Quantitative dynamics of triacylglycerol accumulation in microalgae populations at single-cell resolution revealed by Raman microspectroscopy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Tingting Wang, Yuetong Ji, Yun Wang, Jing Jia, Jing Li, Shi Huang, Danxiang Han, Qiang Hu, Wei E Huang, Jian Xu

ABSTRACT

BACKGROUND: Rapid, real-time and label-free measurement of the cellular contents of biofuel molecules such as triacylglycerol (TAG) in populations at single-cell resolution are important for bioprocess control and understanding of the population heterogeneity. Raman microspectroscopy can directly detect the changes of metabolite profile in a cell and thus can potentially serve these purposes. RESULTS: Single-cell Raman spectra (SCRS) of the unicellular oleaginous microalgae Nannochloropsis oceanica from the cultures under nitrogen depletion (TAG-producing condition) and nitrogen repletion (non-TAG-producing condition) were sampled at eight time points during the first 96 hours upon the onset of nitrogen depletion. Single N. oceanica cells were captured by a 532-nm laser and the SCRS were acquired by the same laser within one second per cell. Using chemometric methods, the SCRS were able to discriminate cells between nitrogen-replete and nitrogen-depleted conditions at as early as 6 hours with >93.3% accuracy, and among the eight time points under nitrogen depletion with >90.4% accuracy. Quantitative prediction of TAG content in single cells was achieved and validated via SCRS and liquid chromatography-mass spectrometry (LC-MS) analysis at population level. SCRS revealed the dynamics of heterogeneity in TAG production among cells in each isogenic population. A significant negative correlation between TAG content and lipid unsaturation degree in individual microalgae cells was observed. CONCLUSIONS: Our results show that SCRS can serve as a label-free and non-invasive proxy for quantitatively tracking and screening cellular TAG content in real-time at single-cell level. Phenotypic comparison of single cells via SCRS should also help investigating the mechanisms of functional heterogeneity within a cellular population. More... »

PAGES

58

References to SciGraph publications

  • 2006-08. Microbial cell individuality and the underlying sources of heterogeneity in NATURE REVIEWS MICROBIOLOGY
  • 2010-09-17. The role of physiological heterogeneity in microbial population behavior in NATURE CHEMICAL BIOLOGY
  • 2005-09. Regulated cell-to-cell variation in a cell-fate decision system in NATURE
  • 2010-09-09. Functional roles for noise in genetic circuits in NATURE
  • 1983. The multivariate calibration problem in chemistry solved by the PLS method in MATRIX PENCILS
  • 2009-12. Triacylglycerol accumulation and profiling in the model diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum (Baccilariophyceae) during starvation in JOURNAL OF APPLIED PHYCOLOGY
  • 2012-08. Exploiting diversity and synthetic biology for the production of algal biofuels in NATURE
  • 2008-10. Liquid seaweed extracts identified using 1H NMR profiles in JOURNAL OF APPLIED PHYCOLOGY
  • 2013-12. Real-time understanding of lignocellulosic bioethanol fermentation by Raman spectroscopy in BIOTECHNOLOGY FOR BIOFUELS
  • 2011. Establishing Oleaginous Microalgae Research Models for Consolidated Bioprocessing of Solar Energy in BIOTECHNOLOGY IN CHINA III: BIOFUELS AND BIOENERGY
  • 2008-12. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2010-08. Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis in ANALYTICAL AND BIOANALYTICAL CHEMISTRY
  • 2012-04. Rapid resonance Raman microspectroscopy to probe carbon dioxide fixation by single cells in microbial communities in THE ISME JOURNAL
  • 2010-03. RNA-Seq analysis to capture the transcriptome landscape of a single cell in NATURE PROTOCOLS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1754-6834-7-58

