Carbohydrate-binding modules (CBMs) revisited: reduced amount of water counterbalances the need for CBMs View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

Anikó Várnai, Matti Siika-aho, Liisa Viikari

ABSTRACT

BACKGROUND: A vast number of organisms are known to produce structurally diversified cellulases capable of degrading cellulose, the most abundant biopolymer on earth. The generally accepted paradigm is that the carbohydrate-binding modules (CBMs) of cellulases are required for efficient saccharification of insoluble substrates. Based on sequence data, surprisingly more than 60% of the cellulases identified lack carbohydrate-binding modules or alternative protein structures linked to cellulases (dockerins). This finding poses the question about the role of the CBMs: why would most cellulases lack CBMs, if they are necessary for the efficient hydrolysis of cellulose? RESULTS: The advantage of CBMs, which increase the affinity of cellulases to substrates, was found to be diminished by reducing the amount of water in the hydrolytic system, which increases the probability of enzyme-substrate interaction. At low substrate concentration (1% w/w), CBMs were found to be more important in the catalytic performance of the cellobiohydrolases TrCel7A and TrCel6A of Trichoderma reesei as compared to that of the endoglucanases TrCel5A and TrCel7B. Increasing the substrate concentration while maintaining the enzyme-to-substrate ratio enhanced adsorption of TrCel7A, independent of the presence of the CBM. At 20% (w/w) substrate concentration, the hydrolytic performance of cellulases without CBMs caught up with that of cellulases with CBMs. This phenomenon was more noticeable on the lignin-containing pretreated wheat straw as compared to the cellulosic Avicel, presumably due to unproductive adsorption of enzymes to lignin. CONCLUSIONS: Here we propose that the water content in the natural environments of carbohydrate-degrading organisms might have led to the evolution of various substrate-binding structures. In addition, some well recognized problems of economical saccharification such as unproductive binding of cellulases, which reduces the hydrolysis rate and prevents recycling of enzymes, could be partially overcome by omitting CBMs. This finding could help solve bottlenecks of enzymatic hydrolysis of lignocelluloses and speed up commercialization of second generation bioethanol. More... »

