A new lipid-rich microalga Scenedesmussp. strain R-16 isolated using Nile red staining: effects of carbon and nitrogen sources and initial ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

Hong-Yu Ren, Bing-Feng Liu, Chao Ma, Lei Zhao, Nan-Qi Ren

ABSTRACT

BACKGROUND: Biodiesel production from oleaginous microalgae shows great potential as a promising alternative to conventional fossil fuels. Currently, most research focus on algal biomass production with autotrophic cultivation, but this cultivation strategy induces low biomass concentration and it is difficult to be used in large-scale algal biomass production. By contrast, heterotrophic algae allows higher growth rate and can accumulate higher lipid. However, the fast-growing and lipid-rich microalgae that can be cultivated in heterotrophic system for the industrial application of biodiesel production are still few. Traditional solvent extraction and gravimetric determination to detect the microalgal total lipid content is time-consuming and laborious, which has become a major limiting factor for selecting large number of algae specimens. Thus, it is critical to develop a rapid and efficient procedure for the screening of lipid-rich microalgae. RESULTS: A novel green microalga Scenedesmus sp. strain R-16 with high total lipid content was selected using the Nile red staining from eighty-eight isolates. Various carbon sources (fructose, glucose and acetate) and nitrogen sources (nitrate, urea, peptone and yeast extract) can be utilized for microalgal growth and lipid production, and the optimal carbon and nitrogen sources were glucose (10 g L-1) and nitrate (0.6 g L-1), respectively. Compared to autotrophic situation, the strain R-16 can grow well heterotrophically without light and the accumulated total lipid content and biomass reached 43.4% and 3.46 g L-1, respectively. In addition, nitrogen deficiency led to an accumulation of lipid and the total lipid content was as high as 52.6%, and it was worth noting that strain R-16 exhibited strong tolerance to high glucose (up to 100 g L-1) and a wide range of pH (4.0-11.0). CONCLUSIONS: The newly developed ultrasonic-assisted Nile red method proved to be an efficient isolation procedure and was successfully used in the selection of oleaginous microalgae. The isolated novel green microalgal strain R-16 was rich in lipid and can live in varied and contrasting conditions. The algae appeared to have great potential for application in microalgae-based biodiesel production. More... »

PAGES

143

References to SciGraph publications

  • 2013-02. Biomass and Lipid Production of Dinoflagellates and Raphidophytes in Indoor and Outdoor Photobioreactors in JOURNAL OF MARINE BIOTECHNOLOGY
  • 2012-12. The pretreatment of corn stover with Gloeophyllum trabeum KU-41 for enzymatic hydrolysis in BIOTECHNOLOGY FOR BIOFUELS
  • 2013-12. Towards a metagenomic understanding on enhanced biomethane production from waste activated sludge after pH 10 pretreatment in BIOTECHNOLOGY FOR BIOFUELS
  • 2012-12. Computer-assisted coloring and illuminating based on a region-tree structure in SPRINGERPLUS
  • 2012-12. Proteomic analysis reveals resistance mechanism against biofuel hexane in Synechocystis sp. PCC 6803 in BIOTECHNOLOGY FOR BIOFUELS
  • 2013-12. Microalgal biomass production pathways: evaluation of life cycle environmental impacts in BIOTECHNOLOGY FOR BIOFUELS
  • 2009-12. How can accelerated development of bioenergy contribute to the future UK energy mix? Insights from a MARKAL modelling exercise in BIOTECHNOLOGY FOR BIOFUELS
  • 2013-12. Engineering cyanobacteria to improve photosynthetic production of alka(e)nes in BIOTECHNOLOGY FOR BIOFUELS
  • 2011-10. Improved Nile Red staining of Nannochloropsis sp. in JOURNAL OF APPLIED PHYCOLOGY
  • 2008-12. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2012-12. Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation in BIOTECHNOLOGY FOR BIOFUELS
  • 2013-12. Photo-fermentative bacteria aggregation triggered by L-cysteine during hydrogen production in BIOTECHNOLOGY FOR BIOFUELS
  • 2012-12. Value-added uses for crude glycerol--a byproduct of biodiesel production in BIOTECHNOLOGY FOR BIOFUELS
  • 2012-12. Biochemical modulation of growth, lipid quality and productivity in mixotrophic cultures of Chlorella sorokiniana in SPRINGERPLUS
  • 2013-07. Diversity analysis of Beauveria bassiana isolated from infected silkworm in southwest China based on molecular data and morphological features of colony in WORLD JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY
  • 2011-12. Microplate-based high throughput screening procedure for the isolation of lipid-rich marine microalgae in BIOTECHNOLOGY FOR BIOFUELS
  • 2013-12. Characterization and genomic analysis of kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8 in BIOTECHNOLOGY FOR BIOFUELS
  • 2012-12. Expression of fatty acid synthesis genes and fatty acid accumulation in haematococcus pluvialis under different stressors in BIOTECHNOLOGY FOR BIOFUELS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1754-6834-6-143