    DOI

    http://dx.doi.org/10.1186/1754-6834-7-58

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1010497314

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/24716544


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Qingdao Institute of Bioenergy and Bioprocess Technology", 
              "id": "https://www.grid.ac/institutes/grid.458500.c", 
              "name": [
                "Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, 266101, Qingdao, Shandong, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Tingting", 
            "id": "sg:person.01131627765.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131627765.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Qingdao Institute of Bioenergy and Bioprocess Technology", 
              "id": "https://www.grid.ac/institutes/grid.458500.c", 
              "name": [
                "Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, 266101, Qingdao, Shandong, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ji", 
            "givenName": "Yuetong", 
            "id": "sg:person.0742050462.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742050462.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Qingdao Institute of Bioenergy and Bioprocess Technology", 
              "id": "https://www.grid.ac/institutes/grid.458500.c", 
              "name": [
                "Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, 266101, Qingdao, Shandong, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Yun", 
            "id": "sg:person.0606104076.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606104076.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Qingdao Institute of Bioenergy and Bioprocess Technology", 
              "id": "https://www.grid.ac/institutes/grid.458500.c", 
              "name": [
                "Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, 266101, Qingdao, Shandong, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jia", 
            "givenName": "Jing", 
            "id": "sg:person.0654217276.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654217276.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Qingdao Institute of Bioenergy and Bioprocess Technology", 
              "id": "https://www.grid.ac/institutes/grid.458500.c", 
              "name": [
                "Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, 266101, Qingdao, Shandong, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Jing", 
            "id": "sg:person.01005604150.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005604150.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Qingdao Institute of Bioenergy and Bioprocess Technology", 
              "id": "https://www.grid.ac/institutes/grid.458500.c", 
              "name": [
                "Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, 266101, Qingdao, Shandong, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Shi", 
            "id": "sg:person.01074626724.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074626724.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Arizona State University", 
              "id": "https://www.grid.ac/institutes/grid.215654.1", 
              "name": [
                "Laboratory for Algae Research and Biotechnology, College of Technology and Innovation, Arizona State University, 7417 E. Unity Avenue, 85212, Mesa, Arizona, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Han", 
            "givenName": "Danxiang", 
            "id": "sg:person.01350320254.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350320254.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Arizona State University", 
              "id": "https://www.grid.ac/institutes/grid.215654.1", 
              "name": [
                "Laboratory for Algae Research and Biotechnology, College of Technology and Innovation, Arizona State University, 7417 E. Unity Avenue, 85212, Mesa, Arizona, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hu", 
            "givenName": "Qiang", 
            "id": "sg:person.01123504354.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123504354.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Sheffield", 
              "id": "https://www.grid.ac/institutes/grid.11835.3e", 
              "name": [
                "Kroto Research Institute, University of Sheffield, Broad Lane, S3 7HQ, Sheffield, South Yorkshire, United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Wei E", 
            "id": "sg:person.011643105400.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011643105400.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Qingdao Institute of Bioenergy and Bioprocess Technology", 
              "id": "https://www.grid.ac/institutes/grid.458500.c", 
              "name": [
                "Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, 266101, Qingdao, Shandong, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Jian", 
            "id": "sg:person.01320335040.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320335040.67"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bfb0062108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001901851", 
              "https://doi.org/10.1007/bfb0062108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1009043108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001967538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.22617", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002796374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio.436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003940702", 
              "https://doi.org/10.1038/nchembio.436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2009.236", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004430683", 
              "https://doi.org/10.1038/nprot.2009.236"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jphotobiol.2005.11.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006072716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006717915", 
              "https://doi.org/10.1038/nature09326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006717915", 
              "https://doi.org/10.1038/nature09326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1754-6834-6-28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008192503", 
              "https://doi.org/10.1186/1754-6834-6-28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5740/jaoacint.sge_mazurek", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008737403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1004094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008979903"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/10_2011_122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010482706", 
              "https://doi.org/10.1007/10_2011_122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1460", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012577803", 
              "https://doi.org/10.1038/nrmicro1460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1460", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012577803", 
              "https://doi.org/10.1038/nrmicro1460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2011.150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015482346", 
              "https://doi.org/10.1038/ismej.2011.150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1074/jbc.m110.157230", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015939995"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2009.06.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018737558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03998", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019226832", 
              "https://doi.org/10.1038/nature03998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03998", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019226832", 
              "https://doi.org/10.1038/nature03998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03998", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019226832", 
              "https://doi.org/10.1038/nature03998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.copbio.2010.01.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021650354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1574-6968.2007.00861.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024202042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11479", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025768210", 