PAGES

30

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1754-6834-6-30

DOI

http://dx.doi.org/10.1186/1754-6834-6-30

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006902427

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23442543


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Helsinki", 
          "id": "https://www.grid.ac/institutes/grid.7737.4", 
          "name": [
            "Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 27, 00014, Helsinki, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "V\u00e1rnai", 
        "givenName": "Anik\u00f3", 
        "id": "sg:person.01076753164.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076753164.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "VTT Technical Research Centre of Finland", 
          "id": "https://www.grid.ac/institutes/grid.6324.3", 
          "name": [
            "VTT Technical Research Centre of Finland, P.O. Box 1000, 02044, Espoo, VTT, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siika-aho", 
        "givenName": "Matti", 
        "id": "sg:person.01137056660.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137056660.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Helsinki", 
          "id": "https://www.grid.ac/institutes/grid.7737.4", 
          "name": [
            "Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 27, 00014, Helsinki, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Viikari", 
        "givenName": "Liisa", 
        "id": "sg:person.01204711662.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204711662.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1042/bj20040892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000811159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj20040892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000811159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-1656(99)00240-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003100363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0076-6879(88)60106-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005233406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.21115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005729407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1754-6834-5-21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006223608", 
          "https://doi.org/10.1186/1754-6834-5-21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj3160695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007657252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj3160695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007657252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2010.07.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008003610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2958.2007.05640.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010548997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1205411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011708052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0141-0229(02)00134-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013873851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiotec.2003.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015469174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016317136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m110.161059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017277266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1754-6834-3-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017299679", 
          "https://doi.org/10.1186/1754-6834-3-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10098-009-0234-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019250833", 
          "https://doi.org/10.1007/s10098-009-0234-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10098-009-0234-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019250833", 
          "https://doi.org/10.1007/s10098-009-0234-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10098-009-0234-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019250833", 
          "https://doi.org/10.1007/s10098-009-0234-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10098-009-0234-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019250833", 
          "https://doi.org/10.1007/s10098-009-0234-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009280109519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024910351", 
          "https://doi.org/10.1023/a:1009280109519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1432-1033.1988.tb13736.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027924771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0391-286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030378855", 
          "https://doi.org/10.1038/nbt0391-286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0141-0229(92)90128-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030685393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0141-0229(92)90128-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030685393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1432-1033.1988.tb13982.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033978305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10570-009-9327-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033986172", 
          "https://doi.org/10.1007/s10570-009-9327-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10570-009-9327-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033986172", 
          "https://doi.org/10.1007/s10570-009-9327-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10570-009-9327-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033986172", 
          "https://doi.org/10.1007/s10570-009-9327-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1105776108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034027697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m109.034611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035621485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340140408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037342220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340140408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037342220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.23242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037455763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1385/abab:81:2:81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037607725", 
          "https://doi.org/10.1385/abab:81:2:81"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enzmictec.2009.12.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040419447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12010-008-8375-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042307461", 
          "https://doi.org/10.1007/s12010-008-8375-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0014-5793(86)80816-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042710109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro2729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043800246", 
          "https://doi.org/10.1038/nrmicro2729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mib.2011.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047200334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12010-009-8824-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049944406", 
          "https://doi.org/10.1007/s12010-009-8824-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12010-009-8824-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049944406", 
          "https://doi.org/10.1007/s12010-009-8824-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-1656(93)90055-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051049645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-1656(93)90055-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051049645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj2980705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052822798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj2980705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052822798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.22779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053477699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bit.22779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053477699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac60147a030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055036986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp904003z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056115415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp904003z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056115415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076750128", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": "BACKGROUND: A vast number of organisms are known to produce structurally diversified cellulases capable of degrading cellulose, the most abundant biopolymer on earth. The generally accepted paradigm is that the carbohydrate-binding modules (CBMs) of cellulases are required for efficient saccharification of insoluble substrates. Based on sequence data, surprisingly more than 60% of the cellulases identified lack carbohydrate-binding modules or alternative protein structures linked to cellulases (dockerins). This finding poses the question about the role of the CBMs: why would most cellulases lack CBMs, if they are necessary for the efficient hydrolysis of cellulose?\nRESULTS: The advantage of CBMs, which increase the affinity of cellulases to substrates, was found to be diminished by reducing the amount of water in the hydrolytic system, which increases the probability of enzyme-substrate interaction. At low substrate concentration (1% w/w), CBMs were found to be more important in the catalytic performance of the cellobiohydrolases TrCel7A and TrCel6A of Trichoderma reesei as compared to that of the endoglucanases TrCel5A and TrCel7B. Increasing the substrate concentration while maintaining the enzyme-to-substrate ratio enhanced adsorption of TrCel7A, independent of the presence of the CBM. At 20% (w/w) substrate concentration, the hydrolytic performance of cellulases without CBMs caught up with that of cellulases with CBMs. This phenomenon was more noticeable on the lignin-containing pretreated wheat straw as compared to the cellulosic Avicel, presumably due to unproductive adsorption of enzymes to lignin.\nCONCLUSIONS: Here we propose that the water content in the natural environments of carbohydrate-degrading organisms might have led to the evolution of various substrate-binding structures. In addition, some well recognized problems of economical saccharification such as unproductive binding of cellulases, which reduces the hydrolysis rate and prevents recycling of enzymes, could be partially overcome by omitting CBMs. This finding could help solve bottlenecks of enzymatic hydrolysis of lignocelluloses and speed up commercialization of second generation bioethanol.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1754-6834-6-30", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1039046", 
        "issn": [
          "1754-6834"
        ], 
        "name": "Biotechnology for Biofuels", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Carbohydrate-binding modules (CBMs) revisited: reduced amount of water counterbalances the need for CBMs", 
    "pagination": "30", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "20e1202a1d8c4d1e000053b910ec57ccd3058444c3bdd745634a8d54e5bb7c96"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23442543"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101316935"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1754-6834-6-30"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006902427"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1754-6834-6-30", 
      "https://app.dimensions.ai/details/publication/pub.1006902427"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1754-6834-6-30"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1754-6834-6-30'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1754-6834-6-30'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1754-6834-6-30'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1754-6834-6-30'


 

This table displays all metadata directly associated to this object as RDF triples.

