Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of xylan biosynthesis mutants View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-11-26

AUTHORS

Pia Damm Petersen, Jane Lau, Berit Ebert, Fan Yang, Yves Verhertbruggen, Jin Sun Kim, Patanjali Varanasi, Anongpat Suttangkakul, Manfred Auer, Dominique Loqué, Henrik Vibe Scheller

ABSTRACT

BACKGROUND: Cost-efficient generation of second-generation biofuels requires plant biomass that can easily be degraded into sugars and further fermented into fuels. However, lignocellulosic biomass is inherently recalcitrant toward deconstruction technologies due to the abundant lignin and cross-linked hemicelluloses. Furthermore, lignocellulosic biomass has a high content of pentoses, which are more difficult to ferment into fuels than hexoses. Engineered plants with decreased amounts of xylan in their secondary walls have the potential to render plant biomass a more desirable feedstock for biofuel production. RESULTS: Xylan is the major non-cellulosic polysaccharide in secondary cell walls, and the xylan deficient irregular xylem (irx) mutants irx7, irx8 and irx9 exhibit severe dwarf growth phenotypes. The main reason for the growth phenotype appears to be xylem vessel collapse and the resulting impaired transport of water and nutrients. We developed a xylan-engineering approach to reintroduce xylan biosynthesis specifically into the xylem vessels in the Arabidopsis irx7, irx8 and irx9 mutant backgrounds by driving the expression of the respective glycosyltransferases with the vessel-specific promoters of the VND6 and VND7 transcription factor genes. The growth phenotype, stem breaking strength, and irx morphology was recovered to varying degrees. Some of the plants even exhibited increased stem strength compared to the wild type. We obtained Arabidopsis plants with up to 23% reduction in xylose levels and 18% reduction in lignin content compared to wild-type plants, while exhibiting wild-type growth patterns and morphology, as well as normal xylem vessels. These plants showed a 42% increase in saccharification yield after hot water pretreatment. The VND7 promoter yielded a more complete complementation of the irx phenotype than the VND6 promoter. CONCLUSIONS: Spatial and temporal deposition of xylan in the secondary cell wall of Arabidopsis can be manipulated by using the promoter regions of vessel-specific genes to express xylan biosynthetic genes. The expression of xylan specifically in the xylem vessels is sufficient to complement the irx phenotype of xylan deficient mutants, while maintaining low overall amounts of xylan and lignin in the cell wall. This engineering approach has the potential to yield bioenergy crop plants that are more easily deconstructed and fermented into biofuels. More... »

