 
          "https://doi.org/10.1038/30613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034474001", 
          "https://doi.org/10.1038/ng1990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00277-005-0013-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034254392", 
          "https://doi.org/10.1007/s00277-005-0013-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-02-09", 
    "datePublishedReg": "2010-02-09", 
    "description": "BackgroundAbberant DNA methylation at CpG dinucleotides represents a common mechanism of transcriptional silencing in cancer. Since CpG methylation is a reversible event, tumor supressor genes that have undergone silencing through this mechanism represent promising targets for epigenetically active anti-cancer therapy. The cytosine analog 5-aza-2'-deoxycytidine (decitabine) induces genomic hypomethylation by inhibiting DNA methyltransferase, and is an example of an epigenetic agent that is thought to act by up-regulating silenced genes.MethodsIt is unclear why decitabine causes some silenced loci to re-express, while others remain inactive. By applying data-mining techniques to large-scale datasets, we attempted to elucidate the qualities of promoter regions that define susceptibility to the drug's action. Our experimental data, derived from melanoma cell strains, consist of genome-wide gene expression data before and after treatment with decitabine, as well as genome-wide data on un-treated promoter methylation status, and validation of specific genes by bisulfite sequencing.ResultsWe show that the combination of promoter CpG content and methylation level informs the ability of decitabine treatment to up-regulate gene expression. Promoters with high methylation levels and intermediate CpG content appear most susceptible to up-regulation by decitabine, whereas few of those highly methylated promoters with high CpG content are up-regulated. For promoters with low methylation levels, those with high CpG content are more likely to be up-regulated, whereas those with low CpG content are underrepresented among up-regulated genes.ConclusionsClinically, elucidating the patterns of action of decitabine could aid in predicting the likelihood of up-regulating epigenetically silenced tumor suppressor genes and others from pathways involved with tumor biology. As a first step toward an eventual translational application, we build a classifier to predict gene up-regulation based on promoter methylation and CpG content, which achieves a performance of 0.77 AUC.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1755-8794-3-4", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2440220", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2683700", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2681175", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1039191", 
        "issn": [
          "1755-8794"
        ], 
        "name": "BMC Medical Genomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "high CpG content", 
      "CpG content", 
      "genome-wide gene expression data", 
      "methylation levels", 
      "promoter CpG content", 
      "up-regulates gene expression", 
      "genome-wide methylation", 
      "genome-wide data", 
      "low CpG content", 
      "melanoma cell strains", 
      "gene expression data", 
      "tumor suppressor gene", 
      "cytosine analog 5", 
      "lower methylation levels", 
      "transcriptional silencing", 
      "methylated promoters", 
      "higher methylation levels", 
      "bisulfite sequencing", 
      "DNA methylation", 
      "CpG methylation", 
      "DNA methyltransferase", 
      "genomic hypomethylation", 
      "promoter characteristics", 
      "specific genes", 
      "promoter region", 
      "gene expression", 
      "tumor supressor gene", 
      "expression data", 
      "anti-cancer therapy", 
      "suppressor gene", 
      "genes", 
      "methylation", 
      "methylation status", 
      "promoter", 
      "epigenetic agents", 
      "promoter methylation status", 
      "promoter methylation", 
      "cell strains", 
      "reversible event", 
      "translational applications", 
      "common mechanism", 
      "decitabine treatment", 
      "promising target", 
      "regulation", 
      "tumor biology", 
      "decitabine", 
      "analogue 5", 
      "silencing", 
      "methyltransferase", 
      "hypomethylation", 
      "loci", 
      "biology", 
      "sequencing", 
      "drug action", 
      "pathway", 
      "CpG", 
      "mechanism", 
      "expression", 
      "first step", 
      "strains", 
      "target", 
      "content", 
      "action", 
      "levels", 
      "susceptibility", 
      "active anti-cancer therapy", 
      "region", 
      "patterns", 
      "ability", 
      "cancer", 
      "events", 
      "large-scale datasets", 
      "data", 
      "melanoma", 
      "step", 
      "agents", 
      "ResultsWe", 
      "treatment", 
      "combination", 
      "dataset", 
      "status", 
      "informs", 
      "un", 
      "validation", 
      "example", 
      "likelihood", 
      "characteristics", 
      "applications", 
      "therapy", 
      "quality", 
      "patterns of action", 
      "technique", 
      "experimental data", 
      "data mining techniques", 
      "classifier", 
      "performance", 
      "AUC", 
      "MethodsIt", 
      "ConclusionsClinically"
    ], 
    "name": "Genome-wide methylation and expression profiling identifies promoter characteristics affecting demethylation-induced gene up-regulation in melanoma", 
    "pagination": "4", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035717233"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1755-8794-3-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20144234"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1755-8794-3-4", 
      "https://app.dimensions.ai/details/publication/pub.1035717233"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_518.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1755-8794-3-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-3-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-3-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-3-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1755-8794-3-4'


 

This table displays all metadata directly associated to this object as RDF triples.