              "https://doi.org/10.1038/nature11479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10811-007-9232-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026197868", 
              "https://doi.org/10.1007/s10811-007-9232-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-008-1681-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027805324", 
              "https://doi.org/10.1007/s00253-008-1681-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-008-1681-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027805324", 
              "https://doi.org/10.1007/s00253-008-1681-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.0022-3646.1993.00620.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027919006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac403107p", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029454775"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10811-008-9400-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031599912", 
              "https://doi.org/10.1007/s10811-008-9400-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apenergy.2012.08.047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031690515"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac049753k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032167069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac049753k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032167069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1097-0290(19991020)65:2<151::aid-bit4>3.0.co;2-v", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032909842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-313x.2008.03492.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034214799"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00216-010-3566-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037442335", 
              "https://doi.org/10.1007/s00216-010-3566-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00216-010-3566-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037442335", 
              "https://doi.org/10.1007/s00216-010-3566-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.24568", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037788792"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0169-7439(01)00155-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041387192"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/ec.00363-12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042989526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0065-2164(10)70005-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043295400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1758-2229.2008.00002.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043523610"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mimet.2009.01.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043815090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.plipres.2006.01.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044869482"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tibtech.2010.03.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045093529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev-chembioeng-062011-081056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049472989"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.copbio.2011.11.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052396493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac302250t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055003366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac3028118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055003580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac7022348", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055069585"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac7022348", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055069585"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ef060657r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055476881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ef060657r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055476881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tit.2003.813506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061649838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1189003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062461753"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1366/000370203321165133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065256056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1366/000370203321165133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065256056"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-12", 
        "datePublishedReg": "2014-12-01", 
        "description": "BACKGROUND: Rapid, real-time and label-free measurement of the cellular contents of biofuel molecules such as triacylglycerol (TAG) in populations at single-cell resolution are important for bioprocess control and understanding of the population heterogeneity. Raman microspectroscopy can directly detect the changes of metabolite profile in a cell and thus can potentially serve these purposes.\nRESULTS: Single-cell Raman spectra (SCRS) of the unicellular oleaginous microalgae Nannochloropsis oceanica from the cultures under nitrogen depletion (TAG-producing condition) and nitrogen repletion (non-TAG-producing condition) were sampled at eight time points during the first 96\u00a0hours upon the onset of nitrogen depletion. Single N. oceanica cells were captured by a 532-nm laser and the SCRS were acquired by the same laser within one second per cell. Using chemometric methods, the SCRS were able to discriminate cells between nitrogen-replete and nitrogen-depleted conditions at as early as 6\u00a0hours with >93.3% accuracy, and among the eight time points under nitrogen depletion with >90.4% accuracy. Quantitative prediction of TAG content in single cells was achieved and validated via SCRS and liquid chromatography-mass spectrometry (LC-MS) analysis at population level. SCRS revealed the dynamics of heterogeneity in TAG production among cells in each isogenic population. A significant negative correlation between TAG content and lipid unsaturation degree in individual microalgae cells was observed.\nCONCLUSIONS: Our results show that SCRS can serve as a label-free and non-invasive proxy for quantitatively tracking and screening cellular TAG content in real-time at single-cell level. Phenotypic comparison of single cells via SCRS should also help investigating the mechanisms of functional heterogeneity within a cellular population.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/1754-6834-7-58", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2783193", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7200559", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1039046", 
            "issn": [
              "1754-6834"
            ], 
            "name": "Biotechnology for Biofuels", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "name": "Quantitative dynamics of triacylglycerol accumulation in microalgae populations at single-cell resolution revealed by Raman microspectroscopy", 
        "pagination": "58", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "32027bea4122208b23acb2c7b91d4bb0e0305c721773ceabbdac690ca69066ed"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "24716544"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101316935"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1754-6834-7-58"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1010497314"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1754-6834-7-58", 
          "https://app.dimensions.ai/details/publication/pub.1010497314"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T23:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000511.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2F1754-6834-7-58"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1754-6834-7-58'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1754-6834-7-58'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1754-6834-7-58'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1754-6834-7-58'