    DOI

    http://dx.doi.org/10.1186/1754-6834-6-143

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1040452762

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/24093331


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harbin Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.19373.3f", 
              "name": [
                "State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ren", 
            "givenName": "Hong-Yu", 
            "id": "sg:person.01254045130.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254045130.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harbin Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.19373.3f", 
              "name": [
                "State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Bing-Feng", 
            "id": "sg:person.01250752004.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250752004.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harbin Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.19373.3f", 
              "name": [
                "State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ma", 
            "givenName": "Chao", 
            "id": "sg:person.0605672251.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605672251.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harbin Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.19373.3f", 
              "name": [
                "State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Lei", 
            "id": "sg:person.01017637411.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017637411.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harbin Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.19373.3f", 
              "name": [
                "State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ren", 
            "givenName": "Nan-Qi", 
            "id": "sg:person.01272236422.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272236422.80"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1754-6834-6-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001199959", 
              "https://doi.org/10.1186/1754-6834-6-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1754-6834-6-38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001955300", 
              "https://doi.org/10.1186/1754-6834-6-38"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4490/algae.2012.27.3.197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004239567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2008.12.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004318955"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bit.24477", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005748949"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1754-6834-6-64", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008552920", 
              "https://doi.org/10.1186/1754-6834-6-64"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1754-6834-5-28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009156227", 
              "https://doi.org/10.1186/1754-6834-5-28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apenergy.2011.07.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012664173"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4490/algae.2013.28.1.101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013196361"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11274-013-1289-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014431955", 
              "https://doi.org/10.1007/s11274-013-1289-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijhydene.2012.02.071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015573347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2012.02.129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017148757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c2ra20420g", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018230509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1754-6834-5-13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018295984", 
              "https://doi.org/10.1186/1754-6834-5-13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2193-1801-1-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019699202", 
              "https://doi.org/10.1186/2193-1801-1-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1754-6834-6-88", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022768977", 
              "https://doi.org/10.1186/1754-6834-6-88"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jpowsour.2013.01.036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023205829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/2193-1801-1-33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023316530", 
              "https://doi.org/10.1186/2193-1801-1-33"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10126-012-9450-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023414616", 
              "https://doi.org/10.1007/s10126-012-9450-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apenergy.2010.11.029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023658374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2010.06.076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023786609"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1754-6834-4-61", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024992903", 
              "https://doi.org/10.1186/1754-6834-4-61"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1754-6834-5-74", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025438580", 
              "https://doi.org/10.1186/1754-6834-5-74"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1754-6834-2-13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025458756", 
              "https://doi.org/10.1186/1754-6834-2-13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bbb.1403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025758097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-008-1681-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027805324", 
              "https://doi.org/10.1007/s00253-008-1681-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-008-1681-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027805324", 
              "https://doi.org/10.1007/s00253-008-1681-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2011.04.038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029606699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1754-6834-5-68", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030422299", 
