Effect of mechanical disruption on the effectiveness of three reactors used for dilute acid pretreatment of corn stover Part 2: ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Peter N Ciesielski, Wei Wang, Xiaowen Chen, Todd B Vinzant, Melvin P Tucker, Stephen R Decker, Michael E Himmel, David K Johnson, Bryon S Donohoe

ABSTRACT

BACKGROUND: Lignocellulosic biomass is a renewable, naturally mass-produced form of stored solar energy. Thermochemical pretreatment processes have been developed to address the challenge of biomass recalcitrance, however the optimization, cost reduction, and scalability of these processes remain as obstacles to the adoption of biofuel production processes at the industrial scale. In this study, we demonstrate that the type of reactor in which pretreatment is carried out can profoundly alter the micro- and nanostructure of the pretreated materials and dramatically affect the subsequent efficiency, and thus cost, of enzymatic conversion of cellulose. RESULTS: Multi-scale microscopy and quantitative image analysis was used to investigate the impact of different biomass pretreatment reactor configurations on plant cell wall structure. We identify correlations between enzymatic digestibility and geometric descriptors derived from the image data. Corn stover feedstock was pretreated under the same nominal conditions for dilute acid pretreatment (2.0 wt% H2SO4, 160°C, 5 min) using three representative types of reactors: ZipperClave® (ZC), steam gun (SG), and horizontal screw (HS) reactors. After 96 h of enzymatic digestion, biomass treated in the SG and HS reactors achieved much higher cellulose conversions, 88% and 95%, respectively, compared to the conversion obtained using the ZC reactor (68%). Imaging at the micro- and nanoscales revealed that the superior performance of the SG and HS reactors could be explained by reduced particle size, cellular dislocation, increased surface roughness, delamination, and nanofibrillation generated within the biomass particles during pretreatment. CONCLUSIONS: Increased cellular dislocation, surface roughness, delamination, and nanofibrillation revealed by direct observation of the micro- and nanoscale change in accessibility explains the superior performance of reactors that augment pretreatment with physical energy. More... »