     

    This table displays all metadata directly associated to this object as RDF triples.

    293 TRIPLES      21 PREDICATES      75 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1754-6834-7-58 schema:about anzsrc-for:06
    2 anzsrc-for:0601
    3 schema:author Nef5e420f7fb2459888c9c549a5bd4286
    4 schema:citation sg:pub.10.1007/10_2011_122
    5 sg:pub.10.1007/bfb0062108
    6 sg:pub.10.1007/s00216-010-3566-2
    7 sg:pub.10.1007/s00253-008-1681-1
    8 sg:pub.10.1007/s10811-007-9232-1
    9 sg:pub.10.1007/s10811-008-9400-y
    10 sg:pub.10.1038/ismej.2011.150
    11 sg:pub.10.1038/nature03998
    12 sg:pub.10.1038/nature09326
    13 sg:pub.10.1038/nature11479
    14 sg:pub.10.1038/nchembio.436
    15 sg:pub.10.1038/nprot.2009.236
    16 sg:pub.10.1038/nrmicro1460
    17 sg:pub.10.1186/1754-6834-6-28
    18 https://doi.org/10.1002/(sici)1097-0290(19991020)65:2<151::aid-bit4>3.0.co;2-v
    19 https://doi.org/10.1002/bit.22617
    20 https://doi.org/10.1002/bit.24568
    21 https://doi.org/10.1016/j.apenergy.2012.08.047
    22 https://doi.org/10.1016/j.biortech.2009.06.004
    23 https://doi.org/10.1016/j.copbio.2010.01.002
    24 https://doi.org/10.1016/j.copbio.2011.11.019
    25 https://doi.org/10.1016/j.jphotobiol.2005.11.002
    26 https://doi.org/10.1016/j.mimet.2009.01.001
    27 https://doi.org/10.1016/j.plipres.2006.01.001
    28 https://doi.org/10.1016/j.tibtech.2010.03.002
    29 https://doi.org/10.1016/s0065-2164(10)70005-8
    30 https://doi.org/10.1016/s0169-7439(01)00155-1
    31 https://doi.org/10.1021/ac049753k
    32 https://doi.org/10.1021/ac302250t
    33 https://doi.org/10.1021/ac3028118
    34 https://doi.org/10.1021/ac403107p
    35 https://doi.org/10.1021/ac7022348
    36 https://doi.org/10.1021/ef060657r
    37 https://doi.org/10.1073/pnas.1009043108
    38 https://doi.org/10.1074/jbc.m110.157230
    39 https://doi.org/10.1109/tit.2003.813506
    40 https://doi.org/10.1111/j.0022-3646.1993.00620.x
    41 https://doi.org/10.1111/j.1365-313x.2008.03492.x
    42 https://doi.org/10.1111/j.1574-6968.2007.00861.x
    43 https://doi.org/10.1111/j.1758-2229.2008.00002.x
    44 https://doi.org/10.1126/science.1189003
    45 https://doi.org/10.1128/ec.00363-12
    46 https://doi.org/10.1146/annurev-chembioeng-062011-081056
    47 https://doi.org/10.1366/000370203321165133
    48 https://doi.org/10.1371/journal.pgen.1004094
    49 https://doi.org/10.5740/jaoacint.sge_mazurek
    50 schema:datePublished 2014-12
    51 schema:datePublishedReg 2014-12-01
    52 schema:description BACKGROUND: Rapid, real-time and label-free measurement of the cellular contents of biofuel molecules such as triacylglycerol (TAG) in populations at single-cell resolution are important for bioprocess control and understanding of the population heterogeneity. Raman microspectroscopy can directly detect the changes of metabolite profile in a cell and thus can potentially serve these purposes. RESULTS: Single-cell Raman spectra (SCRS) of the unicellular oleaginous microalgae Nannochloropsis oceanica from the cultures under nitrogen depletion (TAG-producing condition) and nitrogen repletion (non-TAG-producing condition) were sampled at eight time points during the first 96 hours upon the onset of nitrogen depletion. Single N. oceanica cells were captured by a 532-nm laser and the SCRS were acquired by the same laser within one second per cell. Using chemometric methods, the SCRS were able to discriminate cells between nitrogen-replete and nitrogen-depleted conditions at as early as 6 hours with >93.3% accuracy, and among the eight time points under nitrogen depletion with >90.4% accuracy. Quantitative prediction of TAG content in single cells was achieved and validated via SCRS and liquid chromatography-mass spectrometry (LC-MS) analysis at population level. SCRS revealed the dynamics of heterogeneity in TAG production among cells in each isogenic population. A significant negative correlation between TAG content and lipid unsaturation degree in individual microalgae cells was observed. CONCLUSIONS: Our results show that SCRS can serve as a label-free and non-invasive proxy for quantitatively tracking and screening cellular TAG content in real-time at single-cell level. Phenotypic comparison of single cells via SCRS should also help investigating the mechanisms of functional heterogeneity within a cellular population.
    53 schema:genre research_article
    54 schema:inLanguage en
    55 schema:isAccessibleForFree true
    56 schema:isPartOf Nabd8af03b4374e1e836c13e82b3354de
    57 Nba7f46544ba349b2ae7baacd9e8a2929
    58 sg:journal.1039046
    59 schema:name Quantitative dynamics of triacylglycerol accumulation in microalgae populations at single-cell resolution revealed by Raman microspectroscopy