              "https://doi.org/10.1186/1754-6834-5-68"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.procbio.2008.07.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031157255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2010.02.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032985814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1754-6834-5-18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033027613", 
              "https://doi.org/10.1186/1754-6834-5-18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10811-010-9608-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033369912", 
              "https://doi.org/10.1007/s10811-010-9608-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijhydene.2009.05.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034018493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2010.10.049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035393399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.watres.2012.07.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035415054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2011.07.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035422515"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2010.05.082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036591070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2012.12.070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037919039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2009.11.041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038266832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2012.07.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039083625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2012.01.125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039249254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/gcbb.12073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039901144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.renene.2012.12.046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042110845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0360-3199(02)00071-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042743708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2013.05.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043009235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1754-6834-6-69", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043345157", 
              "https://doi.org/10.1186/1754-6834-6-69"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mimet.2012.09.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048087349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bej.2011.12.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049479169"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-12", 
        "datePublishedReg": "2013-12-01", 
        "description": "BACKGROUND: Biodiesel production from oleaginous microalgae shows great potential as a promising alternative to conventional fossil fuels. Currently, most research focus on algal biomass production with autotrophic cultivation, but this cultivation strategy induces low biomass concentration and it is difficult to be used in large-scale algal biomass production. By contrast, heterotrophic algae allows higher growth rate and can accumulate higher lipid. However, the fast-growing and lipid-rich microalgae that can be cultivated in heterotrophic system for the industrial application of biodiesel production are still few. Traditional solvent extraction and gravimetric determination to detect the microalgal total lipid content is time-consuming and laborious, which has become a major limiting factor for selecting large number of algae specimens. Thus, it is critical to develop a rapid and efficient procedure for the screening of lipid-rich microalgae.\nRESULTS: A novel green microalga Scenedesmus sp. strain R-16 with high total lipid content was selected using the Nile red staining from eighty-eight isolates. Various carbon sources (fructose, glucose and acetate) and nitrogen sources (nitrate, urea, peptone and yeast extract) can be utilized for microalgal growth and lipid production, and the optimal carbon and nitrogen sources were glucose (10\u00a0g\u00a0L-1) and nitrate (0.6\u00a0g\u00a0L-1), respectively. Compared to autotrophic situation, the strain R-16 can grow well heterotrophically without light and the accumulated total lipid content and biomass reached 43.4% and 3.46\u00a0g\u00a0L-1, respectively. In addition, nitrogen deficiency led to an accumulation of lipid and the total lipid content was as high as 52.6%, and it was worth noting that strain R-16 exhibited strong tolerance to high glucose (up to 100\u00a0g\u00a0L-1) and a wide range of pH (4.0-11.0).\nCONCLUSIONS: The newly developed ultrasonic-assisted Nile red method proved to be an efficient isolation procedure and was successfully used in the selection of oleaginous microalgae. The isolated novel green microalgal strain R-16 was rich in lipid and can live in varied and contrasting conditions. The algae appeared to have great potential for application in microalgae-based biodiesel production.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/1754-6834-6-143", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6976456", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7000597", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1039046", 
            "issn": [
              "1754-6834"
            ], 
            "name": "Biotechnology for Biofuels", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "name": "A new lipid-rich microalga Scenedesmussp. strain R-16 isolated using Nile red staining: effects of carbon and nitrogen sources and initial pH on the biomass and lipid production", 
        "pagination": "143", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c0b32dc980edfe8735618757723aab0aef850b62d8c1d56010f026206450e07d"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "24093331"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101316935"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1754-6834-6-143"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1040452762"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1754-6834-6-143", 
          "https://app.dimensions.ai/details/publication/pub.1040452762"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T13:17", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000515.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2F1754-6834-6-143"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1754-6834-6-143'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1754-6834-6-143'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1754-6834-6-143'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1754-6834-6-143'