208 TRIPLES      21 PREDICATES      67 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1754-6834-6-30 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Ncdea1e5320974d319dc7a26e7ce42e38
4 schema:citation sg:pub.10.1007/s10098-009-0234-3
5 sg:pub.10.1007/s10570-009-9327-8
6 sg:pub.10.1007/s12010-008-8375-0
7 sg:pub.10.1007/s12010-009-8824-4
8 sg:pub.10.1023/a:1009280109519
9 sg:pub.10.1038/nbt0391-286
10 sg:pub.10.1038/nrmicro2729
11 sg:pub.10.1186/1754-6834-3-4
12 sg:pub.10.1186/1754-6834-5-21
13 sg:pub.10.1385/abab:81:2:81
14 https://app.dimensions.ai/details/publication/pub.1076750128
15 https://doi.org/10.1002/bit.21115
16 https://doi.org/10.1002/bit.22779
17 https://doi.org/10.1002/bit.23242
18 https://doi.org/10.1002/prot.340140408
19 https://doi.org/10.1016/0014-5793(86)80816-x
20 https://doi.org/10.1016/0076-6879(88)60106-6
21 https://doi.org/10.1016/0141-0229(92)90128-b
22 https://doi.org/10.1016/0168-1656(93)90055-r
23 https://doi.org/10.1016/j.biortech.2010.07.120
24 https://doi.org/10.1016/j.enzmictec.2009.12.013
25 https://doi.org/10.1016/j.jbiotec.2003.09.011
26 https://doi.org/10.1016/j.mib.2011.04.004
27 https://doi.org/10.1016/s0141-0229(02)00134-5
28 https://doi.org/10.1016/s0168-1656(99)00240-0
29 https://doi.org/10.1021/ac60147a030
30 https://doi.org/10.1021/jp904003z
31 https://doi.org/10.1042/bj20040892
32 https://doi.org/10.1042/bj2980705
33 https://doi.org/10.1042/bj3160695
34 https://doi.org/10.1073/pnas.1105776108
35 https://doi.org/10.1074/jbc.m109.034611
36 https://doi.org/10.1074/jbc.m110.161059
37 https://doi.org/10.1093/nar/gkp985
38 https://doi.org/10.1111/j.1365-2958.2007.05640.x
39 https://doi.org/10.1111/j.1432-1033.1988.tb13736.x
40 https://doi.org/10.1111/j.1432-1033.1988.tb13982.x
41 https://doi.org/10.1126/science.1205411
42 schema:datePublished 2013-12
43 schema:datePublishedReg 2013-12-01
44 schema:description BACKGROUND: A vast number of organisms are known to produce structurally diversified cellulases capable of degrading cellulose, the most abundant biopolymer on earth. The generally accepted paradigm is that the carbohydrate-binding modules (CBMs) of cellulases are required for efficient saccharification of insoluble substrates. Based on sequence data, surprisingly more than 60% of the cellulases identified lack carbohydrate-binding modules or alternative protein structures linked to cellulases (dockerins). This finding poses the question about the role of the CBMs: why would most cellulases lack CBMs, if they are necessary for the efficient hydrolysis of cellulose? RESULTS: The advantage of CBMs, which increase the affinity of cellulases to substrates, was found to be diminished by reducing the amount of water in the hydrolytic system, which increases the probability of enzyme-substrate interaction. At low substrate concentration (1% w/w), CBMs were found to be more important in the catalytic performance of the cellobiohydrolases TrCel7A and TrCel6A of Trichoderma reesei as compared to that of the endoglucanases TrCel5A and TrCel7B. Increasing the substrate concentration while maintaining the enzyme-to-substrate ratio enhanced adsorption of TrCel7A, independent of the presence of the CBM. At 20% (w/w) substrate concentration, the hydrolytic performance of cellulases without CBMs caught up with that of cellulases with CBMs. This phenomenon was more noticeable on the lignin-containing pretreated wheat straw as compared to the cellulosic Avicel, presumably due to unproductive adsorption of enzymes to lignin. CONCLUSIONS: Here we propose that the water content in the natural environments of carbohydrate-degrading organisms might have led to the evolution of various substrate-binding structures. In addition, some well recognized problems of economical saccharification such as unproductive binding of cellulases, which reduces the hydrolysis rate and prevents recycling of enzymes, could be partially overcome by omitting CBMs. This finding could help solve bottlenecks of enzymatic hydrolysis of lignocelluloses and speed up commercialization of second generation bioethanol.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree true
48 schema:isPartOf N4727528a8ba4406d922c9314e2fc4127
49 Nf8a5f64fc6b44f6d8e91ba433e4d017a
50 sg:journal.1039046
51 schema:name Carbohydrate-binding modules (CBMs) revisited: reduced amount of water counterbalances the need for CBMs
52 schema:pagination 30