PAGES

84-84

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1754-6834-5-84

DOI

http://dx.doi.org/10.1186/1754-6834-5-84

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036579771

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23181474


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1003", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Industrial Biotechnology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Plant Biology and Biotechnology, University of Copenhagen, 40 Thorvaldsensvej, Frederiksberg C, DK-1871, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.5254.6", 
          "name": [
            "Feedstocks Division, Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA", 
            "Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA", 
            "Department of Plant Biology and Biotechnology, University of Copenhagen, 40 Thorvaldsensvej, Frederiksberg C, DK-1871, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petersen", 
        "givenName": "Pia Damm", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Feedstocks Division, Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA", 
            "Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lau", 
        "givenName": "Jane", 
        "id": "sg:person.0707500410.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707500410.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Feedstocks Division, Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA", 
            "Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ebert", 
        "givenName": "Berit", 
        "id": "sg:person.01210120361.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210120361.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Feedstocks Division, Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA", 
            "Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Fan", 
        "id": "sg:person.01336275667.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336275667.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Feedstocks Division, Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA", 
            "Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Verhertbruggen", 
        "givenName": "Yves", 
        "id": "sg:person.01002010726.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002010726.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Feedstocks Division, Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA", 
            "Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jin Sun", 
        "id": "sg:person.0750157523.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750157523.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sandia National Laboratories, 7011 East Avenue, Livermore, CA, 94550, USA", 
          "id": "http://www.grid.ac/institutes/grid.474523.3", 
          "name": [
            "Technology Division, Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA", 
            "Sandia National Laboratories, 7011 East Avenue, Livermore, CA, 94550, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Varanasi", 
        "givenName": "Patanjali", 
        "id": "sg:person.01070755423.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070755423.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand", 
          "id": "http://www.grid.ac/institutes/grid.9723.f", 
          "name": [
            "Feedstocks Division, Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA", 
            "Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA", 
            "Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suttangkakul", 
        "givenName": "Anongpat", 
        "id": "sg:person.01024362562.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024362562.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Technology Division, Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA", 
            "Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Auer", 
        "givenName": "Manfred", 
        "id": "sg:person.0652233644.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652233644.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Feedstocks Division, Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA", 
            "Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Loqu\u00e9", 
        "givenName": "Dominique", 
        "id": "sg:person.0642304370.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642304370.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Plant & Microbial Biology, University of California, Berkeley, CA, 94720, USA", 
          "id": "http://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Feedstocks Division, Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA", 
            "Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA", 
            "Department of Plant & Microbial Biology, University of California, Berkeley, CA, 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scheller", 
        "givenName": "Henrik Vibe", 
        "id": "sg:person.0737536626.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737536626.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00356924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047559879", 
          "https://doi.org/10.1007/bf00356924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1385/abab:124:1-3:1081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014029247", 
          "https://doi.org/10.1385/abab:124:1-3:1081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1754-6834-3-24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037081784", 
          "https://doi.org/10.1186/1754-6834-3-24"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-11-26", 
    "datePublishedReg": "2012-11-26", 