     

    This table displays all metadata directly associated to this object as RDF triples.

    262 TRIPLES      21 PREDICATES      77 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1754-6834-6-143 schema:about anzsrc-for:06
    2 anzsrc-for:0607
    3 schema:author N9842456c62f34ac1b91b4d8904445abf
    4 schema:citation sg:pub.10.1007/s00253-008-1681-1
    5 sg:pub.10.1007/s10126-012-9450-7
    6 sg:pub.10.1007/s10811-010-9608-5
    7 sg:pub.10.1007/s11274-013-1289-1
    8 sg:pub.10.1186/1754-6834-2-13
    9 sg:pub.10.1186/1754-6834-4-61
    10 sg:pub.10.1186/1754-6834-5-13
    11 sg:pub.10.1186/1754-6834-5-18
    12 sg:pub.10.1186/1754-6834-5-28
    13 sg:pub.10.1186/1754-6834-5-68
    14 sg:pub.10.1186/1754-6834-5-74
    15 sg:pub.10.1186/1754-6834-6-1
    16 sg:pub.10.1186/1754-6834-6-38
    17 sg:pub.10.1186/1754-6834-6-64
    18 sg:pub.10.1186/1754-6834-6-69
    19 sg:pub.10.1186/1754-6834-6-88
    20 sg:pub.10.1186/2193-1801-1-1
    21 sg:pub.10.1186/2193-1801-1-33
    22 https://doi.org/10.1002/bbb.1403
    23 https://doi.org/10.1002/bit.24477
    24 https://doi.org/10.1016/j.apenergy.2010.11.029
    25 https://doi.org/10.1016/j.apenergy.2011.07.028
    26 https://doi.org/10.1016/j.bej.2011.12.001
    27 https://doi.org/10.1016/j.biortech.2008.12.020
    28 https://doi.org/10.1016/j.biortech.2009.11.041
    29 https://doi.org/10.1016/j.biortech.2010.02.024
    30 https://doi.org/10.1016/j.biortech.2010.05.082
    31 https://doi.org/10.1016/j.biortech.2010.06.076
    32 https://doi.org/10.1016/j.biortech.2010.10.049
    33 https://doi.org/10.1016/j.biortech.2011.04.038
    34 https://doi.org/10.1016/j.biortech.2011.07.025
    35 https://doi.org/10.1016/j.biortech.2012.01.125
    36 https://doi.org/10.1016/j.biortech.2012.02.129
    37 https://doi.org/10.1016/j.biortech.2012.07.002
    38 https://doi.org/10.1016/j.biortech.2012.12.070
    39 https://doi.org/10.1016/j.biortech.2013.05.009
    40 https://doi.org/10.1016/j.ijhydene.2009.05.005
    41 https://doi.org/10.1016/j.ijhydene.2012.02.071
    42 https://doi.org/10.1016/j.jpowsour.2013.01.036
    43 https://doi.org/10.1016/j.mimet.2012.09.001
    44 https://doi.org/10.1016/j.procbio.2008.07.014
    45 https://doi.org/10.1016/j.renene.2012.12.046
    46 https://doi.org/10.1016/j.watres.2012.07.025
    47 https://doi.org/10.1016/s0360-3199(02)00071-x
    48 https://doi.org/10.1039/c2ra20420g
    49 https://doi.org/10.1111/gcbb.12073
    50 https://doi.org/10.4490/algae.2012.27.3.197
    51 https://doi.org/10.4490/algae.2013.28.1.101
    52 schema:datePublished 2013-12
    53 schema:datePublishedReg 2013-12-01
    54 schema:description BACKGROUND: Biodiesel production from oleaginous microalgae shows great potential as a promising alternative to conventional fossil fuels. Currently, most research focus on algal biomass production with autotrophic cultivation, but this cultivation strategy induces low biomass concentration and it is difficult to be used in large-scale algal biomass production. By contrast, heterotrophic algae allows higher growth rate and can accumulate higher lipid. However, the fast-growing and lipid-rich microalgae that can be cultivated in heterotrophic system for the industrial application of biodiesel production are still few. Traditional solvent extraction and gravimetric determination to detect the microalgal total lipid content is time-consuming and laborious, which has become a major limiting factor for selecting large number of algae specimens. Thus, it is critical to develop a rapid and efficient procedure for the screening of lipid-rich microalgae. RESULTS: A novel green microalga Scenedesmus sp. strain R-16 with high total lipid content was selected using the Nile red staining from eighty-eight isolates. Various carbon sources (fructose, glucose and acetate) and nitrogen sources (nitrate, urea, peptone and yeast extract) can be utilized for microalgal growth and lipid production, and the optimal carbon and nitrogen sources were glucose (10 g L-1) and nitrate (0.6 g L-1), respectively. Compared to autotrophic situation, the strain R-16 can grow well heterotrophically without light and the accumulated total lipid content and biomass reached 43.4% and 3.46 g L-1, respectively. In addition, nitrogen deficiency led to an accumulation of lipid and the total lipid content was as high as 52.6%, and it was worth noting that strain R-16 exhibited strong tolerance to high glucose (up to 100 g L-1) and a wide range of pH (4.0-11.0). CONCLUSIONS: The newly developed ultrasonic-assisted Nile red method proved to be an efficient isolation procedure and was successfully used in the selection of oleaginous microalgae. The isolated novel green microalgal strain R-16 was rich in lipid and can live in varied and contrasting conditions. The algae appeared to have great potential for application in microalgae-based biodiesel production.
    55 schema:genre research_article
    56 schema:inLanguage en
    57 schema:isAccessibleForFree true
    58 schema:isPartOf Nbc543aa465ec4fec883569023ed20e88
    59 Nf6285769e7464ccb9fea70070cd90981
    60 sg:journal.1039046
    61 schema:name A new lipid-rich microalga Scenedesmussp. strain R-16 isolated using Nile red staining: effects of carbon and nitrogen sources and initial pH on the biomass and lipid production
    62 schema:pagination 143
    63 schema:productId N5c46c3d2353a479bbba0e23ff568c251
    64 N67ba3bf469c6411f82846687a54dda3b
    65 Na3fed44e27dd4629b157eaac6618b154
    66 Nd2f3b054ae9145988d9aae7b39a57e87
    67 Nd65cd7b4a42543678561d637f8a7ce00
    68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040452762
    69 https://doi.org/10.1186/1754-6834-6-143
    70 schema:sdDatePublished 2019-04-10T13:17