PAGES

47

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1754-6834-7-47

DOI

http://dx.doi.org/10.1186/1754-6834-7-47

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009909616

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24690534


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Renewable Energy Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.419357.d", 
          "name": [
            "Biosciences Center, National Renewable Energy Laboratory, Denver West Parkway, 15013, 80401, Golden CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ciesielski", 
        "givenName": "Peter N", 
        "id": "sg:person.01172343630.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172343630.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Renewable Energy Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.419357.d", 
          "name": [
            "Biosciences Center, National Renewable Energy Laboratory, Denver West Parkway, 15013, 80401, Golden CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Wei", 
        "id": "sg:person.01367615736.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367615736.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Renewable Energy Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.419357.d", 
          "name": [
            "National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Xiaowen", 
        "id": "sg:person.01035244241.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035244241.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Renewable Energy Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.419357.d", 
          "name": [
            "Biosciences Center, National Renewable Energy Laboratory, Denver West Parkway, 15013, 80401, Golden CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vinzant", 
        "givenName": "Todd B", 
        "id": "sg:person.01057774253.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057774253.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Renewable Energy Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.419357.d", 
          "name": [
            "National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tucker", 
        "givenName": "Melvin P", 
        "id": "sg:person.01262611020.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262611020.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Renewable Energy Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.419357.d", 
          "name": [
            "Biosciences Center, National Renewable Energy Laboratory, Denver West Parkway, 15013, 80401, Golden CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Decker", 
        "givenName": "Stephen R", 
        "id": "sg:person.0603462161.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603462161.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Renewable Energy Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.419357.d", 
          "name": [
            "Biosciences Center, National Renewable Energy Laboratory, Denver West Parkway, 15013, 80401, Golden CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Himmel", 
        "givenName": "Michael E", 
        "id": "sg:person.01047423170.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047423170.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Renewable Energy Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.419357.d", 
          "name": [
            "Biosciences Center, National Renewable Energy Laboratory, Denver West Parkway, 15013, 80401, Golden CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Johnson", 
        "givenName": "David K", 
        "id": "sg:person.0711202510.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711202510.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Renewable Energy Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.419357.d", 
          "name": [
            "Biosciences Center, National Renewable Energy Laboratory, Denver West Parkway, 15013, 80401, Golden CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Donohoe", 
        "givenName": "Bryon S", 
        "id": "sg:person.0627317253.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627317253.88"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.compag.2008.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001867016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1431927606060028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008870669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1431927606060028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008870669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcatb.2011.10.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011235416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00397-009-0382-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015931718", 
          "https://doi.org/10.1007/s00397-009-0382-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00397-009-0382-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015931718", 
          "https://doi.org/10.1007/s00397-009-0382-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00397-009-0382-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015931718", 
          "https://doi.org/10.1007/s00397-009-0382-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.21408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018249745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2008.06.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024415061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-9422(01)00049-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028411775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.21959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035134781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035817137", 
          "https://doi.org/10.1038/nmeth.2089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2011.03.092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043617148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0ee00574f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044247120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/474s06a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048978711", 
