Microevolution from shock to adaptation revealed strategies improving ethanol tolerance and production in Thermoanaerobacter View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

Lu Lin, Yuetong Ji, Qichao Tu, Ranran Huang, Lin Teng, Xiaowei Zeng, Houhui Song, Kun Wang, Qian Zhou, Yifei Li, Qiu Cui, Zhili He, Jizhong Zhou, Jian Xu

ABSTRACT

INTRODUCTION: The molecular links between shock-response and adaptation remain poorly understood, particularly for extremophiles. This has hindered rational engineering of solvent tolerance and correlated traits (e.g., productivity) in extremophiles. To untangle such molecular links, here we established a model that tracked the microevolution from shock to adaptation in thermophilic bacteria. METHOD: Temporal dynamics of genomes and transcriptomes was tracked for Thermoanaerobacter sp. X514 which under increasing exogenous ethanol evolved from ethanol-sensitive wild-type (Strain X) to tolerance of 2%- (XI) and eventually 6%-ethanol (XII). Based on the reconstructed transcriptional network underlying stress tolerance, genetic engineering was employed to improve ethanol tolerance and production in Thermoanaerobacter. RESULTS: The spontaneous genome mutation rate (μg) of Thermoanaerobacter sp. X514, calculated at 0.045, suggested a higher mutation rate in thermophile than previously thought. Transcriptomic comparison revealed that shock-response and adaptation were distinct in nature, whereas the transcriptomes of XII resembled those of the extendedly shocked X. To respond to ethanol shock, X employed fructose-specific phosphotransferase system (PTS), Arginine Deiminase (ADI) pathway, alcohol dehydrogenase (Adh) and a distinct mechanism of V-type ATPase. As an adaptation to exogenous ethanol, XI mobilized resistance-nodulation-cell division (RND) efflux system and Adh, whereas XII, which produced higher ethanol than XI, employed ECF-type ϭ24, an alcohol catabolism operon and phase-specific heat-shock proteins (Hsps), modulated hexose/pentose-transport operon structure and reinforced membrane rigidity. Exploiting these findings, we further showed that ethanol productivity and tolerance can be improved simultaneously by overexpressing adh or ϭ24 in X. CONCLUSION: Our work revealed thermophilic-bacteria specific features of adaptive evolution and demonstrated a rational strategy to engineer co-evolving industrial traits. As improvements of shock-response, stress tolerance and productivity have been crucial aims in industrial applications employing thermophiles, our findings should be valuable not just to the production of ethanol but also to a wide variety of biofuels and biochemicals. More... »

PAGES

103

References to SciGraph publications

  • 2009-04. Analysis of composition and structure of Clostridium thermocellum membranes from wild-type and ethanol-adapted strains in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2011-12. Engineering microbes for tolerance to next-generation biofuels in BIOTECHNOLOGY FOR BIOFUELS
  • 2010-07. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2011-04. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways in NATURE CHEMICAL BIOLOGY
  • 2005-08. Bacterial cell shape in NATURE REVIEWS MICROBIOLOGY
  • 2010-08. Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides in NATURE BIOTECHNOLOGY
  • 2012-09. Genomic analysis of a key innovation in an experimental Escherichia coli population in NATURE
  • 2011-12. Evolution combined with genomic study elucidates genetic bases of isobutanol tolerance in Escherichia coli in MICROBIAL CELL FACTORIES
  • 2007-01. Increase of organic solvent tolerance by overexpression of manXYZ in Escherichia coli in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2003-05. The evolutionary origin of complex features in NATURE
  • 2009-10. Genome evolution and adaptation in a long-term experiment with Escherichia coli in NATURE
  • 1992-01. Ethyl methanesulfonate mutagenesis in extremely halophilic archaebacteria: Isolation of auxotrophic mutants ofHaloferax mediterranei andHaloferax gibbonsii in CURRENT MICROBIOLOGY
  • 2008-12. Molecular characterization of clonal interference during adaptive evolution in asexual populations of Saccharomyces cerevisiae in NATURE GENETICS
  • 2011-05. A framework for variation discovery and genotyping using next-generation DNA sequencing data in NATURE GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1754-6834-6-103