307 TRIPLES      21 PREDICATES      151 URIs      136 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1755-8794-3-4 schema:about N07df06ef6efe4316bc72287a99b06133
2 N0867d33f4ee548c7a786d7dbd67dafeb
3 N0ccc30c67d164312b6d3ff9a8d7ff320
4 N15ff1ca69b7246e4a58a70f9ce9f46df
5 N3fadd16889e8460daeed23cdffabe26f
6 N4509f3724278453889752d5254b89167
7 N6cf70d19be1d4a57bb27c2fb902fa427
8 N73842cae92c54a139a16c4ef4db6e9dc
9 N80ef5c375f6a413db8afd56e41093be1
10 N9905a639b8fe4fefb7897c23412b792d
11 N9de0256fe6f548f5a89cb7c183aec939
12 Na9be3cccade644a98c3e270ef1965cc9
13 Naaccf93d5f924986afdc0aa6e82f5de5
14 Nc2bd5f2e174d4d6cb02cc8750f120b48
15 Ndabcc897016a46948b7235bae1d23fc5
16 Ne7d50d6514cb4f8ea8ad094d54a5db74
17 Nf0f16324dae04d4d9c6c62db486685dd
18 Nf214fef5c78145a5a967f537adf533e6
19 Nfc1c38dcc09d4c2fbc9bac807c8733ff
20 Nfcd370c4d4404727a5b9a053d2bd3ca8
21 anzsrc-for:06
22 anzsrc-for:0604
23 anzsrc-for:11
24 anzsrc-for:1112
25 schema:author Neab39334eb0f47eda0eaa528e002d8f8
26 schema:citation sg:pub.10.1007/s00277-005-0013-0
27 sg:pub.10.1038/30613
28 sg:pub.10.1038/ng1990
29 sg:pub.10.1038/onc.2009.122
30 sg:pub.10.1186/1471-2164-10-223
31 schema:datePublished 2010-02-09
32 schema:datePublishedReg 2010-02-09
33 schema:description BackgroundAbberant DNA methylation at CpG dinucleotides represents a common mechanism of transcriptional silencing in cancer. Since CpG methylation is a reversible event, tumor supressor genes that have undergone silencing through this mechanism represent promising targets for epigenetically active anti-cancer therapy. The cytosine analog 5-aza-2'-deoxycytidine (decitabine) induces genomic hypomethylation by inhibiting DNA methyltransferase, and is an example of an epigenetic agent that is thought to act by up-regulating silenced genes.MethodsIt is unclear why decitabine causes some silenced loci to re-express, while others remain inactive. By applying data-mining techniques to large-scale datasets, we attempted to elucidate the qualities of promoter regions that define susceptibility to the drug's action. Our experimental data, derived from melanoma cell strains, consist of genome-wide gene expression data before and after treatment with decitabine, as well as genome-wide data on un-treated promoter methylation status, and validation of specific genes by bisulfite sequencing.ResultsWe show that the combination of promoter CpG content and methylation level informs the ability of decitabine treatment to up-regulate gene expression. Promoters with high methylation levels and intermediate CpG content appear most susceptible to up-regulation by decitabine, whereas few of those highly methylated promoters with high CpG content are up-regulated. For promoters with low methylation levels, those with high CpG content are more likely to be up-regulated, whereas those with low CpG content are underrepresented among up-regulated genes.ConclusionsClinically, elucidating the patterns of action of decitabine could aid in predicting the likelihood of up-regulating epigenetically silenced tumor suppressor genes and others from pathways involved with tumor biology. As a first step toward an eventual translational application, we build a classifier to predict gene up-regulation based on promoter methylation and CpG content, which achieves a performance of 0.77 AUC.