          "https://doi.org/10.1038/474s06a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1137016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049275105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2011.07.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053533088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/anbo.1996.0127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054485707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie900029v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055644065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie900029v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055644065"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: Lignocellulosic biomass is a renewable, naturally mass-produced form of stored solar energy. Thermochemical pretreatment processes have been developed to address the challenge of biomass recalcitrance, however the optimization, cost reduction, and scalability of these processes remain as obstacles to the adoption of biofuel production processes at the industrial scale. In this study, we demonstrate that the type of reactor in which pretreatment is carried out can profoundly alter the micro- and nanostructure of the pretreated materials and dramatically affect the subsequent efficiency, and thus cost, of enzymatic conversion of cellulose.\nRESULTS: Multi-scale microscopy and quantitative image analysis was used to investigate the impact of different biomass pretreatment reactor configurations on plant cell wall structure. We identify correlations between enzymatic digestibility and geometric descriptors derived from the image data. Corn stover feedstock was pretreated under the same nominal conditions for dilute acid pretreatment (2.0\u00a0wt% H2SO4, 160\u00b0C, 5\u00a0min) using three representative types of reactors: ZipperClave\u00ae (ZC), steam gun (SG), and horizontal screw (HS) reactors. After 96\u00a0h of enzymatic digestion, biomass treated in the SG and HS reactors achieved much higher cellulose conversions, 88% and 95%, respectively, compared to the conversion obtained using the ZC reactor (68%). Imaging at the micro- and nanoscales revealed that the superior performance of the SG and HS reactors could be explained by reduced particle size, cellular dislocation, increased surface roughness, delamination, and nanofibrillation generated within the biomass particles during pretreatment.\nCONCLUSIONS: Increased cellular dislocation, surface roughness, delamination, and nanofibrillation revealed by direct observation of the micro- and nanoscale change in accessibility explains the superior performance of reactors that augment pretreatment with physical energy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1754-6834-7-47", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4320992", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1039046", 
        "issn": [
          "1754-6834"
        ], 
        "name": "Biotechnology for Biofuels", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Effect of mechanical disruption on the effectiveness of three reactors used for dilute acid pretreatment of corn stover Part 2: morphological and structural substrate analysis", 
    "pagination": "47", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2f357a99b83a1e83bd7a1ecb5e81f1e3bdc1cfa2d8b331f668c3de68a86422c5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24690534"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101316935"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1754-6834-7-47"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009909616"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1754-6834-7-47", 
      "https://app.dimensions.ai/details/publication/pub.1009909616"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1754-6834-7-47"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1754-6834-7-47'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1754-6834-7-47'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1754-6834-7-47'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1754-6834-7-47'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      21 PREDICATES      45 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1754-6834-7-47 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author Nc0666541c7654a949a12b6fe0e812975
4 schema:citation sg:pub.10.1007/s00397-009-0382-8
5 sg:pub.10.1038/474s06a
6 sg:pub.10.1038/nmeth.2089
7 https://doi.org/10.1002/bit.21408
8 https://doi.org/10.1002/bit.21959
9 https://doi.org/10.1006/anbo.1996.0127
10 https://doi.org/10.1016/j.apcatb.2011.10.033
11 https://doi.org/10.1016/j.biortech.2008.06.070
12 https://doi.org/10.1016/j.biortech.2011.03.092
13 https://doi.org/10.1016/j.biortech.2011.07.051
14 https://doi.org/10.1016/j.compag.2008.02.007
15 https://doi.org/10.1016/s0031-9422(01)00049-8
16 https://doi.org/10.1017/s1431927606060028
17 https://doi.org/10.1021/ie900029v
18 https://doi.org/10.1039/c0ee00574f
19 https://doi.org/10.1126/science.1137016
20 schema:datePublished 2014-12
21 schema:datePublishedReg 2014-12-01
22 schema:description BACKGROUND: Lignocellulosic biomass is a renewable, naturally mass-produced form of stored solar energy. Thermochemical pretreatment processes have been developed to address the challenge of biomass recalcitrance, however the optimization, cost reduction, and scalability of these processes remain as obstacles to the adoption of biofuel production processes at the industrial scale. In this study, we demonstrate that the type of reactor in which pretreatment is carried out can profoundly alter the micro- and nanostructure of the pretreated materials and dramatically affect the subsequent efficiency, and thus cost, of enzymatic conversion of cellulose. RESULTS: Multi-scale microscopy and quantitative image analysis was used to investigate the impact of different biomass pretreatment reactor configurations on plant cell wall structure. We identify correlations between enzymatic digestibility and geometric descriptors derived from the image data. Corn stover feedstock was pretreated under the same nominal conditions for dilute acid pretreatment (2.0 wt% H2SO4, 160°C, 5 min) using three representative types of reactors: ZipperClave® (ZC), steam gun (SG), and horizontal screw (HS) reactors. After 96 h of enzymatic digestion, biomass treated in the SG and HS reactors achieved much higher cellulose conversions, 88% and 95%, respectively, compared to the conversion obtained using the ZC reactor (68%). Imaging at the micro- and nanoscales revealed that the superior performance of the SG and HS reactors could be explained by reduced particle size, cellular dislocation, increased surface roughness, delamination, and nanofibrillation generated within the biomass particles during pretreatment. CONCLUSIONS: Increased cellular dislocation, surface roughness, delamination, and nanofibrillation revealed by direct observation of the micro- and nanoscale change in accessibility explains the superior performance of reactors that augment pretreatment with physical energy.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf Nb737e7fa32ec4ffd9df0a96ec83ac788
27 Nf31743ca677149efbf4905276507ae0d
28 sg:journal.1039046
29 schema:name Effect of mechanical disruption on the effectiveness of three reactors used for dilute acid pretreatment of corn stover Part 2: morphological and structural substrate analysis
30 schema:pagination 47
31 schema:productId N0977e0c160ef4a63a7d94cf8988af702
32 N0d5f71901c97425096dfe8a34c6928ba
33 N9f8d13e24d6040999331b447aa9284b2
34 Nc5406140d70349c095b881097f342f12
35 Ne9673e67b1534b0a91de67ed1f71b88b
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009909616
37 https://doi.org/10.1186/1754-6834-7-47
38 schema:sdDatePublished 2019-04-10T19:56
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N8922369dc35646c5a7b705835c63fea5
41 schema:url http://link.springer.com/10.1186%2F1754-6834-7-47
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N01037ce1c392426a850e314cd40b8775 rdf:first sg:person.01047423170.73