    DOI

    http://dx.doi.org/10.1186/1754-6834-6-103

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1025905514

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/23875846


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Qingdao Institute of Bioenergy and Bioprocess Technology", 
              "id": "https://www.grid.ac/institutes/grid.458500.c", 
              "name": [
                "BioEnergy Genome Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lin", 
            "givenName": "Lu", 
            "id": "sg:person.0767570622.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767570622.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Qingdao Institute of Bioenergy and Bioprocess Technology", 
              "id": "https://www.grid.ac/institutes/grid.458500.c", 
              "name": [
                "BioEnergy Genome Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ji", 
            "givenName": "Yuetong", 
            "id": "sg:person.0742050462.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742050462.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Oklahoma", 
              "id": "https://www.grid.ac/institutes/grid.266900.b", 
              "name": [
                "Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tu", 
            "givenName": "Qichao", 
            "id": "sg:person.01105520061.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105520061.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Qingdao Institute of Bioenergy and Bioprocess Technology", 
              "id": "https://www.grid.ac/institutes/grid.458500.c", 
              "name": [
                "BioEnergy Genome Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Ranran", 
            "id": "sg:person.01323117472.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323117472.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Qingdao Institute of Bioenergy and Bioprocess Technology", 
              "id": "https://www.grid.ac/institutes/grid.458500.c", 
              "name": [
                "BioEnergy Genome Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Teng", 
            "givenName": "Lin", 
            "id": "sg:person.01371232672.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371232672.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Qingdao Institute of Bioenergy and Bioprocess Technology", 
              "id": "https://www.grid.ac/institutes/grid.458500.c", 
              "name": [
                "BioEnergy Genome Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zeng", 
            "givenName": "Xiaowei", 
            "id": "sg:person.0703471027.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703471027.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Qingdao Institute of Bioenergy and Bioprocess Technology", 
              "id": "https://www.grid.ac/institutes/grid.458500.c", 
              "name": [
                "BioEnergy Genome Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Song", 
            "givenName": "Houhui", 
            "id": "sg:person.01251540651.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251540651.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Qingdao Institute of Bioenergy and Bioprocess Technology", 
              "id": "https://www.grid.ac/institutes/grid.458500.c", 
              "name": [
                "BioEnergy Genome Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Kun", 
            "id": "sg:person.0601602471.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601602471.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Qingdao Institute of Bioenergy and Bioprocess Technology", 
              "id": "https://www.grid.ac/institutes/grid.458500.c", 
              "name": [
                "BioEnergy Genome Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Qian", 
            "id": "sg:person.01135773240.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135773240.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Qingdao Institute of Bioenergy and Bioprocess Technology", 
              "id": "https://www.grid.ac/institutes/grid.458500.c", 
              "name": [
                "BioEnergy Genome Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Yifei", 
            "id": "sg:person.0721644407.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721644407.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Qingdao Institute of Bioenergy and Bioprocess Technology", 
              "id": "https://www.grid.ac/institutes/grid.458500.c", 
              "name": [
                "BioEnergy Genome Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cui", 
            "givenName": "Qiu", 
            "id": "sg:person.01220274247.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220274247.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Oklahoma", 
              "id": "https://www.grid.ac/institutes/grid.266900.b", 
              "name": [
                "Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "He", 
            "givenName": "Zhili", 
            "id": "sg:person.01334554714.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334554714.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Oklahoma", 
              "id": "https://www.grid.ac/institutes/grid.266900.b", 
              "name": [
                "Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Jizhong", 
            "id": "sg:person.01171352100.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171352100.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Qingdao Institute of Bioenergy and Bioprocess Technology", 
              "id": "https://www.grid.ac/institutes/grid.458500.c", 
              "name": [
                "BioEnergy Genome Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, P. R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xu", 
            "givenName": "Jian", 
            "id": "sg:person.01320335040.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320335040.67"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.biotechadv.2013.03.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000044331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.69.8.4951-4965.2003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002304054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01568", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005784902", 
              "https://doi.org/10.1038/nature01568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01568", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005784902", 
              "https://doi.org/10.1038/nature01568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08480", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008340720", 
              "https://doi.org/10.1038/nature08480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08480", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008340720", 
              "https://doi.org/10.1038/nature08480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010244476", 
              "https://doi.org/10.1038/ng.806"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.186.7.1959-1971.2004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010598664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.anaerobe.2007.09.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010798757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1000520", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011924005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.02296-06", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012325675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01570098", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013150102", 
              "https://doi.org/10.1007/bf01570098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01570098", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013150102", 
              "https://doi.org/10.1007/bf01570098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2672.2009.04657.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014503295"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2672.2009.04657.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014503295"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0801266105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014549313"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1002318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015276362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-010-2594-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015576942", 
              "https://doi.org/10.1007/s00253-010-2594-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-010-2594-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015576942", 
              "https://doi.org/10.1007/s00253-010-2594-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pbio.0040023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016413990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pbio.0040023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016413990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp336", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016441007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.05677-11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017529547"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0017678", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017718196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio.537", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017758743", 
              "https://doi.org/10.1038/nchembio.537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-009-1891-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017868089", 
              "https://doi.org/10.1007/s00253-009-1891-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-009-1891-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017868089", 
