The kinetics of inhibitor production resulting from hydrothermal deconstruction of wheat straw studied using a pressurised microwave reactor View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Roger Ibbett, Sanyasi Gaddipati, Darren Greetham, Sandra Hill, Greg Tucker

ABSTRACT

BACKGROUND: The use of a microwave synthesis reactor has allowed kinetic data for the hydrothermal reactions of straw biomass to be established from short times, avoiding corrections required for slow heating in conventional reactors, or two-step heating. Access to realistic kinetic data is important for predictions of optimal reaction conditions for the pretreatment of biomass for bioethanol processes, which is required to minimise production of inhibitory compounds and to maximise sugar and ethanol yields. RESULTS: The gravimetric loss through solubilisation of straw provided a global measure of the extent of hydrothermal deconstruction. The kinetic profiles of furan and lignin-derived inhibitors were determined in the hydrothermal hydrolysates by UV analysis, with concentrations of formic and acetic acid determined by HPLC. Kinetic analyses were either carried out by direct fitting to simple first order equations or by numerical integration of sequential reactions. CONCLUSIONS: A classical Arrhenius activation energy of 148 kJmol-1 has been determined for primary solubilisation, which is higher than the activation energy associated with historical measures of reaction severity. The gravimetric loss is primarily due to depolymerisation of the hemicellulose component of straw, but a minor proportion of lignin is solubilised at the same rate and hence may be associated with the more hydrophilic lignin-hemicellulose interface. Acetic acid is liberated primarily from hydrolysis of pendant acetate groups on hemicellulose, although this occurs at a rate that is too slow to provide catalytic enhancement to the primary solubilisation reactions. However, the increase in protons may enhance secondary reactions leading to the production of furans and formic acid. The work has suggested that formic acid may be formed under these hydrothermal conditions via direct reaction of sugar end groups rather than furan breakdown. However, furan degradation is found to be significant, which may limit ultimate quantities generated in hydrolysate liquors. More... »