    71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    72 schema:sdPublisher N88afd12edeec4af1a31b9ce88a71a788
    73 schema:url http://link.springer.com/10.1186%2F1754-6834-6-143
    74 sgo:license sg:explorer/license/
    75 sgo:sdDataset articles
    76 rdf:type schema:ScholarlyArticle
    77 N04f11ca1386e4caea719b6ff36d73cb4 rdf:first sg:person.01017637411.67
    78 rdf:rest N90abb31503ff4eefb4a5c18b2ad10721
    79 N2e78192e23ed42f5be579c53f3259230 rdf:first sg:person.0605672251.51
    80 rdf:rest N04f11ca1386e4caea719b6ff36d73cb4
    81 N545f5459396c4bd8ad34c8d34d29464c rdf:first sg:person.01250752004.56
    82 rdf:rest N2e78192e23ed42f5be579c53f3259230
    83 N5c46c3d2353a479bbba0e23ff568c251 schema:name readcube_id
    84 schema:value c0b32dc980edfe8735618757723aab0aef850b62d8c1d56010f026206450e07d
    85 rdf:type schema:PropertyValue
    86 N67ba3bf469c6411f82846687a54dda3b schema:name pubmed_id
    87 schema:value 24093331
    88 rdf:type schema:PropertyValue
    89 N88afd12edeec4af1a31b9ce88a71a788 schema:name Springer Nature - SN SciGraph project
    90 rdf:type schema:Organization
    91 N90abb31503ff4eefb4a5c18b2ad10721 rdf:first sg:person.01272236422.80
    92 rdf:rest rdf:nil
    93 N9842456c62f34ac1b91b4d8904445abf rdf:first sg:person.01254045130.25
    94 rdf:rest N545f5459396c4bd8ad34c8d34d29464c
    95 Na3fed44e27dd4629b157eaac6618b154 schema:name doi
    96 schema:value 10.1186/1754-6834-6-143
    97 rdf:type schema:PropertyValue
    98 Nbc543aa465ec4fec883569023ed20e88 schema:issueNumber 1
    99 rdf:type schema:PublicationIssue
    100 Nd2f3b054ae9145988d9aae7b39a57e87 schema:name dimensions_id
    101 schema:value pub.1040452762
    102 rdf:type schema:PropertyValue
    103 Nd65cd7b4a42543678561d637f8a7ce00 schema:name nlm_unique_id
    104 schema:value 101316935
    105 rdf:type schema:PropertyValue
    106 Nf6285769e7464ccb9fea70070cd90981 schema:volumeNumber 6
    107 rdf:type schema:PublicationVolume
    108 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    109 schema:name Biological Sciences
    110 rdf:type schema:DefinedTerm
    111 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Plant Biology
    113 rdf:type schema:DefinedTerm
    114 sg:grant.6976456 http://pending.schema.org/fundedItem sg:pub.10.1186/1754-6834-6-143
    115 rdf:type schema:MonetaryGrant
    116 sg:grant.7000597 http://pending.schema.org/fundedItem sg:pub.10.1186/1754-6834-6-143
    117 rdf:type schema:MonetaryGrant
    118 sg:journal.1039046 schema:issn 1754-6834
    119 schema:name Biotechnology for Biofuels
    120 rdf:type schema:Periodical
    121 sg:person.01017637411.67 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
    122 schema:familyName Zhao
    123 schema:givenName Lei
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017637411.67
    125 rdf:type schema:Person
    126 sg:person.01250752004.56 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
    127 schema:familyName Liu
    128 schema:givenName Bing-Feng
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250752004.56
    130 rdf:type schema:Person
    131 sg:person.01254045130.25 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
    132 schema:familyName Ren
    133 schema:givenName Hong-Yu
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254045130.25
    135 rdf:type schema:Person
    136 sg:person.01272236422.80 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
    137 schema:familyName Ren
    138 schema:givenName Nan-Qi
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272236422.80
    140 rdf:type schema:Person
    141 sg:person.0605672251.51 schema:affiliation https://www.grid.ac/institutes/grid.19373.3f
    142 schema:familyName Ma
    143 schema:givenName Chao
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605672251.51
    145 rdf:type schema:Person
    146 sg:pub.10.1007/s00253-008-1681-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027805324
    147 https://doi.org/10.1007/s00253-008-1681-1
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/s10126-012-9450-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023414616
    150 https://doi.org/10.1007/s10126-012-9450-7
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/s10811-010-9608-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033369912
    153 https://doi.org/10.1007/s10811-010-9608-5
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/s11274-013-1289-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014431955
    156 https://doi.org/10.1007/s11274-013-1289-1
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1186/1754-6834-2-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025458756
    159 https://doi.org/10.1186/1754-6834-2-13
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1186/1754-6834-4-61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024992903
    162 https://doi.org/10.1186/1754-6834-4-61
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1186/1754-6834-5-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018295984
    165 https://doi.org/10.1186/1754-6834-5-13
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1186/1754-6834-5-18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033027613
    168 https://doi.org/10.1186/1754-6834-5-18
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1186/1754-6834-5-28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009156227
    171 https://doi.org/10.1186/1754-6834-5-28
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1186/1754-6834-5-68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030422299
    174 https://doi.org/10.1186/1754-6834-5-68
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1186/1754-6834-5-74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025438580