              "https://doi.org/10.1007/s00253-009-1891-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mbio.00169-10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018821207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/msb.2010.33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019183478"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/msb.2010.33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019183478"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.188.8.2865-2874.2006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019391159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/pr9012078", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019729457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.02323-09", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020123186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1102444108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020659715"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmbi.2000.3778", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021587761"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ymben.2012.07.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022443230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023014918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.102154799", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026021917"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-006-0624-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026861756", 
              "https://doi.org/10.1007/s00253-006-0624-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-006-0624-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026861756", 
              "https://doi.org/10.1007/s00253-006-0624-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0076-6879(06)11009-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027510687"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0076-6879(03)74020-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027914988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028517948", 
              "https://doi.org/10.1038/nrmicro1205"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028517948", 
              "https://doi.org/10.1038/nrmicro1205"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1534-5807(03)00123-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029493425"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0012582", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031136035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tibtech.2009.03.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033121539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ymben.2009.12.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033547863"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0810291106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035172527"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ymben.2010.03.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035190804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/msb.2009.34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036105985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/msb.2009.34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036105985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1475-2859-10-18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039195586", 
              "https://doi.org/10.1186/1475-2859-10-18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/biot.200800158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039696099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jbiotec.2010.06.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040973349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.micro.50.1.285", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041273023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.01316-07", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042690243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.68.12.6193-6201.2002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043355552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.copbio.2011.04.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045229135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.078212.108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047542880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1754-6834-4-32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047580279", 
              "https://doi.org/10.1186/1754-6834-4-32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/msb.2010.98", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047840385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/msb.2010.98", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047840385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11514", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048303688", 
              "https://doi.org/10.1038/nature11514"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1365-2958.1999.01323.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048522840"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.186.7.2006-2018.2004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049302735"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1653", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050549966", 
              "https://doi.org/10.1038/nbt.1653"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.280", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051870404", 
              "https://doi.org/10.1038/ng.280"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.ppat.1000834", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053258215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1131969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062454688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1542531", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069532672"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0471223867", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098661121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0471223867", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098661121"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-12", 
        "datePublishedReg": "2013-12-01", 
        "description": "INTRODUCTION: The molecular links between shock-response and adaptation remain poorly understood, particularly for extremophiles. This has hindered rational engineering of solvent tolerance and correlated traits (e.g., productivity) in extremophiles. To untangle such molecular links, here we established a model that tracked the microevolution from shock to adaptation in thermophilic bacteria.\nMETHOD: Temporal dynamics of genomes and transcriptomes was tracked for Thermoanaerobacter sp. X514 which under increasing exogenous ethanol evolved from ethanol-sensitive wild-type (Strain X) to tolerance of 2%- (XI) and eventually 6%-ethanol (XII). Based on the reconstructed transcriptional network underlying stress tolerance, genetic engineering was employed to improve ethanol tolerance and production in Thermoanaerobacter.\nRESULTS: The spontaneous genome mutation rate (\u03bcg) of Thermoanaerobacter sp. X514, calculated at 0.045, suggested a higher mutation rate in thermophile than previously thought. Transcriptomic comparison revealed that shock-response and adaptation were distinct in nature, whereas the transcriptomes of XII resembled those of the extendedly shocked X. To respond to ethanol shock, X employed fructose-specific phosphotransferase system (PTS), Arginine Deiminase (ADI) pathway, alcohol dehydrogenase (Adh) and a distinct mechanism of V-type ATPase. As an adaptation to exogenous ethanol, XI mobilized resistance-nodulation-cell division (RND) efflux system and Adh, whereas XII, which produced higher ethanol than XI, employed ECF-type \u03ed24, an alcohol catabolism operon and phase-specific heat-shock proteins (Hsps), modulated hexose/pentose-transport operon structure and reinforced membrane rigidity. Exploiting these findings, we further showed that ethanol productivity and tolerance can be improved simultaneously by overexpressing adh or \u03ed24 in X.\nCONCLUSION: Our work revealed thermophilic-bacteria specific features of adaptive evolution and demonstrated a rational strategy to engineer co-evolving industrial traits. As improvements of shock-response, stress tolerance and productivity have been crucial aims in industrial applications employing thermophiles, our findings should be valuable not just to the production of ethanol but also to a wide variety of biofuels and biochemicals.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/1754-6834-6-103", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4950599", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2996620", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7200559", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1039046", 
            "issn": [
              "1754-6834"
            ], 
            "name": "Biotechnology for Biofuels", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "name": "Microevolution from shock to adaptation revealed strategies improving ethanol tolerance and production in Thermoanaerobacter", 
        "pagination": "103", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7b6a3a5ba1a305d74facb8821354213733a155f82779170a96f2261eefab82d6"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "23875846"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101316935"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1754-6834-6-103"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1025905514"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1754-6834-6-103", 
          "https://app.dimensions.ai/details/publication/pub.1025905514"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T17:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000513.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2F1754-6834-6-103"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1754-6834-6-103'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1754-6834-6-103'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1754-6834-6-103'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1754-6834-6-103'