34 schema:genre article
35 schema:isAccessibleForFree true
36 schema:isPartOf N934f52fb757547599de5971c0e7cd2e4
37 Ndfd303bdad4745b6bad45e8a0277d6df
38 sg:journal.1039191
39 schema:keywords AUC
40 ConclusionsClinically
41 CpG
42 CpG content
43 CpG methylation
44 DNA methylation
45 DNA methyltransferase
46 MethodsIt
47 ResultsWe
48 ability
49 action
50 active anti-cancer therapy
51 agents
52 analogue 5
53 anti-cancer therapy
54 applications
55 biology
56 bisulfite sequencing
57 cancer
58 cell strains
59 characteristics
60 classifier
61 combination
62 common mechanism
63 content
64 cytosine analog 5
65 data
66 data mining techniques
67 dataset
68 decitabine
69 decitabine treatment
70 drug action
71 epigenetic agents
72 events
73 example
74 experimental data
75 expression
76 expression data
77 first step
78 gene expression
79 gene expression data
80 genes
81 genome-wide data
82 genome-wide gene expression data
83 genome-wide methylation
84 genomic hypomethylation
85 high CpG content
86 higher methylation levels
87 hypomethylation
88 informs
89 large-scale datasets
90 levels
91 likelihood
92 loci
93 low CpG content
94 lower methylation levels
95 mechanism
96 melanoma
97 melanoma cell strains
98 methylated promoters
99 methylation
100 methylation levels
101 methylation status
102 methyltransferase
103 pathway
104 patterns
105 patterns of action
106 performance
107 promising target
108 promoter
109 promoter CpG content
110 promoter characteristics
111 promoter methylation
112 promoter methylation status
113 promoter region
114 quality
115 region
116 regulation
117 reversible event
118 sequencing
119 silencing
120 specific genes
121 status
122 step
123 strains
124 suppressor gene
125 susceptibility
126 target
127 technique
128 therapy
129 transcriptional silencing
130 translational applications
131 treatment
132 tumor biology
133 tumor suppressor gene
134 tumor supressor gene
135 un
136 up-regulates gene expression
137 validation
138 schema:name Genome-wide methylation and expression profiling identifies promoter characteristics affecting demethylation-induced gene up-regulation in melanoma
139 schema:pagination 4
140 schema:productId N32b722ba82f24fe1bf02968f9316fc1b
141 N5c9ea2714e904c2696be75a1403e9b30
142 N85b76f0725824e42968277c51d25cdc8
143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035717233
144 https://doi.org/10.1186/1755-8794-3-4
145 schema:sdDatePublished 2022-09-02T15:53
146 schema:sdLicense https://scigraph.springernature.com/explorer/license/
147 schema:sdPublisher N2b1d1b38bcce4446b753cf9b9fae2f05
148 schema:url https://doi.org/10.1186/1755-8794-3-4
149 sgo:license sg:explorer/license/
150 sgo:sdDataset articles
151 rdf:type schema:ScholarlyArticle
152 N07df06ef6efe4316bc72287a99b06133 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Melanoma
154 rdf:type schema:DefinedTerm
155 N0867d33f4ee548c7a786d7dbd67dafeb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Azacitidine
157 rdf:type schema:DefinedTerm
158 N0ccc30c67d164312b6d3ff9a8d7ff320 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Female
160 rdf:type schema:DefinedTerm
161 N15ff1ca69b7246e4a58a70f9ce9f46df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Up-Regulation
163 rdf:type schema:DefinedTerm
164 N1c477e9e752c4bec9547e50d8d3fa5f5 rdf:first sg:person.01336516000.48
165 rdf:rest rdf:nil
166 N2b1d1b38bcce4446b753cf9b9fae2f05 schema:name Springer Nature - SN SciGraph project
167 rdf:type schema:Organization
168 N32b722ba82f24fe1bf02968f9316fc1b schema:name pubmed_id
169 schema:value 20144234