    "description": "\nBACKGROUND: Cost-efficient generation of second-generation biofuels requires plant biomass that can easily be degraded into sugars and further fermented into fuels. However, lignocellulosic biomass is inherently recalcitrant toward deconstruction technologies due to the abundant lignin and cross-linked hemicelluloses. Furthermore, lignocellulosic biomass has a high content of pentoses, which are more difficult to ferment into fuels than hexoses. Engineered plants with decreased amounts of xylan in their secondary walls have the potential to render plant biomass a more desirable feedstock for biofuel production.\nRESULTS: Xylan is the major non-cellulosic polysaccharide in secondary cell walls, and the xylan deficient irregular xylem (irx) mutants irx7, irx8 and irx9 exhibit severe dwarf growth phenotypes. The main reason for the growth phenotype appears to be xylem vessel collapse and the resulting impaired transport of water and nutrients. We developed a xylan-engineering approach to reintroduce xylan biosynthesis specifically into the xylem vessels in the Arabidopsis irx7, irx8 and irx9 mutant backgrounds by driving the expression of the respective glycosyltransferases with the vessel-specific promoters of the VND6 and VND7 transcription factor genes. The growth phenotype, stem breaking strength, and irx morphology was recovered to varying degrees. Some of the plants even exhibited increased stem strength compared to the wild type. We obtained Arabidopsis plants with up to 23% reduction in xylose levels and 18% reduction in lignin content compared to wild-type plants, while exhibiting wild-type growth patterns and morphology, as well as normal xylem vessels. These plants showed a 42% increase in saccharification yield after hot water pretreatment. The VND7 promoter yielded a more complete complementation of the irx phenotype than the VND6 promoter.\nCONCLUSIONS: Spatial and temporal deposition of xylan in the secondary cell wall of Arabidopsis can be manipulated by using the promoter regions of vessel-specific genes to express xylan biosynthetic genes. The expression of xylan specifically in the xylem vessels is sufficient to complement the irx phenotype of xylan deficient mutants, while maintaining low overall amounts of xylan and lignin in the cell wall. This engineering approach has the potential to yield bioenergy crop plants that are more easily deconstructed and fermented into biofuels.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1754-6834-5-84", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1039046", 
        "issn": [
          "1754-6834"
        ], 
        "name": "Biotechnology for Biofuels", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "secondary cell walls", 
      "growth phenotype", 
      "xylem vessels", 
      "cell wall", 
      "major non-cellulosic polysaccharides", 
      "xylan biosynthetic genes", 
      "wild-type plants", 
      "engineering of plants", 
      "transcription factor genes", 
      "bioenergy crop plants", 
      "stem breaking strength", 
      "non-cellulosic polysaccharides", 
      "xylan biosynthesis", 
      "Arabidopsis plants", 
      "biosynthesis mutants", 
      "mutant background", 
      "biosynthetic genes", 
      "crop plants", 
      "complete complementation", 
      "cost-efficient generation", 
      "plant biomass", 
      "factor genes", 
      "deficient mutants", 
      "wild type", 
      "promoter region", 
      "stem strength", 
      "lower overall amounts", 
      "secondary wall", 
      "plants", 
      "irx7", 
      "irx8", 
      "promoter", 
      "genes", 
      "respective glycosyltransferases", 
      "phenotype", 
      "biofuel feedstock", 
      "complementation", 
      "mutants", 
      "biofuel production", 
      "lignocellulosic biomass", 
      "xylan", 
      "impaired transport", 
      "biomass", 
      "second-generation biofuels", 
      "decreased amount", 
      "temporal deposition", 
      "expression", 
      "VND6", 
      "Arabidopsis", 
      "lignin content", 
      "saccharification yield", 
      "glycosyltransferases", 
      "biosynthesis", 
      "growth pattern", 
      "engineering approach", 
      "biofuels", 
      "pentose", 
      "abundant lignin", 
      "nutrients", 
      "hexoses", 
      "polysaccharides", 
      "high content", 
      "desirable feedstock", 
      "sugars", 
      "morphology", 
      "overall amount", 
      "hemicelluloses", 
      "wall", 
      "production", 
      "vessel collapse", 
      "potential", 
      "transport", 
      "feedstock", 
      "region", 
      "content", 
      "lignin", 
      "patterns", 
      "hot water pretreatment", 
      "xylose levels", 
      "yield", 
      "amount", 
      "levels", 
      "water pretreatment", 
      "engineering", 
      "generation", 
      "types", 
      "water", 
      "reduction", 
      "vessels", 
      "pretreatment", 
      "increase", 
      "main reason", 
      "approach", 
      "fuel", 
      "background", 
      "degree", 
      "improved properties", 
      "collapse", 
      "deposition", 
      "properties", 
      "technology", 
      "breaking strength", 
      "reasons", 
      "strength", 
      "deconstruction technologies", 
      "cross-linked hemicelluloses", 
      "xylan deficient irregular xylem (irx) mutants irx7", 
      "deficient irregular xylem (irx) mutants irx7", 
      "irregular xylem (irx) mutants irx7", 
      "xylem (irx) mutants irx7", 
      "mutants irx7", 
      "irx9 exhibit severe dwarf growth phenotypes", 
      "exhibit severe dwarf growth phenotypes", 
      "severe dwarf growth phenotypes", 
      "dwarf growth phenotypes", 
      "xylem vessel collapse", 
      "xylan-engineering approach", 
      "Arabidopsis irx7", 
      "irx9 mutant backgrounds", 
      "vessel-specific promoters", 
      "VND7 transcription factor genes", 
      "irx morphology", 
      "wild-type growth patterns", 
      "normal xylem vessels", 
      "VND7 promoter", 
      "irx phenotype", 
      "VND6 promoter", 
      "vessel-specific genes", 
      "expression of xylan", 
      "xylan deficient mutants", 
      "vessel-specific complementation", 
      "xylan biosynthesis mutants"
    ], 
    "name": "Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of xylan biosynthesis mutants", 
    "pagination": "84-84", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036579771"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1754-6834-5-84"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23181474"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1754-6834-5-84", 
      "https://app.dimensions.ai/details/publication/pub.1036579771"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_562.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1754-6834-5-84"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1754-6834-5-84'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1754-6834-5-84'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1754-6834-5-84'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1754-6834-5-84'