     

    This table displays all metadata directly associated to this object as RDF triples.

    362 TRIPLES      21 PREDICATES      89 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1754-6834-6-103 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author Nefcca7dae5c141f29c17bc0416728c59
    4 schema:citation sg:pub.10.1007/bf01570098
    5 sg:pub.10.1007/s00253-006-0624-y
    6 sg:pub.10.1007/s00253-009-1891-1
    7 sg:pub.10.1007/s00253-010-2594-3
    8 sg:pub.10.1038/nature01568
    9 sg:pub.10.1038/nature08480
    10 sg:pub.10.1038/nature11514
    11 sg:pub.10.1038/nbt.1653
    12 sg:pub.10.1038/nchembio.537
    13 sg:pub.10.1038/ng.280
    14 sg:pub.10.1038/ng.806
    15 sg:pub.10.1038/nrmicro1205
    16 sg:pub.10.1186/1475-2859-10-18
    17 sg:pub.10.1186/1754-6834-4-32
    18 https://doi.org/10.1002/0471223867
    19 https://doi.org/10.1002/biot.200800158
    20 https://doi.org/10.1006/jmbi.2000.3778
    21 https://doi.org/10.1016/j.anaerobe.2007.09.004
    22 https://doi.org/10.1016/j.biotechadv.2013.03.003
    23 https://doi.org/10.1016/j.copbio.2011.04.019
    24 https://doi.org/10.1016/j.jbiotec.2010.06.006
    25 https://doi.org/10.1016/j.tibtech.2009.03.006
    26 https://doi.org/10.1016/j.ymben.2009.12.002
    27 https://doi.org/10.1016/j.ymben.2010.03.004
    28 https://doi.org/10.1016/j.ymben.2012.07.004
    29 https://doi.org/10.1016/s0076-6879(03)74020-8
    30 https://doi.org/10.1016/s0076-6879(06)11009-5
    31 https://doi.org/10.1016/s1534-5807(03)00123-0
    32 https://doi.org/10.1021/pr9012078
    33 https://doi.org/10.1038/msb.2009.34
    34 https://doi.org/10.1038/msb.2010.33
    35 https://doi.org/10.1038/msb.2010.98
    36 https://doi.org/10.1046/j.1365-2958.1999.01323.x
    37 https://doi.org/10.1073/pnas.0801266105
    38 https://doi.org/10.1073/pnas.0810291106
    39 https://doi.org/10.1073/pnas.102154799
    40 https://doi.org/10.1073/pnas.1102444108
    41 https://doi.org/10.1093/bioinformatics/btp336
    42 https://doi.org/10.1093/bioinformatics/btp352
    43 https://doi.org/10.1101/gr.078212.108
    44 https://doi.org/10.1111/j.1365-2672.2009.04657.x
    45 https://doi.org/10.1126/science.1131969
    46 https://doi.org/10.1128/aem.02296-06
    47 https://doi.org/10.1128/aem.02323-09
    48 https://doi.org/10.1128/aem.05677-11
    49 https://doi.org/10.1128/aem.68.12.6193-6201.2002
    50 https://doi.org/10.1128/aem.69.8.4951-4965.2003
    51 https://doi.org/10.1128/jb.01316-07
    52 https://doi.org/10.1128/jb.186.7.1959-1971.2004
    53 https://doi.org/10.1128/jb.186.7.2006-2018.2004
    54 https://doi.org/10.1128/jb.188.8.2865-2874.2006
    55 https://doi.org/10.1128/mbio.00169-10
    56 https://doi.org/10.1146/annurev.micro.50.1.285
    57 https://doi.org/10.1371/journal.pbio.0040023
    58 https://doi.org/10.1371/journal.pgen.1000520
    59 https://doi.org/10.1371/journal.pgen.1002318
    60 https://doi.org/10.1371/journal.pone.0012582
    61 https://doi.org/10.1371/journal.pone.0017678
    62 https://doi.org/10.1371/journal.ppat.1000834
    63 https://doi.org/10.2307/1542531
    64 schema:datePublished 2013-12
    65 schema:datePublishedReg 2013-12-01
    66 schema:description INTRODUCTION: The molecular links between shock-response and adaptation remain poorly understood, particularly for extremophiles. This has hindered rational engineering of solvent tolerance and correlated traits (e.g., productivity) in extremophiles. To untangle such molecular links, here we established a model that tracked the microevolution from shock to adaptation in thermophilic bacteria. METHOD: Temporal dynamics of genomes and transcriptomes was tracked for Thermoanaerobacter sp. X514 which under increasing exogenous ethanol evolved from ethanol-sensitive wild-type (Strain X) to tolerance of 2%- (XI) and eventually 6%-ethanol (XII). Based on the reconstructed transcriptional network underlying stress tolerance, genetic engineering was employed to improve ethanol tolerance and production in Thermoanaerobacter. RESULTS: The spontaneous genome mutation rate (μg) of Thermoanaerobacter sp. X514, calculated at 0.045, suggested a higher mutation rate in thermophile than previously thought. Transcriptomic comparison revealed that shock-response and adaptation were distinct in nature, whereas the transcriptomes of XII resembled those of the extendedly shocked X. To respond to ethanol shock, X employed fructose-specific phosphotransferase system (PTS), Arginine Deiminase (ADI) pathway, alcohol dehydrogenase (Adh) and a distinct mechanism of V-type ATPase. As an adaptation to exogenous ethanol, XI mobilized resistance-nodulation-cell