PAGES

45

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1754-6834-7-45

DOI

http://dx.doi.org/10.1186/1754-6834-7-45

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024679621

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24678822


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Nottingham", 
          "id": "https://www.grid.ac/institutes/grid.4563.4", 
          "name": [
            "BBSRC Sustainable Bioenergy Research Centre, University of Nottingham, Sutton Bonington Campus, LE12 5RD, Loughborough, Leicestershire, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ibbett", 
        "givenName": "Roger", 
        "id": "sg:person.011607476155.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011607476155.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Nottingham", 
          "id": "https://www.grid.ac/institutes/grid.4563.4", 
          "name": [
            "BBSRC Sustainable Bioenergy Research Centre, University of Nottingham, Sutton Bonington Campus, LE12 5RD, Loughborough, Leicestershire, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gaddipati", 
        "givenName": "Sanyasi", 
        "id": "sg:person.01230007410.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230007410.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Nottingham", 
          "id": "https://www.grid.ac/institutes/grid.4563.4", 
          "name": [
            "BBSRC Sustainable Bioenergy Research Centre, University of Nottingham, Sutton Bonington Campus, LE12 5RD, Loughborough, Leicestershire, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Greetham", 
        "givenName": "Darren", 
        "id": "sg:person.0712132450.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712132450.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Nottingham", 
          "id": "https://www.grid.ac/institutes/grid.4563.4", 
          "name": [
            "BBSRC Sustainable Bioenergy Research Centre, University of Nottingham, Sutton Bonington Campus, LE12 5RD, Loughborough, Leicestershire, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hill", 
        "givenName": "Sandra", 
        "id": "sg:person.015703061555.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015703061555.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Nottingham", 
          "id": "https://www.grid.ac/institutes/grid.4563.4", 
          "name": [
            "BBSRC Sustainable Bioenergy Research Centre, University of Nottingham, Sutton Bonington Campus, LE12 5RD, Loughborough, Leicestershire, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tucker", 
        "givenName": "Greg", 
        "id": "sg:person.014406522277.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014406522277.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1039/c003459b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003416250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jsfa.2740341204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004153544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b411438h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004715948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0260-8774(02)00106-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004935550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00226-006-0071-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004997292", 
          "https://doi.org/10.1007/s00226-006-0071-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00226-006-0071-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004997292", 
          "https://doi.org/10.1007/s00226-006-0071-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0141-0229(98)00101-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005685902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.indcrop.2007.07.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010306785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1004-9541(07)60143-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011105338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12010-007-9111-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011757952", 
          "https://doi.org/10.1007/s12010-007-9111-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0079-6700(94)90033-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019251651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0079-6700(94)90033-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019251651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jps.2600580703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022539577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2009.09.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023783860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jaap.2010.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024767916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bp0257978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024888911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/tf9575301003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027566676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procbio.2005.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027720840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2009.03.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029017311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0960-8524(91)90101-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029596952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2011.06.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037189702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2006.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040725645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.1987.0029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042130494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-8524(97)81606-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044124981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0ee00574f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044247120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-60761-214-8_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045389415", 
          "https://doi.org/10.1007/978-1-60761-214-8_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0032-9592(00)00253-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045954848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.indcrop.2011.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046783810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00224292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048022791", 
          "https://doi.org/10.1007/bf00224292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bp0000508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048542589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002170000215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050151224", 
          "https://doi.org/10.1007/s002170000215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02773811003675288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051132084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compchemeng.2010.02.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053524386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie00098a003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055594815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie50458a006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055629284"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: The use of a microwave synthesis reactor has allowed kinetic data for the hydrothermal reactions of straw biomass to be established from short times, avoiding corrections required for slow heating in conventional reactors, or two-step heating. Access to realistic kinetic data is important for predictions of optimal reaction conditions for the pretreatment of biomass for bioethanol processes, which is required to minimise production of inhibitory compounds and to maximise sugar and ethanol yields.\nRESULTS: The gravimetric loss through solubilisation of straw provided a global measure of the extent of hydrothermal deconstruction. The kinetic profiles of furan and lignin-derived inhibitors were determined in the hydrothermal hydrolysates by UV analysis, with concentrations of formic and acetic acid determined by HPLC. Kinetic analyses were either carried out by direct fitting to simple first order equations or by numerical integration of sequential reactions.\nCONCLUSIONS: A classical Arrhenius activation energy of 148 kJmol-1 has been determined for primary solubilisation, which is higher than the activation energy associated with historical measures of reaction severity. The gravimetric loss is primarily due to depolymerisation of the hemicellulose component of straw, but a minor proportion of lignin is solubilised at the same rate and hence may be associated with the more hydrophilic lignin-hemicellulose interface. Acetic acid is liberated primarily from hydrolysis of pendant acetate groups on hemicellulose, although this occurs at a rate that is too slow to provide catalytic enhancement to the primary solubilisation reactions. However, the increase in protons may enhance secondary reactions leading to the production of furans and formic acid. The work has suggested that formic acid may be formed under these hydrothermal conditions via direct reaction of sugar end groups rather than furan breakdown. However, furan degradation is found to be significant, which may limit ultimate quantities generated in hydrolysate liquors.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1754-6834-7-45", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2784329", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1039046", 
        "issn": [
          "1754-6834"
        ], 
        "name": "Biotechnology for Biofuels", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "The kinetics of inhibitor production resulting from hydrothermal deconstruction of wheat straw studied using a pressurised microwave reactor", 
    "pagination": "45", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "75930e33d1bae7426cbe2a23961117ba8977781e03f9f0b0506c5d7e7e9a8251"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24678822"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101316935"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1754-6834-7-45"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024679621"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1754-6834-7-45", 
      "https://app.dimensions.ai/details/publication/pub.1024679621"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1754-6834-7-45"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1754-6834-7-45'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1754-6834-7-45'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1754-6834-7-45'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1754-6834-7-45'


 

This table displays all metadata directly associated to this object as RDF triples.