 

This table displays all metadata directly associated to this object as RDF triples.

305 TRIPLES      22 PREDICATES      163 URIs      150 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1754-6834-5-84 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 anzsrc-for:10
4 anzsrc-for:1003
5 schema:author N46d6b136840c42f6a468da99d6575696
6 schema:citation sg:pub.10.1007/bf00356924
7 sg:pub.10.1186/1754-6834-3-24
8 sg:pub.10.1385/abab:124:1-3:1081
9 schema:datePublished 2012-11-26
10 schema:datePublishedReg 2012-11-26
11 schema:description BACKGROUND: Cost-efficient generation of second-generation biofuels requires plant biomass that can easily be degraded into sugars and further fermented into fuels. However, lignocellulosic biomass is inherently recalcitrant toward deconstruction technologies due to the abundant lignin and cross-linked hemicelluloses. Furthermore, lignocellulosic biomass has a high content of pentoses, which are more difficult to ferment into fuels than hexoses. Engineered plants with decreased amounts of xylan in their secondary walls have the potential to render plant biomass a more desirable feedstock for biofuel production. RESULTS: Xylan is the major non-cellulosic polysaccharide in secondary cell walls, and the xylan deficient irregular xylem (irx) mutants irx7, irx8 and irx9 exhibit severe dwarf growth phenotypes. The main reason for the growth phenotype appears to be xylem vessel collapse and the resulting impaired transport of water and nutrients. We developed a xylan-engineering approach to reintroduce xylan biosynthesis specifically into the xylem vessels in the Arabidopsis irx7, irx8 and irx9 mutant backgrounds by driving the expression of the respective glycosyltransferases with the vessel-specific promoters of the VND6 and VND7 transcription factor genes. The growth phenotype, stem breaking strength, and irx morphology was recovered to varying degrees. Some of the plants even exhibited increased stem strength compared to the wild type. We obtained Arabidopsis plants with up to 23% reduction in xylose levels and 18% reduction in lignin content compared to wild-type plants, while exhibiting wild-type growth patterns and morphology, as well as normal xylem vessels. These plants showed a 42% increase in saccharification yield after hot water pretreatment. The VND7 promoter yielded a more complete complementation of the irx phenotype than the VND6 promoter. CONCLUSIONS: Spatial and temporal deposition of xylan in the secondary cell wall of Arabidopsis can be manipulated by using the promoter regions of vessel-specific genes to express xylan biosynthetic genes. The expression of xylan specifically in the xylem vessels is sufficient to complement the irx phenotype of xylan deficient mutants, while maintaining low overall amounts of xylan and lignin in the cell wall. This engineering approach has the potential to yield bioenergy crop plants that are more easily deconstructed and fermented into biofuels.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N4c77cede0fbc451f80a7309da631637c
16 N5b935074527a4f7e82c04072c5e28296
17 sg:journal.1039046
18 schema:keywords Arabidopsis
19 Arabidopsis irx7
20 Arabidopsis plants
21 VND6
22 VND6 promoter
23 VND7 promoter
24 VND7 transcription factor genes
25 abundant lignin
26 amount
27 approach
28 background
29 bioenergy crop plants
30 biofuel feedstock
31 biofuel production
32 biofuels
33 biomass
34 biosynthesis
35 biosynthesis mutants
36 biosynthetic genes
37 breaking strength
38 cell wall
39 collapse
40 complementation
41 complete complementation
42 content
43 cost-efficient generation
44 crop plants
45 cross-linked hemicelluloses
46 deconstruction technologies
47 decreased amount
48 deficient irregular xylem (irx) mutants irx7
49 deficient mutants
50 degree
51 deposition
52 desirable feedstock
53 dwarf growth phenotypes
54 engineering
55 engineering approach
56 engineering of plants
57 exhibit severe dwarf growth phenotypes
58 expression
59 expression of xylan
60 factor genes
61 feedstock
62 fuel
63 generation
64 genes
65 glycosyltransferases
66 growth pattern
67 growth phenotype
68 hemicelluloses
69 hexoses
70 high content
71 hot water pretreatment
72 impaired transport
73 improved properties
74 increase
75 irregular xylem (irx) mutants irx7
76 irx morphology
77 irx phenotype
78 irx7
79 irx8
80 irx9 exhibit severe dwarf growth phenotypes
81 irx9 mutant backgrounds
82 levels
83 lignin
84 lignin content
85 lignocellulosic biomass
86 lower overall amounts
87 main reason
88 major non-cellulosic polysaccharides
89 morphology
90 mutant background
91 mutants
92 mutants irx7
93 non-cellulosic polysaccharides
94 normal xylem vessels
95 nutrients
96 overall amount
97 patterns
98 pentose