division (RND) efflux system and Adh, whereas XII, which produced higher ethanol than XI, employed ECF-type ϭ24, an alcohol catabolism operon and phase-specific heat-shock proteins (Hsps), modulated hexose/pentose-transport operon structure and reinforced membrane rigidity. Exploiting these findings, we further showed that ethanol productivity and tolerance can be improved simultaneously by overexpressing adh or ϭ24 in X. CONCLUSION: Our work revealed thermophilic-bacteria specific features of adaptive evolution and demonstrated a rational strategy to engineer co-evolving industrial traits. As improvements of shock-response, stress tolerance and productivity have been crucial aims in industrial applications employing thermophiles, our findings should be valuable not just to the production of ethanol but also to a wide variety of biofuels and biochemicals.
    67 schema:genre research_article
    68 schema:inLanguage en
    69 schema:isAccessibleForFree true
    70 schema:isPartOf N2779acf6508a444999067666eaf778b5
    71 N97c9c50435e24a34b437a4a461dcb0e4
    72 sg:journal.1039046
    73 schema:name Microevolution from shock to adaptation revealed strategies improving ethanol tolerance and production in Thermoanaerobacter
    74 schema:pagination 103
    75 schema:productId N2237c0e2ee7b4b3ab7f60b79bf5a43d4
    76 N57facd824c904a80b7a5265c333598e5
    77 N593315c69bd242b6aacb81241811811d
    78 N7975acfc151e495d8b0db5e2295c881d
    79 N7b62c8e78ca54e649fe097c0bcad59d6
    80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025905514
    81 https://doi.org/10.1186/1754-6834-6-103
    82 schema:sdDatePublished 2019-04-10T17:32
    83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    84 schema:sdPublisher N3a66dce6e1974f4c8a291a6fd9a05a03
    85 schema:url http://link.springer.com/10.1186%2F1754-6834-6-103
    86 sgo:license sg:explorer/license/
    87 sgo:sdDataset articles
    88 rdf:type schema:ScholarlyArticle
    89 N028431779d3d4a4e8d44149a8b868755 rdf:first sg:person.01334554714.72
    90 rdf:rest N7b8c6247d6b543ff9941378a51ccf0a2
    91 N21b048b4588a4139a25ae0a1fb21c27c rdf:first sg:person.01220274247.25
    92 rdf:rest N028431779d3d4a4e8d44149a8b868755
    93 N2237c0e2ee7b4b3ab7f60b79bf5a43d4 schema:name readcube_id
    94 schema:value 7b6a3a5ba1a305d74facb8821354213733a155f82779170a96f2261eefab82d6
    95 rdf:type schema:PropertyValue
    96 N2779acf6508a444999067666eaf778b5 schema:issueNumber 1
    97 rdf:type schema:PublicationIssue
    98 N3144f1f477c1432ca2968dc27479d4aa rdf:first sg:person.0742050462.53
    99 rdf:rest N4a27a7bac1424f2ea06a18a142a988ad
    100 N3a66dce6e1974f4c8a291a6fd9a05a03 schema:name Springer Nature - SN SciGraph project
    101 rdf:type schema:Organization
    102 N484081f7e0b846e8b1686cc31434137a rdf:first sg:person.01323117472.31
    103 rdf:rest Nefee453c048949959ddaa0df08dd0055
    104 N4a27a7bac1424f2ea06a18a142a988ad rdf:first sg:person.01105520061.93
    105 rdf:rest N484081f7e0b846e8b1686cc31434137a
    106 N4b743c870a464d06ab02f6b1a8611de1 rdf:first sg:person.0601602471.19
    107 rdf:rest N584d673222474bdcb81a19ad47fbca96
    108 N57facd824c904a80b7a5265c333598e5 schema:name dimensions_id
    109 schema:value pub.1025905514
    110 rdf:type schema:PropertyValue
    111 N584d673222474bdcb81a19ad47fbca96 rdf:first sg:person.01135773240.31
    112 rdf:rest N786117374a014b3b86ce6842d8a1ec81
    113 N593315c69bd242b6aacb81241811811d schema:name pubmed_id
    114 schema:value 23875846
    115 rdf:type schema:PropertyValue
    116 N786117374a014b3b86ce6842d8a1ec81 rdf:first sg:person.0721644407.42
    117 rdf:rest N21b048b4588a4139a25ae0a1fb21c27c
    118 N7975acfc151e495d8b0db5e2295c881d schema:name doi
    119 schema:value 10.1186/1754-6834-6-103
    120 rdf:type schema:PropertyValue
    121 N7b62c8e78ca54e649fe097c0bcad59d6 schema:name nlm_unique_id
    122 schema:value 101316935
    123 rdf:type schema:PropertyValue
    124 N7b8c6247d6b543ff9941378a51ccf0a2 rdf:first sg:person.01171352100.63
    125 rdf:rest Nf71942ad4bac4c258ee5d280202bdaaa
    126 N97c9c50435e24a34b437a4a461dcb0e4 schema:volumeNumber 6
    127 rdf:type schema:PublicationVolume
    128 Nb830021c4cc045869694f5ebe73dd43a rdf:first sg:person.01251540651.70
    129 rdf:rest N4b743c870a464d06ab02f6b1a8611de1
    130 Nbb04c7e2896740af91a2c3214be7567f rdf:first sg:person.0703471027.04
    131 rdf:rest Nb830021c4cc045869694f5ebe73dd43a
    132 Nefcca7dae5c141f29c17bc0416728c59 rdf:first sg:person.0767570622.36
    133 rdf:rest N3144f1f477c1432ca2968dc27479d4aa
    134 Nefee453c048949959ddaa0df08dd0055 rdf:first sg:person.01371232672.50