    60 schema:pagination 58
    61 schema:productId N0b25b247a50045479906a0b2add337d0
    62 N357ccf6c5ae141a4843608bd38cd64bf
    63 N4ad3fb4f14174c22949ad0edbdfabda5
    64 Nc0b7ca4bf3564878aaa0d0fc93c5de21
    65 Nd16bdc0322d5407d94c25208c42de30e
    66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010497314
    67 https://doi.org/10.1186/1754-6834-7-58
    68 schema:sdDatePublished 2019-04-10T23:24
    69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    70 schema:sdPublisher Ne87dce35604c410b9334d88cbc16236c
    71 schema:url http://link.springer.com/10.1186%2F1754-6834-7-58
    72 sgo:license sg:explorer/license/
    73 sgo:sdDataset articles
    74 rdf:type schema:ScholarlyArticle
    75 N084dde7630384319aa1b5f0c624378cd rdf:first sg:person.01320335040.67
    76 rdf:rest rdf:nil
    77 N0b25b247a50045479906a0b2add337d0 schema:name pubmed_id
    78 schema:value 24716544
    79 rdf:type schema:PropertyValue
    80 N157e3f8f09f04789b858fa93078c969c rdf:first sg:person.01005604150.07
    81 rdf:rest N7b32bd1f6666467398bdaac1f3e1990e
    82 N357ccf6c5ae141a4843608bd38cd64bf schema:name nlm_unique_id
    83 schema:value 101316935
    84 rdf:type schema:PropertyValue
    85 N4ad3fb4f14174c22949ad0edbdfabda5 schema:name dimensions_id
    86 schema:value pub.1010497314
    87 rdf:type schema:PropertyValue
    88 N4f0ab60a970747bfbbbc444a681220a4 rdf:first sg:person.0742050462.53
    89 rdf:rest N8a5827dc27db49d087958033153cdc9d
    90 N7b32bd1f6666467398bdaac1f3e1990e rdf:first sg:person.01074626724.22
    91 rdf:rest Neb701e791d684103acaab865bb9aa530
    92 N8a5827dc27db49d087958033153cdc9d rdf:first sg:person.0606104076.44
    93 rdf:rest N8e0f8236f8074ab38f01ad9bd54551c6
    94 N8e0f8236f8074ab38f01ad9bd54551c6 rdf:first sg:person.0654217276.34
    95 rdf:rest N157e3f8f09f04789b858fa93078c969c
    96 N949127bfa41a41b59fe4fa27269ba332 rdf:first sg:person.01123504354.25
    97 rdf:rest Na0722b1bb7974e06be2272097bf1e548
    98 Na0722b1bb7974e06be2272097bf1e548 rdf:first sg:person.011643105400.46
    99 rdf:rest N084dde7630384319aa1b5f0c624378cd
    100 Nabd8af03b4374e1e836c13e82b3354de schema:volumeNumber 7
    101 rdf:type schema:PublicationVolume
    102 Nba7f46544ba349b2ae7baacd9e8a2929 schema:issueNumber 1
    103 rdf:type schema:PublicationIssue
    104 Nc0b7ca4bf3564878aaa0d0fc93c5de21 schema:name doi
    105 schema:value 10.1186/1754-6834-7-58
    106 rdf:type schema:PropertyValue
    107 Nd16bdc0322d5407d94c25208c42de30e schema:name readcube_id
    108 schema:value 32027bea4122208b23acb2c7b91d4bb0e0305c721773ceabbdac690ca69066ed
    109 rdf:type schema:PropertyValue
    110 Ne87dce35604c410b9334d88cbc16236c schema:name Springer Nature - SN SciGraph project
    111 rdf:type schema:Organization
    112 Neb701e791d684103acaab865bb9aa530 rdf:first sg:person.01350320254.07
    113 rdf:rest N949127bfa41a41b59fe4fa27269ba332
    114 Nef5e420f7fb2459888c9c549a5bd4286 rdf:first sg:person.01131627765.27
    115 rdf:rest N4f0ab60a970747bfbbbc444a681220a4
    116 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Biological Sciences
    118 rdf:type schema:DefinedTerm
    119 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Biochemistry and Cell Biology
    121 rdf:type schema:DefinedTerm
    122 sg:grant.2783193 http://pending.schema.org/fundedItem sg:pub.10.1186/1754-6834-7-58
    123 rdf:type schema:MonetaryGrant
    124 sg:grant.7200559 http://pending.schema.org/fundedItem sg:pub.10.1186/1754-6834-7-58
    125 rdf:type schema:MonetaryGrant
    126 sg:journal.1039046 schema:issn 1754-6834
    127 schema:name Biotechnology for Biofuels
    128 rdf:type schema:Periodical
    129 sg:person.01005604150.07 schema:affiliation https://www.grid.ac/institutes/grid.458500.c
    130 schema:familyName Li
    131 schema:givenName Jing
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005604150.07
    133 rdf:type schema:Person
    134 sg:person.01074626724.22 schema:affiliation https://www.grid.ac/institutes/grid.458500.c
    135 schema:familyName Huang
    136 schema:givenName Shi
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074626724.22
    138 rdf:type schema:Person
    139 sg:person.01123504354.25 schema:affiliation https://www.grid.ac/institutes/grid.215654.1
    140 schema:familyName Hu
    141 schema:givenName Qiang
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123504354.25
    143 rdf:type schema:Person
    144 sg:person.01131627765.27 schema:affiliation https://www.grid.ac/institutes/grid.458500.c
    145 schema:familyName Wang
    146 schema:givenName Tingting
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131627765.27