99 phenotype
100 plant biomass
101 plants
102 polysaccharides
103 potential
104 pretreatment
105 production
106 promoter
107 promoter region
108 properties
109 reasons
110 reduction
111 region
112 respective glycosyltransferases
113 saccharification yield
114 second-generation biofuels
115 secondary cell walls
116 secondary wall
117 severe dwarf growth phenotypes
118 stem breaking strength
119 stem strength
120 strength
121 sugars
122 technology
123 temporal deposition
124 transcription factor genes
125 transport
126 types
127 vessel collapse
128 vessel-specific complementation
129 vessel-specific genes
130 vessel-specific promoters
131 vessels
132 wall
133 water
134 water pretreatment
135 wild type
136 wild-type growth patterns
137 wild-type plants
138 xylan
139 xylan biosynthesis
140 xylan biosynthesis mutants
141 xylan biosynthetic genes
142 xylan deficient irregular xylem (irx) mutants irx7
143 xylan deficient mutants
144 xylan-engineering approach
145 xylem (irx) mutants irx7
146 xylem vessel collapse
147 xylem vessels
148 xylose levels
149 yield
150 schema:name Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of xylan biosynthesis mutants
151 schema:pagination 84-84
152 schema:productId N3524caaea1d244efa78ca4a24413e7c1
153 Nb026aded9af4496ab6f5e8f16918de24
154 Nb9aed6cec0d24f638c0667c0c3a4e962
155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036579771
156 https://doi.org/10.1186/1754-6834-5-84
157 schema:sdDatePublished 2021-12-01T19:26
158 schema:sdLicense https://scigraph.springernature.com/explorer/license/
159 schema:sdPublisher N13c0f1a9e980468dbf7bd168218e9f36
160 schema:url https://doi.org/10.1186/1754-6834-5-84
161 sgo:license sg:explorer/license/
162 sgo:sdDataset articles
163 rdf:type schema:ScholarlyArticle
164 N13c0f1a9e980468dbf7bd168218e9f36 schema:name Springer Nature - SN SciGraph project
165 rdf:type schema:Organization
166 N2cce551d6f2a4cf8a7a4416af510941b rdf:first sg:person.0652233644.88
167 rdf:rest N46db2c33975f4c3c90a9098f5d44e468
168 N3524caaea1d244efa78ca4a24413e7c1 schema:name doi
169 schema:value 10.1186/1754-6834-5-84
170 rdf:type schema:PropertyValue
171 N3c870c55ebb24b83994b669ad879e4c7 schema:affiliation grid-institutes:grid.5254.6
172 schema:familyName Petersen
173 schema:givenName Pia Damm
174 rdf:type schema:Person
175 N46d6b136840c42f6a468da99d6575696 rdf:first N3c870c55ebb24b83994b669ad879e4c7
176 rdf:rest Nd9e6948c7f0342bfbc73d4fbe807ac24
177 N46db2c33975f4c3c90a9098f5d44e468 rdf:first sg:person.0642304370.01
178 rdf:rest Na01409f99aaf4ef78de842c94d7e88b7
179 N4c77cede0fbc451f80a7309da631637c schema:volumeNumber 5
180 rdf:type schema:PublicationVolume
181 N5b935074527a4f7e82c04072c5e28296 schema:issueNumber 1
182 rdf:type schema:PublicationIssue
183 N8c4afd1978e7433ebd37231651577f0c rdf:first sg:person.01024362562.94
184 rdf:rest N2cce551d6f2a4cf8a7a4416af510941b
185 N8cb128164e4d4ef1b011608957a842e6 rdf:first sg:person.0750157523.82
186 rdf:rest Ncbe59f916b48473c8900e2e96950544a
187 Na01409f99aaf4ef78de842c94d7e88b7 rdf:first sg:person.0737536626.38
188 rdf:rest rdf:nil
189 Na0a8c351fb0544169d86b1574ba13b3d rdf:first sg:person.01336275667.24
190 rdf:rest Ndcff0581914640fdb9a7301887694a40
191 Nb026aded9af4496ab6f5e8f16918de24 schema:name dimensions_id
192 schema:value pub.1036579771
193 rdf:type schema:PropertyValue
194 Nb9aed6cec0d24f638c0667c0c3a4e962 schema:name pubmed_id
195 schema:value 23181474
196 rdf:type schema:PropertyValue
197 Ncbe59f916b48473c8900e2e96950544a rdf:first sg:person.01070755423.53
198 rdf:rest N8c4afd1978e7433ebd37231651577f0c
199 Nd9e6948c7f0342bfbc73d4fbe807ac24 rdf:first sg:person.0707500410.08
200 rdf:rest Ndecf0a222ed34e87995e8db2bb15dc39
201 Ndcff0581914640fdb9a7301887694a40 rdf:first sg:person.01002010726.36
202 rdf:rest N8cb128164e4d4ef1b011608957a842e6
203 Ndecf0a222ed34e87995e8db2bb15dc39 rdf:first sg:person.01210120361.72
204 rdf:rest Na0a8c351fb0544169d86b1574ba13b3d
205 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
206 schema:name Engineering
207 rdf:type schema:DefinedTerm
208 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
209 schema:name Chemical Engineering
210 rdf:type schema:DefinedTerm
211 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
212 schema:name Technology
213 rdf:type schema:DefinedTerm
214 anzsrc-for:1003 schema:inDefinedTermSet anzsrc-for:
215 schema:name Industrial Biotechnology
216 rdf:type schema:DefinedTerm
217 sg:journal.1039046 schema:issn 1754-6834
218 schema:name Biotechnology for Biofuels
219 schema:publisher Springer Nature
220 rdf:type schema:Periodical
221 sg:person.01002010726.36 schema:affiliation grid-institutes:grid.184769.5
222 schema:familyName Verhertbruggen
223 schema:givenName Yves
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002010726.36