170 rdf:type schema:PropertyValue
171 N3799eb00fbeb48ccbd8bf4fd82eff0d0 rdf:first sg:person.053601122.01
172 rdf:rest N1c477e9e752c4bec9547e50d8d3fa5f5
173 N3fadd16889e8460daeed23cdffabe26f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Middle Aged
175 rdf:type schema:DefinedTerm
176 N4509f3724278453889752d5254b89167 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Antimetabolites, Antineoplastic
178 rdf:type schema:DefinedTerm
179 N4eb825d6e6124b43b25f9ed805987795 rdf:first sg:person.01004621262.38
180 rdf:rest Ne3211d7511e14bbcbecbefce1c4ff2f7
181 N5c9ea2714e904c2696be75a1403e9b30 schema:name dimensions_id
182 schema:value pub.1035717233
183 rdf:type schema:PropertyValue
184 N6cf70d19be1d4a57bb27c2fb902fa427 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name DNA Methylation
186 rdf:type schema:DefinedTerm
187 N73842cae92c54a139a16c4ef4db6e9dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Promoter Regions, Genetic
189 rdf:type schema:DefinedTerm
190 N80ef5c375f6a413db8afd56e41093be1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name DNA Modification Methylases
192 rdf:type schema:DefinedTerm
193 N85b76f0725824e42968277c51d25cdc8 schema:name doi
194 schema:value 10.1186/1755-8794-3-4
195 rdf:type schema:PropertyValue
196 N934f52fb757547599de5971c0e7cd2e4 schema:issueNumber 1
197 rdf:type schema:PublicationIssue
198 N9905a639b8fe4fefb7897c23412b792d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
199 schema:name Gene Expression Profiling
200 rdf:type schema:DefinedTerm
201 N9de0256fe6f548f5a89cb7c183aec939 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
202 schema:name Decitabine
203 rdf:type schema:DefinedTerm
204 Na9be3cccade644a98c3e270ef1965cc9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
205 schema:name Genome, Human
206 rdf:type schema:DefinedTerm
207 Naaccf93d5f924986afdc0aa6e82f5de5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
208 schema:name CpG Islands
209 rdf:type schema:DefinedTerm
210 Nc2bd5f2e174d4d6cb02cc8750f120b48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
211 schema:name Aged
212 rdf:type schema:DefinedTerm
213 Ndabcc897016a46948b7235bae1d23fc5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
214 schema:name Male
215 rdf:type schema:DefinedTerm
216 Ndfd303bdad4745b6bad45e8a0277d6df schema:volumeNumber 3
217 rdf:type schema:PublicationVolume
218 Ne3211d7511e14bbcbecbefce1c4ff2f7 rdf:first sg:person.01274336166.95
219 rdf:rest N3799eb00fbeb48ccbd8bf4fd82eff0d0
220 Ne7d50d6514cb4f8ea8ad094d54a5db74 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
221 schema:name Enzyme Inhibitors
222 rdf:type schema:DefinedTerm
223 Neab39334eb0f47eda0eaa528e002d8f8 rdf:first sg:person.01142200502.29
224 rdf:rest N4eb825d6e6124b43b25f9ed805987795
225 Nf0f16324dae04d4d9c6c62db486685dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
226 schema:name Epigenesis, Genetic
227 rdf:type schema:DefinedTerm
228 Nf214fef5c78145a5a967f537adf533e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
229 schema:name Cell Line, Tumor
230 rdf:type schema:DefinedTerm
231 Nfc1c38dcc09d4c2fbc9bac807c8733ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
232 schema:name Tumor Suppressor Proteins
233 rdf:type schema:DefinedTerm
234 Nfcd370c4d4404727a5b9a053d2bd3ca8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
235 schema:name Humans
236 rdf:type schema:DefinedTerm
237 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
238 schema:name Biological Sciences
239 rdf:type schema:DefinedTerm
240 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