46 rdf:rest Naed76a5c05454f9886e32a7b9deaab77
47 N05bbf65f2b484eaa9422524747e9c390 rdf:first sg:person.01057774253.58
48 rdf:rest Nf1369c51efd5416686578c87aef119d9
49 N0977e0c160ef4a63a7d94cf8988af702 schema:name readcube_id
50 schema:value 2f357a99b83a1e83bd7a1ecb5e81f1e3bdc1cfa2d8b331f668c3de68a86422c5
51 rdf:type schema:PropertyValue
52 N0d5f71901c97425096dfe8a34c6928ba schema:name pubmed_id
53 schema:value 24690534
54 rdf:type schema:PropertyValue
55 N408022b4e51b4e5c8dc67d8d70cb141b rdf:first sg:person.01367615736.64
56 rdf:rest Nf2021e4e87e045d9a75fdf111a231784
57 N8922369dc35646c5a7b705835c63fea5 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N9f8d13e24d6040999331b447aa9284b2 schema:name dimensions_id
60 schema:value pub.1009909616
61 rdf:type schema:PropertyValue
62 Naed76a5c05454f9886e32a7b9deaab77 rdf:first sg:person.0711202510.39
63 rdf:rest Ne539c4b40f654fd688794e32bddeb5e3
64 Nb737e7fa32ec4ffd9df0a96ec83ac788 schema:volumeNumber 7
65 rdf:type schema:PublicationVolume
66 Nbf07031dea0c4e2d8638e3fb01f4a242 rdf:first sg:person.0603462161.96
67 rdf:rest N01037ce1c392426a850e314cd40b8775
68 Nc0666541c7654a949a12b6fe0e812975 rdf:first sg:person.01172343630.79
69 rdf:rest N408022b4e51b4e5c8dc67d8d70cb141b
70 Nc5406140d70349c095b881097f342f12 schema:name doi
71 schema:value 10.1186/1754-6834-7-47
72 rdf:type schema:PropertyValue
73 Ne539c4b40f654fd688794e32bddeb5e3 rdf:first sg:person.0627317253.88
74 rdf:rest rdf:nil
75 Ne9673e67b1534b0a91de67ed1f71b88b schema:name nlm_unique_id
76 schema:value 101316935
77 rdf:type schema:PropertyValue
78 Nf1369c51efd5416686578c87aef119d9 rdf:first sg:person.01262611020.13
79 rdf:rest Nbf07031dea0c4e2d8638e3fb01f4a242
80 Nf2021e4e87e045d9a75fdf111a231784 rdf:first sg:person.01035244241.35
81 rdf:rest N05bbf65f2b484eaa9422524747e9c390
82 Nf31743ca677149efbf4905276507ae0d schema:issueNumber 1
83 rdf:type schema:PublicationIssue
84 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
85 schema:name Engineering
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
88 schema:name Chemical Engineering
89 rdf:type schema:DefinedTerm
90 sg:grant.4320992 http://pending.schema.org/fundedItem sg:pub.10.1186/1754-6834-7-47
91 rdf:type schema:MonetaryGrant
92 sg:journal.1039046 schema:issn 1754-6834
93 schema:name Biotechnology for Biofuels
94 rdf:type schema:Periodical
95 sg:person.01035244241.35 schema:affiliation https://www.grid.ac/institutes/grid.419357.d
96 schema:familyName Chen
97 schema:givenName Xiaowen
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035244241.35
99 rdf:type schema:Person
100 sg:person.01047423170.73 schema:affiliation https://www.grid.ac/institutes/grid.419357.d
101 schema:familyName Himmel
102 schema:givenName Michael E
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047423170.73
104 rdf:type schema:Person
105 sg:person.01057774253.58 schema:affiliation https://www.grid.ac/institutes/grid.419357.d
106 schema:familyName Vinzant
107 schema:givenName Todd B
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057774253.58
109 rdf:type schema:Person
110 sg:person.01172343630.79 schema:affiliation https://www.grid.ac/institutes/grid.419357.d
111 schema:familyName Ciesielski
112 schema:givenName Peter N
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172343630.79
114 rdf:type schema:Person
115 sg:person.01262611020.13 schema:affiliation https://www.grid.ac/institutes/grid.419357.d
116 schema:familyName Tucker
117 schema:givenName Melvin P
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262611020.13
119 rdf:type schema:Person
120 sg:person.01367615736.64 schema:affiliation https://www.grid.ac/institutes/grid.419357.d
121 schema:familyName Wang
122 schema:givenName Wei
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367615736.64
124 rdf:type schema:Person
125 sg:person.0603462161.96 schema:affiliation https://www.grid.ac/institutes/grid.419357.d
126 schema:familyName Decker
127 schema:givenName Stephen R
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603462161.96
129 rdf:type schema:Person
130 sg:person.0627317253.88 schema:affiliation https://www.grid.ac/institutes/grid.419357.d
131 schema:familyName Donohoe
132 schema:givenName Bryon S
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627317253.88
134 rdf:type schema:Person
135 sg:person.0711202510.39 schema:affiliation https://www.grid.ac/institutes/grid.419357.d
136 schema:familyName Johnson
137 schema:givenName David K
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711202510.39
139 rdf:type schema:Person
140 sg:pub.10.1007/s00397-009-0382-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015931718
141 https://doi.org/10.1007/s00397-009-0382-8
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/474s06a schema:sameAs https://app.dimensions.ai/details/publication/pub.1048978711
144 https://doi.org/10.1038/474s06a
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nmeth.2089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035817137
147 https://doi.org/10.1038/nmeth.2089
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1002/bit.21408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018249745
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1002/bit.21959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035134781
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1006/anbo.1996.0127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054485707
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.apcatb.2011.10.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011235416
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.biortech.2008.06.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024415061
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.biortech.2011.03.092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043617148
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.biortech.2011.07.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053533088
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.compag.2008.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001867016
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/s0031-9422(01)00049-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028411775
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1017/s1431927606060028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008870669
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1021/ie900029v schema:sameAs https://app.dimensions.ai/details/publication/pub.1055644065
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1039/c0ee00574f schema:sameAs https://app.dimensions.ai/details/publication/pub.1044247120
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1126/science.1137016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049275105
174 rdf:type schema:CreativeWork
175 https://www.grid.ac/institutes/grid.419357.d schema:alternateName National Renewable Energy Laboratory
176 schema:name Biosciences Center, National Renewable Energy Laboratory, Denver West Parkway, 15013, 80401, Golden CO, USA
177 National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, USA
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...