    135 rdf:rest Nbb04c7e2896740af91a2c3214be7567f
    136 Nf71942ad4bac4c258ee5d280202bdaaa rdf:first sg:person.01320335040.67
    137 rdf:rest rdf:nil
    138 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    139 schema:name Biological Sciences
    140 rdf:type schema:DefinedTerm
    141 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    142 schema:name Genetics
    143 rdf:type schema:DefinedTerm
    144 sg:grant.2996620 http://pending.schema.org/fundedItem sg:pub.10.1186/1754-6834-6-103
    145 rdf:type schema:MonetaryGrant
    146 sg:grant.4950599 http://pending.schema.org/fundedItem sg:pub.10.1186/1754-6834-6-103
    147 rdf:type schema:MonetaryGrant
    148 sg:grant.7200559 http://pending.schema.org/fundedItem sg:pub.10.1186/1754-6834-6-103
    149 rdf:type schema:MonetaryGrant
    150 sg:journal.1039046 schema:issn 1754-6834
    151 schema:name Biotechnology for Biofuels
    152 rdf:type schema:Periodical
    153 sg:person.01105520061.93 schema:affiliation https://www.grid.ac/institutes/grid.266900.b
    154 schema:familyName Tu
    155 schema:givenName Qichao
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105520061.93
    157 rdf:type schema:Person
    158 sg:person.01135773240.31 schema:affiliation https://www.grid.ac/institutes/grid.458500.c
    159 schema:familyName Zhou
    160 schema:givenName Qian
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01135773240.31
    162 rdf:type schema:Person
    163 sg:person.01171352100.63 schema:affiliation https://www.grid.ac/institutes/grid.266900.b
    164 schema:familyName Zhou
    165 schema:givenName Jizhong
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171352100.63
    167 rdf:type schema:Person
    168 sg:person.01220274247.25 schema:affiliation https://www.grid.ac/institutes/grid.458500.c
    169 schema:familyName Cui
    170 schema:givenName Qiu
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220274247.25
    172 rdf:type schema:Person
    173 sg:person.01251540651.70 schema:affiliation https://www.grid.ac/institutes/grid.458500.c
    174 schema:familyName Song
    175 schema:givenName Houhui
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251540651.70
    177 rdf:type schema:Person
    178 sg:person.01320335040.67 schema:affiliation https://www.grid.ac/institutes/grid.458500.c
    179 schema:familyName Xu
    180 schema:givenName Jian
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320335040.67
    182 rdf:type schema:Person
    183 sg:person.01323117472.31 schema:affiliation https://www.grid.ac/institutes/grid.458500.c
    184 schema:familyName Huang
    185 schema:givenName Ranran
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323117472.31
    187 rdf:type schema:Person
    188 sg:person.01334554714.72 schema:affiliation https://www.grid.ac/institutes/grid.266900.b
    189 schema:familyName He
    190 schema:givenName Zhili
    191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334554714.72
    192 rdf:type schema:Person
    193 sg:person.01371232672.50 schema:affiliation https://www.grid.ac/institutes/grid.458500.c
    194 schema:familyName Teng
    195 schema:givenName Lin
    196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371232672.50
    197 rdf:type schema:Person
    198 sg:person.0601602471.19 schema:affiliation https://www.grid.ac/institutes/grid.458500.c
    199 schema:familyName Wang
    200 schema:givenName Kun
    201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601602471.19
    202 rdf:type schema:Person
    203 sg:person.0703471027.04 schema:affiliation https://www.grid.ac/institutes/grid.458500.c
    204 schema:familyName Zeng
    205 schema:givenName Xiaowei
    206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703471027.04
    207 rdf:type schema:Person
    208 sg:person.0721644407.42 schema:affiliation https://www.grid.ac/institutes/grid.458500.c
    209 schema:familyName Li
    210 schema:givenName Yifei
    211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721644407.42
    212 rdf:type schema:Person
    213 sg:person.0742050462.53 schema:affiliation https://www.grid.ac/institutes/grid.458500.c
    214 schema:familyName Ji
    215 schema:givenName Yuetong
    216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742050462.53
    217 rdf:type schema:Person
    218 sg:person.0767570622.36 schema:affiliation https://www.grid.ac/institutes/grid.458500.c
    219 schema:familyName Lin
    220 schema:givenName Lu
    221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767570622.36
    222 rdf:type schema:Person
    223 sg:pub.10.1007/bf01570098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013150102