241 schema:name Genetics
242 rdf:type schema:DefinedTerm
243 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
244 schema:name Medical and Health Sciences
245 rdf:type schema:DefinedTerm
246 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
247 schema:name Oncology and Carcinogenesis
248 rdf:type schema:DefinedTerm
249 sg:grant.2440220 http://pending.schema.org/fundedItem sg:pub.10.1186/1755-8794-3-4
250 rdf:type schema:MonetaryGrant
251 sg:grant.2681175 http://pending.schema.org/fundedItem sg:pub.10.1186/1755-8794-3-4
252 rdf:type schema:MonetaryGrant
253 sg:grant.2683700 http://pending.schema.org/fundedItem sg:pub.10.1186/1755-8794-3-4
254 rdf:type schema:MonetaryGrant
255 sg:journal.1039191 schema:issn 1755-8794
256 schema:name BMC Medical Genomics
257 schema:publisher Springer Nature
258 rdf:type schema:Periodical
259 sg:person.01004621262.38 schema:affiliation grid-institutes:grid.47100.32
260 schema:familyName Tran
261 schema:givenName Nam
262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004621262.38
263 rdf:type schema:Person
264 sg:person.01142200502.29 schema:affiliation grid-institutes:grid.47100.32
265 schema:familyName Rubinstein
266 schema:givenName Jill C
267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142200502.29
268 rdf:type schema:Person
269 sg:person.01274336166.95 schema:affiliation grid-institutes:grid.47100.32
270 schema:familyName Ma
271 schema:givenName Shuangge
272 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274336166.95
273 rdf:type schema:Person
274 sg:person.01336516000.48 schema:affiliation grid-institutes:grid.47100.32
275 schema:familyName Krauthammer
276 schema:givenName Michael
277 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336516000.48
278 rdf:type schema:Person
279 sg:person.053601122.01 schema:affiliation grid-institutes:grid.47100.32
280 schema:familyName Halaban
281 schema:givenName Ruth
282 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.053601122.01
283 rdf:type schema:Person
284 sg:pub.10.1007/s00277-005-0013-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034254392
285 https://doi.org/10.1007/s00277-005-0013-0
286 rdf:type schema:CreativeWork
287 sg:pub.10.1038/30613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004657867
288 https://doi.org/10.1038/30613
289 rdf:type schema:CreativeWork
290 sg:pub.10.1038/ng1990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034474001
291 https://doi.org/10.1038/ng1990
292 rdf:type schema:CreativeWork
293 sg:pub.10.1038/onc.2009.122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003877309
294 https://doi.org/10.1038/onc.2009.122
295 rdf:type schema:CreativeWork
296 sg:pub.10.1186/1471-2164-10-223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021763896
297 https://doi.org/10.1186/1471-2164-10-223
298 rdf:type schema:CreativeWork
299 grid-institutes:grid.47100.32 schema:alternateName Department of Dermatology, Yale University, 06520, New Haven, CT, USA
300 Department of Pathology, Yale University, 06520, New Haven, CT, USA
301 Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, 06520, New Haven, CT, USA
302 School of Public Health, Yale University, 06520, New Haven, CT, USA
303 schema:name Department of Dermatology, Yale University, 06520, New Haven, CT, USA
304 Department of Pathology, Yale University, 06520, New Haven, CT, USA
305 Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, 06520, New Haven, CT, USA
306 School of Public Health, Yale University, 06520, New Haven, CT, USA
307 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...