202 TRIPLES      21 PREDICATES      62 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1754-6834-7-45 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N98b52b4cafdd4200848dfbaace06d631
4 schema:citation sg:pub.10.1007/978-1-60761-214-8_8
5 sg:pub.10.1007/bf00224292
6 sg:pub.10.1007/s002170000215
7 sg:pub.10.1007/s00226-006-0071-z
8 sg:pub.10.1007/s12010-007-9111-x
9 https://doi.org/10.1002/jps.2600580703
10 https://doi.org/10.1002/jsfa.2740341204
11 https://doi.org/10.1016/0079-6700(94)90033-7
12 https://doi.org/10.1016/0960-8524(91)90101-o
13 https://doi.org/10.1016/j.biortech.2006.08.006
14 https://doi.org/10.1016/j.biortech.2009.03.058
15 https://doi.org/10.1016/j.biortech.2009.09.010
16 https://doi.org/10.1016/j.biortech.2011.06.044
17 https://doi.org/10.1016/j.compchemeng.2010.02.012
18 https://doi.org/10.1016/j.indcrop.2007.07.022
19 https://doi.org/10.1016/j.indcrop.2011.03.014
20 https://doi.org/10.1016/j.jaap.2010.06.001
21 https://doi.org/10.1016/j.procbio.2005.04.006
22 https://doi.org/10.1016/s0032-9592(00)00253-3
23 https://doi.org/10.1016/s0141-0229(98)00101-x
24 https://doi.org/10.1016/s0260-8774(02)00106-1
25 https://doi.org/10.1016/s0960-8524(97)81606-9
26 https://doi.org/10.1016/s1004-9541(07)60143-8
27 https://doi.org/10.1021/bp0000508
28 https://doi.org/10.1021/bp0257978
29 https://doi.org/10.1021/ie00098a003
30 https://doi.org/10.1021/ie50458a006
31 https://doi.org/10.1039/b411438h
32 https://doi.org/10.1039/c003459b
33 https://doi.org/10.1039/c0ee00574f
34 https://doi.org/10.1039/tf9575301003
35 https://doi.org/10.1080/02773811003675288
36 https://doi.org/10.1098/rsta.1987.0029
37 schema:datePublished 2014-12
38 schema:datePublishedReg 2014-12-01
39 schema:description BACKGROUND: The use of a microwave synthesis reactor has allowed kinetic data for the hydrothermal reactions of straw biomass to be established from short times, avoiding corrections required for slow heating in conventional reactors, or two-step heating. Access to realistic kinetic data is important for predictions of optimal reaction conditions for the pretreatment of biomass for bioethanol processes, which is required to minimise production of inhibitory compounds and to maximise sugar and ethanol yields. RESULTS: The gravimetric loss through solubilisation of straw provided a global measure of the extent of hydrothermal deconstruction. The kinetic profiles of furan and lignin-derived inhibitors were determined in the hydrothermal hydrolysates by UV analysis, with concentrations of formic and acetic acid determined by HPLC. Kinetic analyses were either carried out by direct fitting to simple first order equations or by numerical integration of sequential reactions. CONCLUSIONS: A classical Arrhenius activation energy of 148 kJmol-1 has been determined for primary solubilisation, which is higher than the activation energy associated with historical measures of reaction severity. The gravimetric loss is primarily due to depolymerisation of the hemicellulose component of straw, but a minor proportion of lignin is solubilised at the same rate and hence may be associated with the more hydrophilic lignin-hemicellulose interface. Acetic acid is liberated primarily from hydrolysis of pendant acetate groups on hemicellulose, although this occurs at a rate that is too slow to provide catalytic enhancement to the primary solubilisation reactions. However, the increase in protons may enhance secondary reactions leading to the production of furans and formic acid. The work has suggested that formic acid may be formed under these hydrothermal conditions via direct reaction of sugar end groups rather than furan breakdown. However, furan degradation is found to be significant, which may limit ultimate quantities generated in hydrolysate liquors.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N351330f5e307402c9553a79c007cb070
44 Nf64ee3c6ad294faf97c8c07efe11442b
45 sg:journal.1039046
46 schema:name The kinetics of inhibitor production resulting from hydrothermal deconstruction of wheat straw studied using a pressurised microwave reactor
47 schema:pagination 45
48 schema:productId N25d70dabe6f64fe085c977d40f6b4b7a
49 N360dd950b8cb4d07b705cce3f95f1f05
50 N9f705c278ebb41efb5bf1ff7c47fd25e
51 Ncd02c5793d5a44ffb26d3165996093f0
52 Nfb16946ce3e040cab2a4e297ff148eef
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024679621
54 https://doi.org/10.1186/1754-6834-7-45
55 schema:sdDatePublished 2019-04-10T19:57
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Ne32c213347e24b27a35446d88f5931cd
58 schema:url http://link.springer.com/10.1186%2F1754-6834-7-45
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N0da0fabacca949b289199d6536f55275 rdf:first sg:person.015703061555.28
63 rdf:rest Nd2242a97b9634c24bd2c426472f2d989
64 N25d70dabe6f64fe085c977d40f6b4b7a schema:name pubmed_id
65 schema:value 24678822
66 rdf:type schema:PropertyValue
67 N31ea0c452b614f6f8a59aa4034a5a342 rdf:first sg:person.01230007410.58
68 rdf:rest N6724f7d79c65474d92fde47c64d32b69
69 N351330f5e307402c9553a79c007cb070 schema:issueNumber 1
70 rdf:type schema:PublicationIssue
71 N360dd950b8cb4d07b705cce3f95f1f05 schema:name nlm_unique_id
72 schema:value 101316935
73 rdf:type schema:PropertyValue
74 N6724f7d79c65474d92fde47c64d32b69 rdf:first sg:person.0712132450.53
75 rdf:rest N0da0fabacca949b289199d6536f55275
76 N98b52b4cafdd4200848dfbaace06d631 rdf:first sg:person.011607476155.52
77 rdf:rest N31ea0c452b614f6f8a59aa4034a5a342
78 N9f705c278ebb41efb5bf1ff7c47fd25e schema:name doi
79 schema:value 10.1186/1754-6834-7-45
80 rdf:type schema:PropertyValue
81 Ncd02c5793d5a44ffb26d3165996093f0 schema:name dimensions_id
82 schema:value pub.1024679621
83 rdf:type schema:PropertyValue
84 Nd2242a97b9634c24bd2c426472f2d989 rdf:first sg:person.014406522277.05
85 rdf:rest rdf:nil
86 Ne32c213347e24b27a35446d88f5931cd schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 Nf64ee3c6ad294faf97c8c07efe11442b schema:volumeNumber 7
89 rdf:type schema:PublicationVolume
90 Nfb16946ce3e040cab2a4e297ff148eef schema:name readcube_id
91 schema:value 75930e33d1bae7426cbe2a23961117ba8977781e03f9f0b0506c5d7e7e9a8251
92 rdf:type schema:PropertyValue
93 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
94 schema:name Chemical Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
97 schema:name Physical Chemistry (incl. Structural)