225 rdf:type schema:Person
226 sg:person.01024362562.94 schema:affiliation grid-institutes:grid.9723.f
227 schema:familyName Suttangkakul
228 schema:givenName Anongpat
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024362562.94
230 rdf:type schema:Person
231 sg:person.01070755423.53 schema:affiliation grid-institutes:grid.474523.3
232 schema:familyName Varanasi
233 schema:givenName Patanjali
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070755423.53
235 rdf:type schema:Person
236 sg:person.01210120361.72 schema:affiliation grid-institutes:grid.184769.5
237 schema:familyName Ebert
238 schema:givenName Berit
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210120361.72
240 rdf:type schema:Person
241 sg:person.01336275667.24 schema:affiliation grid-institutes:grid.184769.5
242 schema:familyName Yang
243 schema:givenName Fan
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336275667.24
245 rdf:type schema:Person
246 sg:person.0642304370.01 schema:affiliation grid-institutes:grid.184769.5
247 schema:familyName Loqué
248 schema:givenName Dominique
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642304370.01
250 rdf:type schema:Person
251 sg:person.0652233644.88 schema:affiliation grid-institutes:grid.184769.5
252 schema:familyName Auer
253 schema:givenName Manfred
254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652233644.88
255 rdf:type schema:Person
256 sg:person.0707500410.08 schema:affiliation grid-institutes:grid.184769.5
257 schema:familyName Lau
258 schema:givenName Jane
259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707500410.08
260 rdf:type schema:Person
261 sg:person.0737536626.38 schema:affiliation grid-institutes:grid.47840.3f
262 schema:familyName Scheller
263 schema:givenName Henrik Vibe
264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737536626.38
265 rdf:type schema:Person
266 sg:person.0750157523.82 schema:affiliation grid-institutes:grid.184769.5
267 schema:familyName Kim
268 schema:givenName Jin Sun
269 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750157523.82
270 rdf:type schema:Person
271 sg:pub.10.1007/bf00356924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047559879
272 https://doi.org/10.1007/bf00356924
273 rdf:type schema:CreativeWork
274 sg:pub.10.1186/1754-6834-3-24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037081784
275 https://doi.org/10.1186/1754-6834-3-24
276 rdf:type schema:CreativeWork
277 sg:pub.10.1385/abab:124:1-3:1081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014029247
278 https://doi.org/10.1385/abab:124:1-3:1081
279 rdf:type schema:CreativeWork
280 grid-institutes:grid.184769.5 schema:alternateName Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
281 Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
282 schema:name Feedstocks Division, Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA
283 Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
284 Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
285 Technology Division, Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA
286 rdf:type schema:Organization
287 grid-institutes:grid.474523.3 schema:alternateName Sandia National Laboratories, 7011 East Avenue, Livermore, CA, 94550, USA
288 schema:name Sandia National Laboratories, 7011 East Avenue, Livermore, CA, 94550, USA
289 Technology Division, Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA
290 rdf:type schema:Organization
291 grid-institutes:grid.47840.3f schema:alternateName Department of Plant & Microbial Biology, University of California, Berkeley, CA, 94720, USA
292 schema:name Department of Plant & Microbial Biology, University of California, Berkeley, CA, 94720, USA
293 Feedstocks Division, Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA
294 Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
295 rdf:type schema:Organization
296 grid-institutes:grid.5254.6 schema:alternateName Department of Plant Biology and Biotechnology, University of Copenhagen, 40 Thorvaldsensvej, Frederiksberg C, DK-1871, Denmark
297 schema:name Department of Plant Biology and Biotechnology, University of Copenhagen, 40 Thorvaldsensvej, Frederiksberg C, DK-1871, Denmark
298 Feedstocks Division, Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA
299 Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
300 rdf:type schema:Organization
301 grid-institutes:grid.9723.f schema:alternateName Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
302 schema:name Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
303 Feedstocks Division, Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA
304 Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
305 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...