Universal nonlinear filtering using Feynman path integrals II: the continuous-continuous model with additive noise View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-02-10

AUTHORS

Bhashyam Balaji

ABSTRACT

In this paper, the Feynman path integral formulation of the continuous-continuous filtering problem, a fundamental problem of applied science, is investigated for the case when the noise in the signal and measurement model is Gaussian and additive. It is shown that it leads to an independent and self-contained analysis and solution of the problem. A consequence of this analysis is the configuration space Feynman path integral formula for the conditional probability density that manifests the underlying physics of the problem. A corollary of the path integral formula is the Yau algorithm that has been shown to have excellent numerical properties. The Feynman path integral formulation is shown to lead to practical and implementable algorithms. In particular, the solution of the Yau partial differential equation is reduced to one of function computation and integration.PACS Codes:02.50.Ey, 02.50.Fz, 05.10.Gg, 89.90.+n, 93E10, 93E11 More... »

PAGES

2

References to SciGraph publications

  • 1996-11. Explicit solution of a Kolmogorov equation in APPLIED MATHEMATICS & OPTIMIZATION
  • 1980-01. On a multiplicative functional transformation arising in nonlinear filtering theory in PROBABILITY THEORY AND RELATED FIELDS
  • 1969-09. On the optimal filtering of diffusion processes in PROBABILITY THEORY AND RELATED FIELDS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1754-0410-3-2

    DOI

    http://dx.doi.org/10.1186/1754-0410-3-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1022851291