98 rdf:type schema:DefinedTerm
99 sg:grant.2784329 http://pending.schema.org/fundedItem sg:pub.10.1186/1754-6834-7-45
100 rdf:type schema:MonetaryGrant
101 sg:journal.1039046 schema:issn 1754-6834
102 schema:name Biotechnology for Biofuels
103 rdf:type schema:Periodical
104 sg:person.011607476155.52 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
105 schema:familyName Ibbett
106 schema:givenName Roger
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011607476155.52
108 rdf:type schema:Person
109 sg:person.01230007410.58 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
110 schema:familyName Gaddipati
111 schema:givenName Sanyasi
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230007410.58
113 rdf:type schema:Person
114 sg:person.014406522277.05 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
115 schema:familyName Tucker
116 schema:givenName Greg
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014406522277.05
118 rdf:type schema:Person
119 sg:person.015703061555.28 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
120 schema:familyName Hill
121 schema:givenName Sandra
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015703061555.28
123 rdf:type schema:Person
124 sg:person.0712132450.53 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
125 schema:familyName Greetham
126 schema:givenName Darren
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712132450.53
128 rdf:type schema:Person
129 sg:pub.10.1007/978-1-60761-214-8_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045389415
130 https://doi.org/10.1007/978-1-60761-214-8_8
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/bf00224292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048022791
133 https://doi.org/10.1007/bf00224292
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s002170000215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050151224
136 https://doi.org/10.1007/s002170000215
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s00226-006-0071-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1004997292
139 https://doi.org/10.1007/s00226-006-0071-z
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s12010-007-9111-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011757952
142 https://doi.org/10.1007/s12010-007-9111-x
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1002/jps.2600580703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022539577
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1002/jsfa.2740341204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004153544
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/0079-6700(94)90033-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019251651
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/0960-8524(91)90101-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1029596952
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.biortech.2006.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040725645
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.biortech.2009.03.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029017311
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.biortech.2009.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023783860
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.biortech.2011.06.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037189702
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.compchemeng.2010.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053524386
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.indcrop.2007.07.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010306785
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.indcrop.2011.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046783810
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.jaap.2010.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024767916
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.procbio.2005.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027720840
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/s0032-9592(00)00253-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045954848
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/s0141-0229(98)00101-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005685902
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/s0260-8774(02)00106-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004935550
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/s0960-8524(97)81606-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044124981
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/s1004-9541(07)60143-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011105338
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1021/bp0000508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048542589
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1021/bp0257978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024888911
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1021/ie00098a003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055594815
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1021/ie50458a006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055629284
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1039/b411438h schema:sameAs https://app.dimensions.ai/details/publication/pub.1004715948
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1039/c003459b schema:sameAs https://app.dimensions.ai/details/publication/pub.1003416250
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1039/c0ee00574f schema:sameAs https://app.dimensions.ai/details/publication/pub.1044247120
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1039/tf9575301003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027566676
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1080/02773811003675288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051132084
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1098/rsta.1987.0029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042130494
199 rdf:type schema:CreativeWork
200 https://www.grid.ac/institutes/grid.4563.4 schema:alternateName University of Nottingham
201 schema:name BBSRC Sustainable Bioenergy Research Centre, University of Nottingham, Sutton Bonington Campus, LE12 5RD, Loughborough, Leicestershire, UK
202 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...