53 schema:productId N0d7fe7768dd74592b9b11cc6fa293888
54 N7edf60f277a645b0b5f93c3e5332ca72
55 N89095ff0c4564accaf3fd1ea801bbb03
56 Nbeb9297fb3b34ab3b72d7b4f9e1035df
57 Ncccd1f54aa634c78a59a858257a42470
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006902427
59 https://doi.org/10.1186/1754-6834-6-30
60 schema:sdDatePublished 2019-04-10T17:31
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N8ead1a96f0004163b3aafcfa00549e0d
63 schema:url http://link.springer.com/10.1186%2F1754-6834-6-30
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N063e0f35ca5d4c70afa618f886f75f85 rdf:first sg:person.01204711662.12
68 rdf:rest rdf:nil
69 N0d7fe7768dd74592b9b11cc6fa293888 schema:name pubmed_id
70 schema:value 23442543
71 rdf:type schema:PropertyValue
72 N4727528a8ba4406d922c9314e2fc4127 schema:volumeNumber 6
73 rdf:type schema:PublicationVolume
74 N7edf60f277a645b0b5f93c3e5332ca72 schema:name doi
75 schema:value 10.1186/1754-6834-6-30
76 rdf:type schema:PropertyValue
77 N89095ff0c4564accaf3fd1ea801bbb03 schema:name readcube_id
78 schema:value 20e1202a1d8c4d1e000053b910ec57ccd3058444c3bdd745634a8d54e5bb7c96
79 rdf:type schema:PropertyValue
80 N8ead1a96f0004163b3aafcfa00549e0d schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 Nbe4ee944611847bfabbf7a404d6a356b rdf:first sg:person.01137056660.34
83 rdf:rest N063e0f35ca5d4c70afa618f886f75f85
84 Nbeb9297fb3b34ab3b72d7b4f9e1035df schema:name nlm_unique_id
85 schema:value 101316935
86 rdf:type schema:PropertyValue
87 Ncccd1f54aa634c78a59a858257a42470 schema:name dimensions_id
88 schema:value pub.1006902427
89 rdf:type schema:PropertyValue
90 Ncdea1e5320974d319dc7a26e7ce42e38 rdf:first sg:person.01076753164.42
91 rdf:rest Nbe4ee944611847bfabbf7a404d6a356b
92 Nf8a5f64fc6b44f6d8e91ba433e4d017a schema:issueNumber 1
93 rdf:type schema:PublicationIssue
94 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
95 schema:name Biological Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
98 schema:name Biochemistry and Cell Biology
99 rdf:type schema:DefinedTerm
100 sg:journal.1039046 schema:issn 1754-6834
101 schema:name Biotechnology for Biofuels
102 rdf:type schema:Periodical
103 sg:person.01076753164.42 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
104 schema:familyName Várnai
105 schema:givenName Anikó
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076753164.42
107 rdf:type schema:Person
108 sg:person.01137056660.34 schema:affiliation https://www.grid.ac/institutes/grid.6324.3
109 schema:familyName Siika-aho
110 schema:givenName Matti
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137056660.34
112 rdf:type schema:Person
113 sg:person.01204711662.12 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
114 schema:familyName Viikari
115 schema:givenName Liisa
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204711662.12
117 rdf:type schema:Person
118 sg:pub.10.1007/s10098-009-0234-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019250833
119 https://doi.org/10.1007/s10098-009-0234-3
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s10570-009-9327-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033986172
122 https://doi.org/10.1007/s10570-009-9327-8
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s12010-008-8375-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042307461
125 https://doi.org/10.1007/s12010-008-8375-0
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s12010-009-8824-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049944406
128 https://doi.org/10.1007/s12010-009-8824-4
129 rdf:type schema:CreativeWork
130 sg:pub.10.1023/a:1009280109519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024910351
131 https://doi.org/10.1023/a:1009280109519
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nbt0391-286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030378855
134 https://doi.org/10.1038/nbt0391-286
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nrmicro2729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043800246
137 https://doi.org/10.1038/nrmicro2729
138 rdf:type schema:CreativeWork
139 sg:pub.10.1186/1754-6834-3-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017299679
140 https://doi.org/10.1186/1754-6834-3-4
141 rdf:type schema:CreativeWork
142 sg:pub.10.1186/1754-6834-5-21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006223608
143 https://doi.org/10.1186/1754-6834-5-21