    148 rdf:type schema:Person
    149 sg:person.011643105400.46 schema:affiliation https://www.grid.ac/institutes/grid.11835.3e
    150 schema:familyName Huang
    151 schema:givenName Wei E
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011643105400.46
    153 rdf:type schema:Person
    154 sg:person.01320335040.67 schema:affiliation https://www.grid.ac/institutes/grid.458500.c
    155 schema:familyName Xu
    156 schema:givenName Jian
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320335040.67
    158 rdf:type schema:Person
    159 sg:person.01350320254.07 schema:affiliation https://www.grid.ac/institutes/grid.215654.1
    160 schema:familyName Han
    161 schema:givenName Danxiang
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350320254.07
    163 rdf:type schema:Person
    164 sg:person.0606104076.44 schema:affiliation https://www.grid.ac/institutes/grid.458500.c
    165 schema:familyName Wang
    166 schema:givenName Yun
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606104076.44
    168 rdf:type schema:Person
    169 sg:person.0654217276.34 schema:affiliation https://www.grid.ac/institutes/grid.458500.c
    170 schema:familyName Jia
    171 schema:givenName Jing
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654217276.34
    173 rdf:type schema:Person
    174 sg:person.0742050462.53 schema:affiliation https://www.grid.ac/institutes/grid.458500.c
    175 schema:familyName Ji
    176 schema:givenName Yuetong
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742050462.53
    178 rdf:type schema:Person
    179 sg:pub.10.1007/10_2011_122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010482706
    180 https://doi.org/10.1007/10_2011_122
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/bfb0062108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001901851
    183 https://doi.org/10.1007/bfb0062108
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/s00216-010-3566-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037442335
    186 https://doi.org/10.1007/s00216-010-3566-2
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/s00253-008-1681-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027805324
    189 https://doi.org/10.1007/s00253-008-1681-1
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/s10811-007-9232-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026197868
    192 https://doi.org/10.1007/s10811-007-9232-1
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/s10811-008-9400-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1031599912
    195 https://doi.org/10.1007/s10811-008-9400-y
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/ismej.2011.150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015482346
    198 https://doi.org/10.1038/ismej.2011.150
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/nature03998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019226832
    201 https://doi.org/10.1038/nature03998
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/nature09326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006717915
    204 https://doi.org/10.1038/nature09326
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/nature11479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025768210
    207 https://doi.org/10.1038/nature11479
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/nchembio.436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003940702
    210 https://doi.org/10.1038/nchembio.436
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/nprot.2009.236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004430683
    213 https://doi.org/10.1038/nprot.2009.236
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/nrmicro1460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012577803
    216 https://doi.org/10.1038/nrmicro1460
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1186/1754-6834-6-28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008192503
    219 https://doi.org/10.1186/1754-6834-6-28
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1002/(sici)1097-0290(19991020)65:2<151::aid-bit4>3.0.co;2-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1032909842
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1002/bit.22617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002796374
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1002/bit.24568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037788792
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1016/j.apenergy.2012.08.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031690515
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1016/j.biortech.2009.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018737558