    177 https://doi.org/10.1186/1754-6834-5-74
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1186/1754-6834-6-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001199959
    180 https://doi.org/10.1186/1754-6834-6-1
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1186/1754-6834-6-38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001955300
    183 https://doi.org/10.1186/1754-6834-6-38
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1186/1754-6834-6-64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008552920
    186 https://doi.org/10.1186/1754-6834-6-64
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1186/1754-6834-6-69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043345157
    189 https://doi.org/10.1186/1754-6834-6-69
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1186/1754-6834-6-88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022768977
    192 https://doi.org/10.1186/1754-6834-6-88
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1186/2193-1801-1-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019699202
    195 https://doi.org/10.1186/2193-1801-1-1
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1186/2193-1801-1-33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023316530
    198 https://doi.org/10.1186/2193-1801-1-33
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1002/bbb.1403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025758097
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1002/bit.24477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005748949
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1016/j.apenergy.2010.11.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023658374
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1016/j.apenergy.2011.07.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012664173
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1016/j.bej.2011.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049479169
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1016/j.biortech.2008.12.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004318955
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1016/j.biortech.2009.11.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266832
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1016/j.biortech.2010.02.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032985814
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1016/j.biortech.2010.05.082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036591070
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1016/j.biortech.2010.06.076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023786609
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1016/j.biortech.2010.10.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035393399
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1016/j.biortech.2011.04.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029606699
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1016/j.biortech.2011.07.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035422515
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1016/j.biortech.2012.01.125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039249254
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1016/j.biortech.2012.02.129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017148757
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1016/j.biortech.2012.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039083625
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1016/j.biortech.2012.12.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037919039
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1016/j.biortech.2013.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043009235
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1016/j.ijhydene.2009.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034018493
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1016/j.ijhydene.2012.02.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015573347
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1016/j.jpowsour.2013.01.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023205829
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1016/j.mimet.2012.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048087349
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1016/j.procbio.2008.07.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031157255
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1016/j.renene.2012.12.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042110845
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1016/j.watres.2012.07.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035415054
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1016/s0360-3199(02)00071-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042743708
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1039/c2ra20420g schema:sameAs https://app.dimensions.ai/details/publication/pub.1018230509
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1111/gcbb.12073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039901144
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.4490/algae.2012.27.3.197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004239567
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.4490/algae.2013.28.1.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013196361
    259 rdf:type schema:CreativeWork
    260 https://www.grid.ac/institutes/grid.19373.3f schema:alternateName Harbin Institute of Technology
    261 schema:name State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, Harbin, China
    262 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...