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Radar Systems Section, Defence Research and Development Canada, Ottawa, 3701 Carling Avenue, K1A 0Z4, Ottawa, ON, Canada", 
              "id": "http://www.grid.ac/institutes/grid.1463.0", 
              "name": [
                "Radar Systems Section, Defence Research and Development Canada, Ottawa, 3701 Carling Avenue, K1A 0Z4, Ottawa, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Balaji", 
            "givenName": "Bhashyam", 
            "id": "sg:person.012707664416.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012707664416.46"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01182625", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037851347", 
              "https://doi.org/10.1007/bf01182625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00531444", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039018436", 
              "https://doi.org/10.1007/bf00531444"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00536382", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005411561", 
              "https://doi.org/10.1007/bf00536382"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-02-10", 
        "datePublishedReg": "2009-02-10", 
        "description": "In this paper, the Feynman path integral formulation of the continuous-continuous filtering problem, a fundamental problem of applied science, is investigated for the case when the noise in the signal and measurement model is Gaussian and additive. It is shown that it leads to an independent and self-contained analysis and solution of the problem. A consequence of this analysis is the configuration space Feynman path integral formula for the conditional probability density that manifests the underlying physics of the problem. A corollary of the path integral formula is the Yau algorithm that has been shown to have excellent numerical properties. The Feynman path integral formulation is shown to lead to practical and implementable algorithms. In particular, the solution of the Yau partial differential equation is reduced to one of function computation and integration.PACS Codes:02.50.Ey, 02.50.Fz, 05.10.Gg, 89.90.+n, 93E10, 93E11", 
        "genre": "article", 
        "id": "sg:pub.10.1186/1754-0410-3-2", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1155174", 
            "issn": [
              "1754-0410"
            ], 
            "name": "PMC Physics A", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "keywords": [
          "Feynman path integral formulation", 
          "path integral formula", 
          "path integral formulation", 
          "integral formula", 
          "partial differential equations", 
          "integral formulation", 
          "self-contained analysis", 
          "conditional probability density", 
          "excellent numerical properties", 
          "filtering problem", 
          "differential equations", 
          "implementable algorithm", 
          "probability density", 
          "numerical properties", 
          "additive noise", 
          "function computation", 
          "fundamental problem", 
          "problem", 
          "measurement model", 
          "algorithm", 
          "formulation", 
          "applied science", 
          "noise", 
          "solution", 
          "formula", 
          "equations", 
          "computation", 
          "corollary", 
          "filtering", 
          "model", 
          "physics", 
          "signals", 
          "integration", 
          "analysis", 
          "science", 
          "properties", 
          "cases", 
          "universals", 
          "density", 
          "consequences", 
          "PACS", 
          "paper", 
          "continuous-continuous filtering problem", 
          "configuration space Feynman path integral formula", 
          "space Feynman path integral formula", 
          "Feynman path integral formula", 
          "Yau algorithm", 
          "Yau partial differential equation", 
          "Feynman path integrals II", 
          "path integrals II", 
          "integrals II", 
          "continuous-continuous model"
        ], 
        "name": "Universal nonlinear filtering using Feynman path integrals II: the continuous-continuous model with additive noise", 
        "pagination": "2", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1022851291"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1754-0410-3-2"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1754-0410-3-2", 
          "https://app.dimensions.ai/details/publication/pub.1022851291"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_484.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/1754-0410-3-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1754-0410-3-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1754-0410-3-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1754-0410-3-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1754-0410-3-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    121 TRIPLES      22 PREDICATES      80 URIs      69 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1754-0410-3-2 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author N93bb754dcc58421d8b85ccd42b749a8d
    4 schema:citation sg:pub.10.1007/bf00531444
    5 sg:pub.10.1007/bf00536382
    6 sg:pub.10.1007/bf01182625
    7 schema:datePublished 2009-02-10
    8 schema:datePublishedReg 2009-02-10
    9 schema:description In this paper, the Feynman path integral formulation of the continuous-continuous filtering problem, a fundamental problem of applied science, is investigated for the case when the noise in the signal and measurement model is Gaussian and additive. It is shown that it leads to an independent and self-contained analysis and solution of the problem. A consequence of this analysis is the configuration space Feynman path integral formula for the conditional probability density that manifests the underlying physics of the problem. A corollary of the path integral formula is the Yau algorithm that has been shown to have excellent numerical properties. The Feynman path integral formulation is shown to lead to practical and implementable algorithms. In particular, the solution of the Yau partial differential equation is reduced to one of function computation and integration.PACS Codes:02.50.Ey, 02.50.Fz, 05.10.Gg, 89.90.+n, 93E10, 93E11
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree true
    13 schema:isPartOf N5ed1d1e6064d4d14907bc25e457d1023
    14 N6c4e27df87d747fdb423d0493f38341e
    15 sg:journal.1155174
    16 schema:keywords Feynman path integral formula
    17 Feynman path integral formulation
    18 Feynman path integrals II
    19 PACS
    20 Yau algorithm
    21 Yau partial differential equation
    22 additive noise
    23 algorithm
    24 analysis
    25 applied science
    26 cases
    27 computation
    28 conditional probability density
    29 configuration space Feynman path integral formula
    30 consequences
    31 continuous-continuous filtering problem
    32 continuous-continuous model
    33 corollary
    34 density
    35 differential equations
    36 equations
    37 excellent numerical properties
    38 filtering
    39 filtering problem
    40 formula
    41 formulation
    42 function computation
    43 fundamental problem
    44 implementable algorithm
    45 integral formula
    46 integral formulation
    47 integrals II
    48 integration
    49 measurement model
    50 model
    51 noise
    52 numerical properties
    53 paper
    54 partial differential equations
    55 path integral formula
    56 path integral formulation
    57 path integrals II
    58 physics
    59 probability density
    60 problem
    61 properties
    62 science
    63 self-contained analysis
    64 signals
    65 solution
    66 space Feynman path integral formula
    67 universals
    68 schema:name Universal nonlinear filtering using Feynman path integrals II: the continuous-continuous model with additive noise
    69 schema:pagination 2
    70 schema:productId N00fd907d904d42c98fad44163edacd68
    71 N306e05b5c7cd43e1827b180692712f26
    72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022851291
    73 https://doi.org/10.1186/1754-0410-3-2
    74 schema:sdDatePublished 2022-01-01T18:19
    75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    76 schema:sdPublisher Nd3c583b5b90e4e51ac0ffbc3b66ddd3f
    77 schema:url https://doi.org/10.1186/1754-0410-3-2
    78 sgo:license sg:explorer/license/
    79 sgo:sdDataset articles
    80 rdf:type schema:ScholarlyArticle
    81 N00fd907d904d42c98fad44163edacd68 schema:name dimensions_id
    82 schema:value pub.1022851291
    83 rdf:type schema:PropertyValue
    84 N306e05b5c7cd43e1827b180692712f26 schema:name doi
    85 schema:value 10.1186/1754-0410-3-2
    86 rdf:type schema:PropertyValue
    87 N5ed1d1e6064d4d14907bc25e457d1023 schema:volumeNumber 3
    88 rdf:type schema:PublicationVolume
    89 N6c4e27df87d747fdb423d0493f38341e schema:issueNumber 1
    90 rdf:type schema:PublicationIssue
    91 N93bb754dcc58421d8b85ccd42b749a8d rdf:first sg:person.012707664416.46
    92 rdf:rest rdf:nil
    93 Nd3c583b5b90e4e51ac0ffbc3b66ddd3f schema:name Springer Nature - SN SciGraph project
    94 rdf:type schema:Organization
    95 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Mathematical Sciences
    97 rdf:type schema:DefinedTerm
    98 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Numerical and Computational Mathematics
    100 rdf:type schema:DefinedTerm
    101 sg:journal.1155174 schema:issn 1754-0410
    102 schema:name PMC Physics A
    103 schema:publisher Springer Nature
    104 rdf:type schema:Periodical
    105 sg:person.012707664416.46 schema:affiliation grid-institutes:grid.1463.0
    106 schema:familyName Balaji
    107 schema:givenName Bhashyam
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012707664416.46
    109 rdf:type schema:Person
    110 sg:pub.10.1007/bf00531444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039018436
    111 https://doi.org/10.1007/bf00531444
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/bf00536382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005411561
    114 https://doi.org/10.1007/bf00536382
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/bf01182625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037851347
    117 https://doi.org/10.1007/bf01182625
    118 rdf:type schema:CreativeWork
    119 grid-institutes:grid.1463.0 schema:alternateName Radar Systems Section, Defence Research and Development Canada, Ottawa, 3701 Carling Avenue, K1A 0Z4, Ottawa, ON, Canada
    120 schema:name Radar Systems Section, Defence Research and Development Canada, Ottawa, 3701 Carling Avenue, K1A 0Z4, Ottawa, ON, Canada
    121 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...