144 rdf:type schema:CreativeWork
145 sg:pub.10.1385/abab:81:2:81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037607725
146 https://doi.org/10.1385/abab:81:2:81
147 rdf:type schema:CreativeWork
148 https://app.dimensions.ai/details/publication/pub.1076750128 schema:CreativeWork
149 https://doi.org/10.1002/bit.21115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005729407
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1002/bit.22779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053477699
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1002/bit.23242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037455763
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1002/prot.340140408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037342220
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/0014-5793(86)80816-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042710109
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/0076-6879(88)60106-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005233406
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/0141-0229(92)90128-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1030685393
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/0168-1656(93)90055-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1051049645
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.biortech.2010.07.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008003610
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.enzmictec.2009.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040419447
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.jbiotec.2003.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015469174
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.mib.2011.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047200334
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/s0141-0229(02)00134-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013873851
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/s0168-1656(99)00240-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003100363
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1021/ac60147a030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055036986
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1021/jp904003z schema:sameAs https://app.dimensions.ai/details/publication/pub.1056115415
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1042/bj20040892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000811159
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1042/bj2980705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052822798
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1042/bj3160695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007657252
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1073/pnas.1105776108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034027697
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1074/jbc.m109.034611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035621485
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1074/jbc.m110.161059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017277266
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1093/nar/gkp985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016317136
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1111/j.1365-2958.2007.05640.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010548997
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1111/j.1432-1033.1988.tb13736.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027924771
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1111/j.1432-1033.1988.tb13982.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033978305
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1126/science.1205411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011708052
202 rdf:type schema:CreativeWork
203 https://www.grid.ac/institutes/grid.6324.3 schema:alternateName VTT Technical Research Centre of Finland
204 schema:name VTT Technical Research Centre of Finland, P.O. Box 1000, 02044, Espoo, VTT, Finland
205 rdf:type schema:Organization
206 https://www.grid.ac/institutes/grid.7737.4 schema:alternateName University of Helsinki
207 schema:name Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 27, 00014, Helsinki, Finland
208 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...