    224 https://doi.org/10.1007/bf01570098
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/s00253-006-0624-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1026861756
    227 https://doi.org/10.1007/s00253-006-0624-y
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/s00253-009-1891-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017868089
    230 https://doi.org/10.1007/s00253-009-1891-1
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/s00253-010-2594-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015576942
    233 https://doi.org/10.1007/s00253-010-2594-3
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/nature01568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005784902
    236 https://doi.org/10.1038/nature01568
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/nature08480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008340720
    239 https://doi.org/10.1038/nature08480
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/nature11514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048303688
    242 https://doi.org/10.1038/nature11514
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/nbt.1653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050549966
    245 https://doi.org/10.1038/nbt.1653
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/nchembio.537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017758743
    248 https://doi.org/10.1038/nchembio.537
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/ng.280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051870404
    251 https://doi.org/10.1038/ng.280
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/ng.806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010244476
    254 https://doi.org/10.1038/ng.806
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/nrmicro1205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028517948
    257 https://doi.org/10.1038/nrmicro1205
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1186/1475-2859-10-18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039195586
    260 https://doi.org/10.1186/1475-2859-10-18
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1186/1754-6834-4-32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047580279
    263 https://doi.org/10.1186/1754-6834-4-32
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1002/0471223867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661121
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1002/biot.200800158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039696099
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1006/jmbi.2000.3778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021587761
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1016/j.anaerobe.2007.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010798757
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1016/j.biotechadv.2013.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000044331
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1016/j.copbio.2011.04.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045229135
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1016/j.jbiotec.2010.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040973349
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1016/j.tibtech.2009.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033121539
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1016/j.ymben.2009.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033547863
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1016/j.ymben.2010.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035190804
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1016/j.ymben.2012.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022443230
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1016/s0076-6879(03)74020-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027914988
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1016/s0076-6879(06)11009-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027510687
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1016/s1534-5807(03)00123-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029493425
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1021/pr9012078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019729457
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1038/msb.2009.34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036105985
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1038/msb.2010.33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019183478