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1016/j.copbio.2010.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021650354
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1016/j.copbio.2011.11.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052396493
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1016/j.jphotobiol.2005.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006072716
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1016/j.mimet.2009.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043815090
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1016/j.plipres.2006.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044869482
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1016/j.tibtech.2010.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045093529
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1016/s0065-2164(10)70005-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043295400
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1016/s0169-7439(01)00155-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041387192
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1021/ac049753k schema:sameAs https://app.dimensions.ai/details/publication/pub.1032167069
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1021/ac302250t schema:sameAs https://app.dimensions.ai/details/publication/pub.1055003366
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1021/ac3028118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055003580
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1021/ac403107p schema:sameAs https://app.dimensions.ai/details/publication/pub.1029454775
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1021/ac7022348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055069585
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1021/ef060657r schema:sameAs https://app.dimensions.ai/details/publication/pub.1055476881
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1073/pnas.1009043108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001967538
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1074/jbc.m110.157230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015939995
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1109/tit.2003.813506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061649838
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1111/j.0022-3646.1993.00620.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027919006
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1111/j.1365-313x.2008.03492.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034214799
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1111/j.1574-6968.2007.00861.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024202042
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1111/j.1758-2229.2008.00002.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043523610
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1126/science.1189003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062461753
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1128/ec.00363-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042989526
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1146/annurev-chembioeng-062011-081056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049472989
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1366/000370203321165133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065256056
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1371/journal.pgen.1004094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008979903
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.5740/jaoacint.sge_mazurek schema:sameAs https://app.dimensions.ai/details/publication/pub.1008737403
    284 rdf:type schema:CreativeWork
    285 https://www.grid.ac/institutes/grid.11835.3e schema:alternateName University of Sheffield
    286 schema:name Kroto Research Institute, University of Sheffield, Broad Lane, S3 7HQ, Sheffield, South Yorkshire, United Kingdom
    287 rdf:type schema:Organization
    288 https://www.grid.ac/institutes/grid.215654.1 schema:alternateName Arizona State University
    289 schema:name Laboratory for Algae Research and Biotechnology, College of Technology and Innovation, Arizona State University, 7417 E. Unity Avenue, 85212, Mesa, Arizona, USA
    290 rdf:type schema:Organization
    291 https://www.grid.ac/institutes/grid.458500.c schema:alternateName Qingdao Institute of Bioenergy and Bioprocess Technology
    292 schema:name Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, 266101, Qingdao, Shandong, China
    293 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...