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1038/msb.2010.98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047840385
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1046/j.1365-2958.1999.01323.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048522840
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1073/pnas.0801266105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014549313
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1073/pnas.0810291106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035172527
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1073/pnas.102154799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026021917
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.1073/pnas.1102444108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020659715
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.1093/bioinformatics/btp336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016441007
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.1101/gr.078212.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047542880
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.1111/j.1365-2672.2009.04657.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014503295
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.1126/science.1131969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062454688
    320 rdf:type schema:CreativeWork
    321 https://doi.org/10.1128/aem.02296-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012325675
    322 rdf:type schema:CreativeWork
    323 https://doi.org/10.1128/aem.02323-09 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020123186
    324 rdf:type schema:CreativeWork
    325 https://doi.org/10.1128/aem.05677-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017529547
    326 rdf:type schema:CreativeWork
    327 https://doi.org/10.1128/aem.68.12.6193-6201.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043355552
    328 rdf:type schema:CreativeWork
    329 https://doi.org/10.1128/aem.69.8.4951-4965.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002304054
    330 rdf:type schema:CreativeWork
    331 https://doi.org/10.1128/jb.01316-07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042690243
    332 rdf:type schema:CreativeWork
    333 https://doi.org/10.1128/jb.186.7.1959-1971.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010598664
    334 rdf:type schema:CreativeWork
    335 https://doi.org/10.1128/jb.186.7.2006-2018.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049302735
    336 rdf:type schema:CreativeWork
    337 https://doi.org/10.1128/jb.188.8.2865-2874.2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019391159
    338 rdf:type schema:CreativeWork
    339 https://doi.org/10.1128/mbio.00169-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018821207
    340 rdf:type schema:CreativeWork
    341 https://doi.org/10.1146/annurev.micro.50.1.285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041273023
    342 rdf:type schema:CreativeWork
    343 https://doi.org/10.1371/journal.pbio.0040023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016413990
    344 rdf:type schema:CreativeWork
    345 https://doi.org/10.1371/journal.pgen.1000520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011924005
    346 rdf:type schema:CreativeWork
    347 https://doi.org/10.1371/journal.pgen.1002318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015276362
    348 rdf:type schema:CreativeWork
    349 https://doi.org/10.1371/journal.pone.0012582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031136035
    350 rdf:type schema:CreativeWork
    351 https://doi.org/10.1371/journal.pone.0017678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017718196
    352 rdf:type schema:CreativeWork
    353 https://doi.org/10.1371/journal.ppat.1000834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053258215
    354 rdf:type schema:CreativeWork
    355 https://doi.org/10.2307/1542531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069532672
    356 rdf:type schema:CreativeWork
    357 https://www.grid.ac/institutes/grid.266900.b schema:alternateName University of Oklahoma
    358 schema:name Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
    359 rdf:type schema:Organization
    360 https://www.grid.ac/institutes/grid.458500.c schema:alternateName Qingdao Institute of Bioenergy and Bioprocess Technology
    361 schema:name BioEnergy Genome Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, P. R. China
    362 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...